

Mixed Signals – Using Fusion’s Signals API
	

	

One of my favorite features in Fusion is the Signals API – a RESTful, flexible, easily

implemented mechanism for capturing interesting user events, like (but not limited to)

queries and result clicks, and their associated metadata. When signals are enabled for

a collection (the default behavior – unless the collection is created using the REST API),

Fusion automatically creates a corresponding “signals” collection in which raw signal

data submitted to the Signals API is indexed. In fact, if you’ve been working with

Fusion you may have noticed several collections that appear when a new collection is

created. This signals collection is named after the original collection with “_signals”

suffixed; for example, given a signals-enabled collection called “periodicals”, Fusion

will automatically create a collection called “periodicals_signals.” All Signals API calls

are made referencing the original collection, as the API manages the signals collection.

Thus any Signals API calls should be made to the “periodicals” collection, and they will

automatically be indexed into “periodicals_signals.”

Another collection you may have noticed is the aggregated signals collection, named

after the signals collection with “_aggr” suffixed; for the previous example, the

aggregation collection would be called “periodicals_signals_aggr.” Aggregation is the

automated method by which Fusion ingests the raw signal data and processes it into

summaries, metrics and other key performance indicators which are indexed and stored

in the aforementioned collection. This collection can then be visualized through the

Fusion Dashboard or queried for Recommendations.

Those of you who worked with Lucidworks Search, the previous platform release, may

remember the “Click Scoring Relevance Framework,” usually just referred to as “Click

Scoring” – a straightforward API that captured a limited set of data to a log file that

LWS could then analyze on a scheduled basis. Fusion’s signals are a big step up in

many ways:

• As mentioned, raw and aggregated signals are captured in collections, with all
the advantages that offers

• In addition to a few predefined parameters (like event type and timestamp), the
API can accept any number of user-defined parameters

• Raw signal data can be visualized in near real time in a variety of formats

There are several other advantages in the newest release, but these relate most directly

to the first step in analysis, visualization and recommendations: capturing events using

the Signals API.

Sending Signals
As mentioned earlier, the Signals API is a RESTful interface. It accepts POSTs where the

request body is JSON consisting of a few predefined parameters and any number of

user-defined parameters, intended to capture interesting events occurring from a user’s

interaction with search. The first step to constructing the request is to determine which

of the full list of input parameters should be explicitly assigned, and what, if any, user-

defined parameters should be captured. Of the predefined parameters, there is only

one required parameter, “type” (other essential parameters like “id” and “timestamp”

are optional; if not present, the API will create and assign default values to them);

“type” can be any user-defined string, but should be applied consistently to ensure

accurate aggregation. Two of the more interesting interactions a user has with search

are the queries they submit (type=”query”) and the results they select (type=”click”), so

we’ll look at API request examples of each. In all examples, the API will default

timestamp and id, and there are a couple custom parameters defined (depending on

the event type.) The Signals API accepts request parameters in JSON format, so we’ll

first define the structure and contents of our JSON events, then demonstrate how to

post them to the REST API.

Query Events
This is an event of type “query” that captures a user’s query string to help us

understand how users are searching. It also capture the user’s login ID and the total

results for the query string.

Here is an example JSON string representing a query event, capturing those fields:
	 [{params:	 {query:	 'mobile	 phone	 reviews',	 user:	 'smare',	 numresults:	
'18729'},	 type:	 'query'}]	

This string can be constructed through any mechanism at your disposal – here’s an

example of constructing this event in Ruby (from the catalog_controller component of a

Blacklight-enabled Ruby on Rails application):

req.body	 =	 [{params:	 {query:	 params[:q],	 user:	 current_user.login,	
numresults:	 @response.total},	 type:	 'query'}].to_json	

Note the use of the “params” property to define custom fields (user, numresults); any

number of additional fields can be added here to capture useful information for later

analysis.

Click Events
Here we’ll define an event of type “click,” which will be triggered whenever a user clicks

on a search result. Our intention is to determine which results are actually examined by

users for a given query, so in addition to capturing the user and their query, we’ll also

capture the ID of the result document the user clicked and that document’s score.

Here’s an example of a JSON string capturing this information:

	 [{params:	 {query:	 'galaxy	 s4	 review',	 user:	 'smare',	 score:	
'34.2675357',	 docId:	 '8967562'},	 type:	 'click'}]	

Here’s an example of constructing that JSON in Ruby on Rails:

req.body	 =	 [{params:	 {query:	 params[:query],	 user:	 current_user.login,	

score:	 params[:score],	 docId:	 params[:docId]},	 type:	 'click'}].to_json	

POSTing the Request
Now that the event data is captured and formatted as JSON, it can be posted to the

Signals REST API. The path for the request is

<serverName>:8764/api/apollo/signals/<collectionName>, where <serverName> is

the IP address or machine name of the Fusion API server, and <collectionName> is the

name of the collection for which you want to capture signals. Using the “periodicals”

collection, the URL would be

http://fusionserver.local:8764/api/apollo/signals/periodicals.

The Signals API accepts a few request parameters:

• commit,	 a	 flag	 that	 when	 set	 to	 true,	 instructs	 Fusion	 to	 issue	 a	 commit	 at	 the	 end	 of	
indexing	

• async,	 a	 flag	 that	 when	 set	 to	 true,	 instructs	 Fusion	 to	 index	 signals	 asynchronously	
(issuing	 autoCommit	 and	 suppressing	 failure	 reporting.)	 	 When	 omitted	 (as	 in	 this	
example)	 this	 flag	 defaults	 to	 false.	

• pipeline, which can be used to define a specific index pipeline to use when
indexing the signals. If not provided (as in this case, since we have no advanced
requirements for ingesting signals) Fusion will use the pre-configured
“signals_ingest” pipeline by default

Beside the request parameters, the request header “Content-‐Type” should be set to

“application/json” as JSON is the format of the request body. Furthermore, Fusion

requires API clients to authenticate – the request header must be configured for basic

authentication with a valid username and password.

Therefore, to send the request with the appropriate headers, parameters, and bodies

defined to the example “periodicals” collection, we could execute the following curl

command:

curl	 -‐u	 admin:xxxxxxxxxx	 -‐X	 POST	 -‐H	 'Content-‐type:application/json'	 -‐d	
'[{params:	 {query:	 'mobile	 phone	 reviews',	 user:	 'smare',	 numresults:	
'18729'},	 type:	 'query'},{params:	 {query:	 'galaxy	 s4	 review',	 user:	
'smare',	 score:	 '34.2675357',	 docId:	 '8967562'},	 type:	 'click'}]'	
http://fusionserver.local:8764/api/apollo/signals/periodicals?commit=tru
e	

While this is useful for illustrating all the requirements for a well-formatted API request,

the likelihood of capturing signals using curl in a real-world scenario is lower than

through other mechanisms. Most likely, the events will be indexed in real-time rather

than by a batch process, which introduces some complexities depending on the type of

event captured and how the event is submitted to the Signals API. The examples thus

far illustrate signal data capture from a live application implemented in Ruby on Rails

and using the Blacklight gem for Solr integration, and we’ll continue to explore signals

in that context – but these examples could easily be ported to another implementation

framework.

The “query” signal is posted from a server-side component extended from Blacklight

that acts as the interface to Solr; the Signals API request is made after receiving the

result list of documents from Solr (but before rendering the results.) This component is

a Ruby class, so plain old Ruby code is used to create and execute the request.

#	 Note	 that	 the	 following	 modules	 are	 required	
#	 require	 "uri"	
#	 require	 "net/http"	
	
api_uri	 =	
'http://fusionserver.local:8764/api/apollo/signals/periodicals?commit=tr
ue'	
uri	 =	 URI(api_uri)	

	
req	 =	 Net::HTTP::Post.new(api_uri,	 initheader	 =	 {'Content-‐Type'	
=>'application/json'})	
req.body	 =	 [{params:	 {query:	 params[:q],	 user:	 current_user.login,	

numresults:	 @response.total},	 type:	 'query'}].to_json	

req.basic_auth('admin',	 'xxxxxxxxxxxx')	
	
res	 =	 Net::HTTP.start(uri.hostname,	 uri.port)	 do	 |http|	
	 http.request(req)	
end	

The “click” signal is captured differently. Since the click signal is defined as the event

occurring when a user selects a document from a list of search results, it would make

sense to embed this API request in the UI rather than on the server. The most obvious

approach is calling a JavaScript method on the result (perhaps implemented as the

onclick() method of a document title in the results list) that posts the Signals API

request. AngularJS is a popular web application framework providing extensive client-

side functionality that lends itself nicely to this kind of implementation.

angular.module('signalsProcessor',	 [])	
	 	 	 	 .controller('SignalsController',	 ['$scope','$http',	 function($scope,	
$http)	 {	
	 	 	 	 	 	 	 	 $scope.sendClickSignal	 =	 function(docId,query,score,userId)	 {	
	 	 	 	 	 	 	 	 	 	 	 	 var	 data	 =	 [];	
	 	 	 	 	 	 	 	 	 	 	 	 var	 signal	 =	 {"params":	 {"query":query,	 "user":userId,	
"docId":docId,	 "score":score},	 "type":"click"};	
	 	 	 	 	 	 	 	 	 	 	 	 console.log(signal);	
	 	 	 	 	 	 	 	 	 	 	 	 data.push(signal);	
	 	 	 	 	 	 	 	 	 	 	 	 var	 url	 =	
'http://fusionserver.local:8764/api/apollo/signals/periodicals?commit=tr
ue';	
	 	 	 	 	 	 	 	 	 	 	 	 return	 $http.post(url,data)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 .success(function(response)	 {	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 var	 msg	 =	 'Successfully	 indexed	 click	 data';	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 console.log(msg);	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 $scope.notification	 =	 true;	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 $scope.notificationMsg	 =	 msg;	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 });	
	 	 	 	 	 	 	 	 };	
	 	 	 	 }])	
	 	 	 	 .config(['$httpProvider',	 function($httpProvider)	 {	
	 	 	 	 	 	 	 	 $httpProvider.defaults.useXDomain	 =	 true;	
	 	 	 	 	 	 	 	 $httpProvider.defaults.withCredentials	 =	 true;	

	 	 	 	 	 	 	 	 $httpProvider.defaults.headers.common["Content-‐type"]	 =	
"application/json";	
	 	 	 	 	 	 	 	 $httpProvider.defaults.headers.common["Authentication"]	 =	 "Basic	
admin:xxxxxxxx";	
	 	 	 	 }]);	

	
A link to this method can then be embedded in each result.
<div	 ng-‐app="signalsProcessor"	 ng-‐controller="SignalsController">	
	 <button	 ng-‐click="sendClickSignal('<%=	 document[:id]	 %>','<%=	 params[:q]	
%>','<%=	 document[:score]	 %>','<%=	 @current_user.login	 %>')"	 class="search-‐
btn"	 id="sgnl_<%=	 document[:id]	 %>">	
	 	 	
	 </button>	
</div>	 	 	

This approach works as long as the client is on the same machine as the Fusion API

(meaning for the above example, the application submitting the signals requests is

deployed on the same machine as Fusion.) However, in a typical production (and test,

and most likely development) environment, these applications would be deployed on

different machines. Clicking a search result to trigger sendClickSignal in such an

environment results in an error:

XMLHttpRequest	 cannot	 load	
http://fusionserver.local:8764/api/apollo/signals/periodicals?commit=tru
e.	 No	 'Access-‐Control-‐Allow-‐Origin'	 header	 is	 present	 on	 the	 requested	
resource.	 Origin	 'http://192.168.1.175:3000'	 is	 therefore	 not	 allowed	
access.	 The	 response	 had	 HTTP	 status	 code	 401.	

For the unfamiliar, this message is describing a CORS error. Designed to protect

against malicious code execution, the Signals API restricts HTTP requests from another

domain outside the domain from which the resource originated (hence the server-side

example’s success.) There are a number of ways to deal with this, and nearly all

ultimately implement a sort of proxy that resides in the same originating domain,

accepting requests from clients and forwarding them to the server (one alternative that

isn’t a proxy would be JSONP, which unfortunately does not support basic

authentication.) For many enterprise deployments a dedicated, running CORS proxy

service is not a feasible solution; but a simple server-side component in your application

can act like a proxy with a minimum of effort. Post to the component from a JavaScript

function that passes all the necessary fields, and from there the component creates and

posts the Signals API request.

The following JavaScript function uses the jQuery.ajax() API to asynchronously post to a

Ruby on Rails controller (but could easily post to any server-side component listening

for requests.)

function	 postClickEvent(docId,	 query,	 score)	 {	
	 $.ajax({	
	 	 url:	 "/signals?docId="	 +	 docId	 +	 "&query="	 +	 query	 +	
"&score="	 +	 score,	
	 	 type:	 "post",	
	 	 success:	 function	 ()	 {	
	 	 	 	 	 	 	 	 	 	 console.log("Posted	 click	 tracking	 data	 to	 signals	
controller");	
	 	 	 	 	 	 	 	 	 },	
	 	 error:	 function	 (msg)	 {	
	 	 	 alert('Error	 Marking	 Relevance');	
	 	 	 console.log("Unable	 to	 post	 to	 signals	 controller:	 "	
+	 msg);	
	 	 	 	 	 	 	 	 	 }	
	 });	
}	

The controller then uses the same mechanism as the “query” signal request to post to

the Signals API.

require	 "uri"	
require	 "net/http"	
class	 SignalController	 <	 ApplicationController	
	
	 def	 new	
	 	 render	 :layout	 =>	 false	
	 end	
	
	 def	 create	
	 	 api_uri	 =	
'http://fusionserver.local:8764/api/apollo/signals/periodicals?commit=tr
ue'	
	 	 uri	 =	 URI(api_uri)	
	 	 req	 =	 Net::HTTP::Post.new(api_uri,	 initheader	 =	 {'Content-‐
Type'	 =>'application/json'})	
	 	 req.body	 =	 [{params:	 {query:	 params[:query],	 user:	
current_user.login,	 score:	 params[:score],	 docId:	 params[:docId]},	 type:	
'click'}].to_json	

req.basic_auth('admin',	 'xxxxxxxxxxxx')	
	
res	 =	 Net::HTTP.start(uri.hostname,	 uri.port)	 do	 |http|	
	 http.request(req)	
end	

	
	 	 	 	 	 	 head	 :ok,	 content_type:	 "text/html"	
	 	 	 end	

end	

Since the request parameter “commit” is explicitly set to “true” in the Signals API

requests, the raw events and their data are available to view immediately.

Visualizing Signals
Now that there are some signals indexed, it’s time to become familiar with Dashboards

and how to visualize the data. The Fusion Dashboards can be found at

http://<fusion_home>:8764/banana/index.html#/dashboard. The default dashboard is

“Fusion Logs” so navigate to the signals dashboard by clicking “Lucidworks Fusion

Signals” in the “Explore Dashboards” panel:

Once in the Fusion Signals dashboard, we’ll need to point to our signals collection – but

before we do that, we need to change the default datetime field used by the

dashboard. In the “Set Time Span” panel, click the gear icon in the upper right corner

to open the “Timepicker Settings” window and select the “Panel” tab:

Change the “Default Mode” to “relative”, “Default timespan” to “30d” and most

importantly, “Time Field” to “timestamp_tdt”:

Now we can select our signals collection – click the gear icon in the upper right corner

of the dashboard (note the “Getting Started” panel that includes these directions):

The “Dashboard Settings” window will open; click the “Solr” tab and change

“Collection” to the name of your signals collection:

The dashboard will automatically refresh and the default panels will display metrics for

the signals indexed in the collection:

Next - Signal Aggregation
While the raw signals show some interesting information, for the data to be most useful

you will need to aggregate it - read in raw signals and return interesting summaries,

ranging from simple sums to sophisticated statistical functions. We’ll explore signal

aggregation in a future blog post, using the signals we are now capturing using the

Signals API.

About the Author
Sean Mare is a technologist with almost 20 years of experience in enterprise application

design and development. As Solution Architect with Knowledgent, a leading Big Data

and Analytics consulting organization and partner with Lucidworks, he leverages the

power of enterprise search to enable people and organizations to explore their data in

exciting and interesting ways. He resides in the greater New York City area.

