

Solr Reference Guide Jan 10, 2012

Page of 2 397

Table of Contents
Solr and Lucene ___ 18
Lucid Imagination __ 19
About This Guide __ 20
Further Assistance ___ 22
Getting Started ___ 23

Installing Solr ___ 23
Got Java? __ 24
Installing Solr ___ 24

To install Solr ___ 24
Running Solr __ 25

Start the Server ___ 26
Add Documents ___ 26
Ask Questions __ 28

A Quick Overview __ 31
A Step Closer __ 34

Using the Solr Administration User Interface ___ 36
Overview of the Solr Admin UI __ 36

Configuring the Admin UI in solrconfig.xml ______________________________________ 37
The Solr Section ___ 38

Displaying the Solr Schema __ 39
Displaying the Solr Configuration File __ 40
Running Field Analysis to Test Analyzers, Tokenizers, and TokenFilters ________________ 41
Using the Schema Browser __ 45

Displaying the Configuration of a Field _____________________________________ 46
Displaying Additional Details about a Parameter ______________________________ 47
Exploring the Most Popular Terms for a Field ________________________________ 48

Displaying Statistics of the Solr Server ___ 49
Displaying Start-up Time Statistics about the Solr Server __________________________ 50
Displaying Information about a Distributed Solr Configuration _______________________ 51
Pinging the Solr Server to Test Its Responsiveness ________________________________ 53
Viewing and Configuring Logfile Settings __ 54

The App Server Section __ 56
Displaying Java Properties ___ 57
Displaying the Active Threads in the Java Environment ____________________________ 58
Enabling or Disabling the Server in a Load-balanced Configuration ___________________ 59

The Make a Query Section __ 60
Using the Full Interface to Submit Queries ______________________________________ 61

The Assistance Section __ 63

Solr Reference Guide Jan 10, 2012

Page of 3 397

Documents, Fields, and Schema Design __ 65
Overview of Documents, Fields, and Schema Design _________________________________ 65

How Solr Sees the World __ 66
Field Analysis ___ 66

Solr Field Types __ 67
Field Type Definitions in schema.xml ___ 68
Field Types Included with Solr __ 69
Working with Dates __ 70
Working with External Files __ 71
Field Type Properties ___ 72
Field Properties by Use Case ___ 73

Defining Fields ___ 74
Copying Fields ___ 75
Dynamic Fields __ 76
Other Schema Elements ___ 77

Unique Key ___ 78
Default Search Field __ 78
Query Parser Operator __ 78

Putting the Pieces Together ___ 78
Choosing Appropriate Numeric Types __ 79
Working With Text ___ 79

Understanding Analyzers, Tokenizers, and Filters _____________________________________ 81
Overview of Analyzers, Tokenizers, and Filters ______________________________________ 81
What Is An Analyzer? ___ 82

Analysis Phases ___ 84
What Is A Tokenizer? ___ 85
What Is a Filter? ___ 86
Tokenizers __ 88

Standard Tokenizer __ 90
Classic Tokenizer __ 91
Keyword Tokenizer ___ 91
Letter Tokenizer ___ 92
Lower Case Tokenizer __ 92
N-Gram Tokenizer ___ 93
Edge N-Gram Tokenizer ___ 93
ICU Tokenizer ___ 94
Path Hierarchy Tokenizer __ 95
Regular Expression Pattern Tokenizer __ 95
UAX29 URL Email Tokenizer __ 97
White Space Tokenizer __ 98

Solr Reference Guide Jan 10, 2012

Page of 4 397

Filter Descriptions __ 98
ASCII Folding Filter ___ 100
Classic Filter ___ 101
Common Grams Filter ___ 102
Collation Key Filter __ 102
Edge N-Gram Filter ___ 102
English Minimal Stem Filter ___ 104
Hunspell Stem Filter ___ 104
Hyphenated Words Filter ___ 105
ICU Folding Filter ___ 105
ICU Normalizer 2 Filter __ 106
ICU Transform Filter ___ 107
Keep Words Filter ___ 107
KStem Filter ___ 109
Length Filter ___ 109
Lower Case Filter ___ 110
N-Gram Filter __ 110
Numeric Payload Token Filter ___ 112
Pattern Replace Filter __ 112
Phonetic Filter ___ 114
Porter Stem Filter ___ 115
Position Filter Factory __ 116
Remove Duplicates Token Filter __ 116
Reversed Wildcard Filter ___ 117
Shingle Filter __ 118
Snowball Porter Stemmer Filter __ 119
Standard Filter ___ 120
Stop Filter __ 121
Synonym Filter ___ 122
Token Offset Payload Filter ___ 123
Trim Filter __ 124
Type As Payload Filter ___ 124
Word Delimiter Filter __ 125

CharFilterFactories ___ 128
solr.MappingCharFilterFactory ___ 129
solr.HTMLStripCharFilterFactory __ 129
solrPatternReplaceCharFilterFactory __ 130

Language Analysis ___ 131
KeyWordMarkerFilterFactory __ 133
StemmerOverrideFilterFactory ___ 134
Dictionary Compound Word Token Filter _______________________________________ 134

Solr Reference Guide Jan 10, 2012

Page of 5 397

Unicode Collation ___ 135
Sorting Text for a Specific Language ______________________________________ 135
Sorting Text for Multiple Languages ______________________________________ 136
Sorting Text with Custom Rules __ 137
Searching ___ 138
ICU Collation __ 138

ISO Latin Accent Filter ___ 139
Arabic __ 139
Brazilian Portuguese __ 140
Bulgarian ___ 141
Chinese __ 141

Chinese Tokenizer __ 141
Chinese Filter Factory ___ 141

Simplified Chinese __ 142
CJK __ 143
Czech __ 143
Dutch __ 144
Finnish ___ 144
French ___ 145

Elision Filter ___ 145
French Light Stem Filter __ 145

Galician __ 146
German __ 146
Greek __ 147
Hindi ___ 148
Indonesian __ 148
Italian __ 149
Lao, Myanmar, Khmer ___ 149
Latvian ___ 150
Persian ___ 150

Persian Filter Factories ___ 150
Polish __ 151
Portuguese __ 151
Russian ___ 152

Russian Letter Tokenizer ___ 152
Russian Lower Case Filter __ 153
Russian Stem Filter ___ 153

Spanish __ 154
Swedish __ 155

Swedish Stem Filter ___ 155
Thai ___ 155
Turkish ___ 156

Solr Reference Guide Jan 10, 2012

Page of 6 397

Running Your Analyzer ___ 156
Indexing and Basic Data Operations __ 163

What Is Indexing? ___ 163
The Solr Example Directory ___ 164
The curl Utility for Transferring Files __ 164

Uploading Data with Solr Cell using Apache Tika ___________________________________ 165
Key Concepts __ 166
Trying out Tika with the Solr Example Directory _________________________________ 167
Input Parameters ___ 168
Order of Operations ___ 169
Configuring the Solr ExtractingRequestHandler __________________________________ 170

Multi-Core Configuration ___ 171
Metadata ___ 171
Examples of Uploads Using the Extraction Request Handler ________________________ 172

Capture and Mapping __ 172
Capture, Mapping, and Boosting ___ 172
Using Literals to Define Your Own Metadata ________________________________ 172
XPath __ 172
Extracting Data without Indexing It _______________________________________ 173

Sending Documents to Solr with a POST _______________________________________ 173
Sending Documents to Solr with Solr Cell and SolrJ ______________________________ 173

Uploading Data with Index Handlers ___ 174
XMLUpdateRequestHandler for XML-formatted Data ______________________________ 175

Configuration __ 182
Adding Documents __ 175
Commit and Optimize Operations __ 176
Delete Operations __ 177
Rollback Operations ___ 178
Using curl to Perform Updates with the Update Request Handler. _______________ 178
A Simple Cross-Platform Posting Tool _____________________________________ 179

XSLTRequestHandler to Transform XML Content _________________________________ 179
CSVRequestHandler for CSV Content __ 180

Parameters __ 181
Using the JSONRequestHandler for JSON Content ________________________________ 182

Examples ___ 183
Update Commands __ 184

Indexing Using SolrJ __ 185

Solr Reference Guide Jan 10, 2012

Page of 7 397

Uploading Structured Data Store Data with the Data Import Handler ___________________ 185
Concepts and Terminology __ 186
Configuration __ 187
Data Import Handler Commands ___ 189

Parameters for the full-import Command __________________________________ 190
Data Sources __ 191

ContentStreamDataSource ___ 191
FieldReaderDataSource __ 191
FileDataSource ___ 192
JdbcDataSource __ 192
URLDataSource __ 192

Entity Processors ___ 193
The SQL Entity Processor ___ 194
The XPathEntityProcessor __ 195
The FileListEntityProcessor __ 197
LineEntityProcessor ___ 199
PlainTextEntityProcessor ___ 200

Transformers __ 200
ClobTransformer ___ 201
The DateFormatTransformer __ 202
The HTMLStripTransformer ___ 202
The LogTransformer ___ 203
The NumberFormatTransformer __ 203
The RegexTransformer ___ 204
The ScriptTransformer ___ 205
The TemplateTransformer __ 206

Special Commands for the Data Import Handler _________________________________ 206
The Data Import Handler Development Console _________________________________ 207

Detecting Languages During Indexing ___ 210
Configuring Language Detection ___ 211

Configuring Tika Language Detection _____________________________________ 211
Configuring LangDetect Language Detection ________________________________ 211

langid Parameters __ 212
UIMA Integration __ 214

Configuring UIMA ___ 215
Content Streams __ 217

Stream Sources __ 218
RemoteStreaming __ 218
Debugging Requests __ 218

Searching ___ 220
Overview of Searching in Solr __ 221

The Velocity Search UI ___ 224

Solr Reference Guide Jan 10, 2012

Page of 8 397

Relevance ___ 225
Query Syntax and Parsing ___ 227

Common Query Parameters ___ 228
The defType Parameter __ 229
The sort Parameter ___ 229
The start Parameter ___ 230
The rows Parameter ___ 230
The fq (Filter Query) Parameter __ 230
The fl (Field List) Parameter __ 231
The debugQuery Parameter ___ 232
The explainOther Parameter __ 232
The timeAllowed Parameter ___ 232
The omitHeader Parameter ___ 232
The wt Parameter __ 233
The cache=false Parameter ___ 233

The Standard Query Parser ___ 233
Standard Query Parser Parameters _______________________________________ 234
The Standard Query Parser's Response ____________________________________ 234

Sample Responses __ 234
Specifying Terms for the Standard Query Parser _____________________________ 236

Term Modifiers ___ 236
Wildcard Searches __ 236
Fuzzy Searches __ 237
Proximity Searches ___ 238
Range Searches __ 238
Boosting a Term with ^ __ 239

Specifying Fields in a Query to the Standard Query Parser _____________________ 239
Boolean Operators Supported by the Standard Query Parser ___________________ 240

The Boolean Operator + ___ 241
The Boolean Operator AND (&&) _____________________________________ 241
The Boolean Operator NOT (!) _______________________________________ 241
Escaping Special Characters __ 242

Grouping Terms to Form Subqueries ______________________________________ 242
Grouping Clauses within a Field ______________________________________ 242

Differences between Lucene Query Parser and the Solr Standard Query Parser _____ 242
Specifying Dates and Times ___ 243

Solr Reference Guide Jan 10, 2012

Page of 9 397

The DisMax Query Parser ___ 243
DisMax Parameters ___ 244

The q Parameter ___ 245
The q.alt Parameter ___ 245
The qf (Query Fields) Parameter _____________________________________ 245
The mm (Minimum Should Match) Parameter ___________________________ 245
The pf (Phrase Fields) Parameter ____________________________________ 247
The ps (Phrase Slop) Parameter _____________________________________ 247
The qs (Query Phrase Slop) Parameter ________________________________ 247
The tie (Tie Breaker) Parameter _____________________________________ 247
The bq (Boost Query) Parameter _____________________________________ 248
The bf (Boost Functions) Parameter __________________________________ 248

Examples of Queries Submitted to the DisMax Query Parser ___________________ 248
The Extended DisMax Query Parser ___ 249

Extended DisMax Parameters ___ 250
The boost Parameter __ 250
The lowercaseOperators Parameter ___________________________________ 251
The pf2 Parameter __ 251
The pf3 Parameter __ 251
The stopwords Parameter __ 251

Examples of Queries Submitted to the Extended DisMax Query Parser ___________ 251
Local Parameters in Queries __ 251

Basic Syntax of Local Parameters __ 252
Query Type Short Form __ 252
Specifying the Parameter Value with the ' v ' Key ____________________________ 252
Parameter Dereferencing ___ 252

Function Queries __ 253
Using FunctionQuery __ 261
Example of Function Queries Using the top Function ______________________________ 261
Sort By Function ___ 262

Highlighting __ 262
Using Boundary Scanners with the Fast Vector Highlighter _________________________ 266

The breakIterator Boundary Scanner ______________________________________ 266
The simple Boundary Scanner ___ 267

MoreLikeThis ___ 267
Common Parameters for MoreLikeThis __ 268
Parameters for the StandardRequestHandler ___________________________________ 268
Parameters for the MoreLikeThis Request Handler _______________________________ 269

Solr Reference Guide Jan 10, 2012

Page of 10 397

Faceting ___ 269
General Parameters ___ 270

The facet Parameter ___ 270
The facet.query Parameter ___ 270

Field-Value Faceting Parameters ___ 271
The facet.field Parameter ___ 272
The facet.prefix Parameter ___ 272
The facet.sort Parameter ___ 272
The facet.limit Parameter ___ 272
The facet.offset Parameter __ 273
The facet.mincount Parameter ___ 273
The facet.missing Parameter __ 273
The facet.method Parameter __ 273
The facet.enum.cache.minDf Parameter ___________________________________ 274

Range Faceting __ 274
The facet.range Parameter ___ 275
The facet.range.start Parameter ___ 275
The facet.range.end Parameter __ 275
The facet.range.gap Parameter __ 276
The facet.range.hardend Parameter ______________________________________ 276
The facet.range.include Parameter _______________________________________ 276
The facet.range.other Parameter ___ 277

Date Faceting Parameters __ 277
LocalParams for Faceting ___ 277

Tagging and Excluding Filters ___ 277
Changing the Output Key ___ 278

Result Grouping ___ 278
Request Parameters ___ 279
Examples ___ 280

Grouping Results by Field __ 280
Grouping by Query __ 283

Distributed Result Grouping ___ 284

Solr Reference Guide Jan 10, 2012

Page of 11 397

Spell Checking __ 285
Configuring the SpellCheckComponent __ 286

Define Spell Check in solrconfig.xml ______________________________________ 286
Add It to a Request Handler __ 287

Spell Check Parameters __ 288
The spellcheck Parameter __ 289
The spellcheck.q or q Parameter ___ 289
The spellcheck.build Parameter __ 289
The spellcheck.reload Parameter ___ 290
The spellcheck.count Parameter ___ 290
The spellcheck.onlyMorePopular Parameter _________________________________ 290
The spellcheck.extendedResults Parameter _________________________________ 290
The spellcheck.collate Parameter ___ 290
The spellcheck.maxCollations Parameter ___________________________________ 290
The spellcheck.maxCollationTries Parameter ________________________________ 291
The spellcheck.maxCollationEvaluations Parameter __________________________ 291
The spellcheck.collateExtendedResult Parameter ____________________________ 291
The spellcheck.dictionary Parameter ______________________________________ 291
The spellcheck.accuracy Parameter _______________________________________ 292
The spellcheck.<DICT_NAME>.key Parameter ______________________________ 292
Example __ 292

Distributed SpellCheck ___ 293
Suggester ___ 293

Configuring Suggester ___ 294
Suggester Parameters ___ 296

Suggester Search Component Parameters _________________________________ 296
Suggester Request Handler Parameters ___________________________________ 297

Spatial Search __ 298
Spatial Search Features __ 299

Spatial Search Parameters __ 299
geofilt __ 299
bbox ___ 300
geodist ___ 300

More Examples ___ 301
Use as a Sub-Query to Expand Search Results ______________________________ 301
Facet by Distance ___ 301
Boost Nearest Results ___ 301

The Terms Component ___ 301
Examples ___ 303
Using the Terms Component for an Auto-Suggest Feature _________________________ 305
Distributed Search Support ___ 306

Solr Reference Guide Jan 10, 2012

Page of 12 397

The Term Vector Component __ 306
Enabling the the TermVectorComponent _______________________________________ 307

Changes for solrconfig.xml ___ 307
Invoking the Term Vector Component _____________________________________ 307

Optional Parameters __ 308
SolrJ and the Term Vector Component __ 308

The Stats Component __ 309
Stats Component Parameters ___ 310
Statistics Returned __ 310
Example __ 310
The Stats Component and Faceting ___ 312

The Query Elevation Component __ 313
Configuring the Query Elevation Component ____________________________________ 314

elevate.xml ___ 315
Using the Query Elevation Component __ 315

The enableElevation Parameter __ 315
The forceElevation Parameter ___ 315
The exclusive Parameter ___ 316
The fq Parameter ___ 316

Response Writers __ 316
The Standard XML Response Writer ___ 317

The version Parameter ___ 317
The stylesheet Parameter __ 318
The indent Parameter ___ 318

The XSLT Response Writer __ 318
tr Parameter ___ 318
Configuration __ 318

JSON Response Writer ___ 319
Python Response Writer __ 319
PHP Response Writer and PHP Serialized Response Writer _________________________ 319
Ruby Response Writer ___ 320
CSV Response Writer __ 320

CSV Parameters __ 320
Multi-Valued Field CSV Parameters _______________________________________ 321
Example __ 321

Binary Response Writer __ 321
The Well-Configured Solr Instance ___ 323

Solr Reference Guide Jan 10, 2012

Page of 13 397

Configuring solrconfig.xml ___ 323
Specifying a Location for Index Data with the dataDir Parameter ____________________ 324
Specifying the DirectoryFactory For Your Index _________________________________ 325
Configuring the Lucene IndexWriters __ 325

UseCompoundFile ___ 325
mergeFactor ___ 326
Other Indexing Settings __ 326

Controlling the Behavior of the Update Handler _________________________________ 327
autoCommit ___ 327
maxPendingDeletes ___ 328

Query Settings in solrconfig.xml ___ 328
Caching __ 328

filterCache __ 329
queryResultCache __ 330
documentCache __ 330
User Defined Caches __ 330

maxBooleanClauses ___ 330
enableLazyFieldLoading __ 331
useColdSearcher ___ 331
maxWarmingSearchers __ 331

HTTP RequestDispatcher Settings __ 331
handleSelect Attribute ___ 332

requestParsers Element __ 332
httpCaching Element __ 332

The cacheControl Element ______________________________________ 333
Configuring solr.xml ___ 334

Using Multiple SolrCores ___ 335
The <solr> Element ___ 335
The <cores> Element ___ 336
The <core> Element __ 337

Properties in solr.xml __ 338
CoreAdminHandler __ 339

STATUS __ 339
CREATE __ 340
RELOAD __ 340
RENAME __ 341
ALIAS __ 341
SWAP __ 341
UNLOAD __ 342

Solr Plugins __ 342

Solr Reference Guide Jan 10, 2012

Page of 14 397

JVM Settings ___ 343
Choosing Memory Heap Settings ___ 344
Use the Server HotSpot VM ___ 345
Checking JVM Settings ___ 345

Managing Solr ___ 346
Running Solr on Tomcat __ 346

How Solr Works with Tomcat __ 347
Running Multiple Solr Instances __ 347
Deploying Solr with the Tomcat Manager ______________________________________ 348

Running Solr on Jetty __ 349
Changing the Solr Listening Port ___ 350

Configuring Logging ___ 350
Temporary Logging Settings __ 351
Permanent Logging Settings __ 352

Tomcat Logging Settings ___ 352
Jetty Logging Settings ___ 353

Backing Up __ 353
Making Backups with the Solr Replication Handler _______________________________ 354
Backup Scripts from Earlier Solr Releases ______________________________________ 354

Using JMX with Solr __ 355

Solr Reference Guide Jan 10, 2012

Page of 15 397

Scaling and Distribution __ 357
Introduction to Scaling and Distribution __ 357

What Problem Does Distribution Solve? __ 358
What Problem Does Replication Solve? __ 358

Distributed Search with Index Sharding __ 358
Distributing Documents across Shards __ 359
Executing Distributed Searches with the shards Parameter ________________________ 360
Limitations to Distributed Search ___ 360
Avoiding Distributed Deadlock ___ 361
Testing Index Sharding on Two Local Servers ___________________________________ 361

Index Replication __ 362
Index Replication in Solr ___ 363
Replication Terminology __ 364
Configuring the Replication RequestHandler on a Master Server _____________________ 365

Replicating solrconfig.xml __ 366
Configuring the Replication RequestHandler on a Slave Server _________________ 367
Setting Up a Repeater with the ReplicationHandler ___________________________ 368
Commit and Optimize Operations __ 369
Slave Replication ___ 369
Replicating Configuration Files ___ 370
Resolving Corruption Issues on Slave Servers _______________________________ 370
HTTP API Commands for the ReplicationHandler _____________________________ 370
Using the Replication Dashboard ___ 372

Index Replication using ssh and rsync ___ 373
The Snapshot and Distribution Process __ 373
Snapshot Directories __ 374
Solr Distribution Scripts __ 374
Solr Distribution-related Cron Jobs ___ 376
Commit and Optimization __ 376
Distribution and Optimization ___ 377
Performance Tuning for Script-based Replication ________________________________ 378

Combining Distribution and Replication ___ 378
Merging Indexes __ 380

Using IndexMergeTool ___ 381
Using CoreAdmin ___ 382

Solr Reference Guide Jan 10, 2012

Page of 16 397

Client APIs __ 383
Introduction to Client APIs __ 383
Choosing an Output Format ___ 384
Using JavaScript __ 385
Using Python ___ 386

Simple Python ___ 387
Python with JSON ___ 387

Client API Lineup __ 388
Using SolrJ ___ 389

Building and Running SolrJ Applications _______________________________________ 390
Setting XMLResponseParser ___ 391
Performing Queries ___ 391
Indexing Documents __ 392
Uploading Content in XML or Binary Formats ___________________________________ 392
EmbeddedSolrServer __ 392
Using the StreamingUpdateSolrServer __ 393
More Information ___ 393

Using Solr From Ruby __ 394
Performing Queries ___ 395
Indexing Documents __ 395
More Information ___ 396

MBean Request Handler __ 396

Solr Reference Guide Jan 10, 2012

Page of 17 397

This reference guide describes Apache Solr, an open source solution for search. You can download
Apache Solr at . This guide contains the following sections:www.lucidimagination.com/downloads

: Installing Solr and getting it running for the first timeGetting Started

: How to use the built-in UIUsing the Solr Administration User Interface

: Designing the index for optimal retrievalDocuments, Fields, and Schema Design

: Setting up Solr to handle your contentUnderstanding Analyzers, Tokenizers, and Filters

: Indexing your contentIndexing and Basic Data Operations

: Ways to improve the search experience for your usersSearching

: Optimal settings to keep the system running smoothThe Well-Configured Solr Instance

: Web containers, logging and backupsManaging Solr

: Best practices for increasing system capacityScaling and Distribution

: Clients that can be used to provide search interfaces for usersClient APIs

http://www.lucidimagination.com/Downloads

Solr Reference Guide Jan 10, 2012

Page of 18 397

Solr and Lucene
Solr makes it easy for programmers to develop sophisticated, high-performance search applications
with advanced features such as faceting (arranging search results in columns with numerical
counts of key terms). Solr builds on another open source search technology: Lucene, a Java library
that provides indexing and search technology, as well as spellchecking, hit highlighting and
advanced analysis/tokenization capabilities. Both Solr and Lucene are managed by the Apache
Software Foundation (.www.apache.org)

The Lucene search library currently ranks among the top 15 open source projects and is one of the
top 5 Apache projects, with installations at over 4,000 companies. Lucene/Solr downloads have
grown nearly ten times over the past three years, with a current run-rate of over 6,000 downloads
a day. The Solr search server, which provides application builders a ready-to-use search platform
on top of the Lucene search library, is the fastest growing Lucene sub-project. Apache Lucene/Solr
offers an attractive alternative to the proprietary licensed search and discovery software vendors.

http://www.apache.org/

Solr Reference Guide Jan 10, 2012

Page of 19 397

Lucid Imagination
Lucid Imagination is the first commercial company exclusively dedicated to Apache Lucene/Solr
open source technology. To learn more about Lucid Imagination, please see

. The Lucid Imagination founding team consists of several keywww.lucidimagination.com
contributors and committers to the Lucene project, as well as experts in enterprise search software
development.

We provide the planet's best search solution development platforms built on the power of
Solr/Lucene open source search. LucidWorks Enterprise makes the power of Solr/Lucene open
source search more accessible to the broad range of application developers and slashes the
learning curve for search solution development. Unlike "black box" products, LucidWorks Enterprise
allows organizations of all sizes and types to continuously tune their search to fit the ongoing
needs of their users and achieve a consistently lower cost of growth.

Lucid Imagination also offers free software for developers, documentation, commercial-grade
support, high-level consulting, and comprehensive training. Customers include AT&T, Sears, Ford,
Verizon, Cisco, Zappos, Raytheon, The Guardian, The Smithsonian Institution, Salesforce.com, The
MotleyFool, Macy's, Qualcomm, Taser, eHarmony, and many other household names around the
world.

http://www.lucidimagination.com

Solr Reference Guide Jan 10, 2012

Page of 20 397

About This Guide
This guide describes all of the important features and functions of Apache Solr. It is free to
download from .Lucid Imagination

Designed to provide high-level documentation, this guide is intended to be more encyclopedic and
less of a cookbook. It is structured to address a broad spectrum of needs, ranging from new
developers getting started to well-experienced developers extending their application or
troubleshooting. It will be of use at any point in the application life cycle, for whenever you need
authoritative information about Solr.

The material as presented assumes that you are familiar with some basic search concepts and that
you can read XML. It does not assume that you are a Java programmer, although knowledge of
Java is helpful when working directly with Lucene or when developing custom extensions to a
Lucene/Solr installation.

This guide includes the following sections:

: This section guides you through the installation and setup of Solr.Getting Started

: This section introduces the Solr Web-basedUsing the Solr Administration User Interface
user interface. From your browser you can view configuration files, submit queries, view
logfile settings and Java environment settings, and monitor and control distributed
configurations.

: This section describes how Solr organizes its dataDocuments, Fields, and Schema Design
for indexing. It explains how a Solr schema defines the fields and field types which Solr uses
to organize data within the document files it indexes.

: This section explains how Solr preparesUnderstanding Analyzers, Tokenizers, and Filters
text for indexing and searching. Analyzers parse text and produce a stream of tokens, lexical
units used for indexing and searching. Tokenizers break field data down into tokens. Filters
perform other transformational or selective work on token streams.

: This section describes the indexing process and basicIndexing and Basic Data Operations
index operations, such as commit, optimize, and rollback.

: This section presents an overview of the search process in Solr. It describes theSearching
main components used in searches, including request handlers, query parsers, and response
writers. It lists the query parameters that can be passed to Solr, and it describes features
such as boosting and faceting, which can be used to fine-tune search results.

http://www.lucidimagination.com/downloads

Solr Reference Guide Jan 10, 2012

Page of 21 397

: This section discusses performance tuning for Solr. ItThe Well-Configured Solr Instance
begins with an overview of the file, then tells you how to configure coressolrconfig.xml

with , how to configure the Lucene index writer, and more.solr.xml

: This section discusses important topics for running and monitoring Solr. ItManaging Solr
describes running Solr in the Apache Tomcat servlet runner and Web server. Other topics
include how to back up a Solr instance, and how to run Solr with Java Management
Extensions (JMX).

: This section tells you how to grow a Solr distribution by dividing aScaling and Distribution
large index into sections called shards, which are then distributed across multiple servers, or
by replicating a single index across multiple services.

: This section tells you how to access Solr through various client APIs, includingClient APIs
JavaScript, JSON, and Ruby.

The default port configured for Solr during the install process is 8983. The samples, URLs
and screenshots in this guide may show different ports, because the port number that Solr
uses is configurable. If you have not customized your installation of Solr, please make sure
that you use port 8983 when following the examples, or configure your own installation to
use the port numbers shown in the examples. For information about configuring port
numbers used by Tomcat or Jetty, see .Managing Solr

Solr Reference Guide Jan 10, 2012

Page of 22 397

Further Assistance
In addition to providing this Reference Guide for Solr, Lucid Imagination offers other helpful
documentation and tips on its Web site, . Visit the Web site for:www.lucidimagination.com

Technical Notes on special topics

White Papers about important search topics and methodologies

Blog posts about the latest news and events of interest to the Lucene and Solr communities

Podcasts presenting Lucene and Solr tutorials, as well as interview with Lucene and Solr
committers and customers

There is also a very active user community around Solr and Lucene. The solr-user mailing list is a
great resource for questions. To view the archives or subscribe to the list, see

.http://mail-archives.apache.org/mod_mbox/lucene-solr-user/

Lucid Imagination has created a search index for all things Lucene and Solr, called .LucidFind
Content to be found there includes: All messages to the mailing lists for Lucene and Solr, the full
contents of the Lucene/Solr websites, the Lucene/Solr documentation wikis, all of the Lucid
Imagination published content, and mailing lists, websites and wikis for a host of related Apache
projects.

For more information about services or software offered by Lucid Imagination, orcontact us online
at:

Lucid Imagination
3800 Bridge Parkway, Suite 101
Redwood City, CA 94065

Tel: 650.353.4057
Fax: 650.620.9540

http://www.lucidimagination.com/
http://mail-archives.apache.org/mod_mbox/lucene-solr-user/
http://www.lucidimagination.com/search/
http://www.lucidimagination.com/about/contact-us

Solr Reference Guide Jan 10, 2012

Page of 23 397

Getting Started
This section helps you get Solr up and running quickly, and introduces you to the basic Solr
architecture and features. It covers the following topics:

: A walkthrough of the Solr installation process.Installing Solr

: An introduction to running Solr. Includes information on starting up the servers,Running Solr
adding documents, and running queries.

: A high-level overview of how Solr works.A Quick Overview

: An introduction to Solr's home directory and configuration options.A Step Closer

Solr Reference Guide Jan 10, 2012

Page of 24 397

1.
2.
3.

4.

Installing Solr
This section describes how to install Solr. You can install Solr anywhere that a suitable Java
Runtime Environment (JRE) is available, as detailed below. Currently this includes Linux, OS X, and
Microsoft Windows. The instructions in this section should work for any platform, with a few
exceptions for Windows as noted.

Got Java?
You will need the Java Runtime Environment (JRE) version 1.5 or higher, although 1.6 is highly
recommended. At a command line, check your Java version like this:

$ *java -version*

java version "1.6.0_0"

IcedTea6 1.3.1 (6b12-0ubuntu6.1) Runtime Environment (build 1.6.0_0-b12)

OpenJDK Client VM (build 1.6.0_0-b12, mixed mode, sharing)

The output will vary, but you need to make sure you have version 1.5 or higher. If you don't have
the required version, or if the java command is not found, download and install the latest version
from Sun at .http://java.sun.com/javase/downloads/

Installing Solr
Solr is available from the Lucid Imagination website at

.http://www.lucidimagination.com/Downloads

For Linux/Unix/OSX systems, download the file. For Microsoft Windows systems, download.gzip

the file..zip

Solr runs inside a Java servlet container such as Tomcat, Jetty, or Resin. The Solr distribution
includes a working demonstration server in the directory that runs in Jetty. You can useExample

the example server as a template for your own installation, whether or not you are using Jetty as
your servlet container. For more information about the demonstration server, see the .Solr Tutorial

To install Solr

Unpack the Solr distribution to your desired location.
Stop your Java servlet container.
Copy the file from the Solr distribution to the directory of your servletsolr.war webapps

container. Do not change the name of this file: it must be named .solr.war

Copy the Solr Home directory from the distribution toapache-solr-3.x.0/example/solr/

your desired Solr Home location.

http://java.sun.com/javase/downloads/
http://www.lucidimagination.com/Downloads
https://lucene.apache.org/solr/tutorial.html

Solr Reference Guide Jan 10, 2012

Page of 25 397

5. Start your servlet container, passing to it the location of your Solr Home in one of these
ways:

Set the Java system property to your Solr Home. (for example, usingsolr.solr.home

the example jetty setup:).java -Dsolr.solr.home=/some/dir -jar start.jar

Configure the servlet container so that a JNDI lookup of byjava:comp/env/solr/home

the Solr webapp will point to your Solr Home.
Start the servlet container in the directory containing : the default Solr Home is ./solr

 under the JVM's current working directory ().solr $CWD/solr

To confirm your installation, go to the at .Solr Admin page http://_hostname_:8983/solr/admin/

Note that your servlet container may have started on a different port: check the documentation for
your servlet container to troubleshoot that issue. Also note that if that port is already in use, Solr
will not start. In that case, shut down the servlet container running on that port, or change your
Solr port.

For more information about installing and running Solr on different Java servlet containers, see the
 page on the .SolrInstall Solr Wiki

https://wiki.apache.org/solr/SolrInstall
https://wiki.apache.org/solr/FrontPage

Solr Reference Guide Jan 10, 2012

Page of 26 397

Running Solr
This section describes how to run Solr with an example schema, how to add documents, and how
to run queries.

Start the Server
If you didn't start Solr after installing it, you can start it by running from the Solr start.jar

 directory.example

$ java -jar start.jar

If you are running Windows, you can start the Web server by running instead.start.bat

C:\Applications\Solr\example > start.bat

That's it! Solr is running. If you need convincing, use a Web browser to see the Admin Console.

http://localhost:8983/solr/admin

The Solr Admin interface.

If Solr is not running, your browser will complain that it cannot connect to the server. Check your
port number and try again.

Add Documents

Solr Reference Guide Jan 10, 2012

Page of 27 397

Solr is built to find documents that match queries. Solr's schema provides an idea of how content is
structured (more on the schema), but without documents there is nothing to find. Solr needslater
input before it can do anything.

You may want to add a few sample documents before trying to index your own content. The Solr
installation comes with example documents located in the directory of yourexample/exampledocs

installation.

In the directory is the SimplePostTool, a Java-based command line tool, ,exampledocs post.jar

which can be used to index the documents. Do not worry too much about the details for now. The
 section has all the details on indexing.Indexing and Basic Data Operations

To see some information about the usage of , use the option.post.jar -help

$ java -jar post.jar -help

The SimplePostTool is a simple command line tool for POSTing raw XML to a Solr port. XML data
can be read from files specified as command line arguments, as raw command line strings, orarg

via STDIN.

Examples:

java -Ddata=files -jar post.jar *.xml

java -Ddata=args -jar post.jar '<delete><id>42</id></delete>'

java -Ddata=stdin -jar post.jar < hd.xml

Other options controlled by System Properties include the Solr URL to POST to, and whether a
commit should be executed. These are the defaults for all System Properties:

-Ddata=files

-Durl=http://localhost:8983/solr/update

-Dcommit=yes

Go ahead and add all the documents in the directory as follows:

Solr Reference Guide Jan 10, 2012

Page of 28 397

$ *java -Durl=http://localhost:8983/solr/update -jar post.jar *.xml*

SimplePostTool: version 1.2

SimplePostTool: WARNING: Make sure your XML documents are encoded in UTF-8, other

encodings are not currently supported

SimplePostTool: POSTing files to http://10.211.55.8:8983/solr/update..

SimplePostTool: POSTing file hd.xml

SimplePostTool: POSTing file ipod_other.xml

SimplePostTool: POSTing file ipod_video.xml

SimplePostTool: POSTing file mem.xml

SimplePostTool: POSTing file monitor.xml

SimplePostTool: POSTing file monitor2.xml

SimplePostTool: POSTing file mp500.xml

SimplePostTool: POSTing file sd500.xml

SimplePostTool: POSTing file solr.xml

SimplePostTool: POSTing file spellchecker.xml

SimplePostTool: POSTing file utf8-example.xml

SimplePostTool: POSTing file vidcard.xml

SimplePostTool: COMMITting Solr index changes..

$

That's it! Solr has indexed the documents contained in the files.

Ask Questions
Now that you have indexed documents, you can perform queries. The simplest way is by building a
URL that includes the query parameters. This is exactly the same as building any other HTTP URL.

For example, the following query searches all document fields for "video":

http://localhost:8983/solr/select?q=video

Notice how the URL includes the host name (), the port number where the server islocalhost

listening (), the application name (), the request handler for queries (), and finally,8983 solr select

the query itself ().q=video

The results are contained in an XML document, which you can examine directly by clicking on the
link above. The document contains two parts. The first part is the , which containsresponseHeader

information about the response itself. The main part of the reply is in the result tag, which contains
one or more doc tags, each of which contains fields from documents that match the query. You can
use standard XML transformation techniques to mold Solr's results into a form that is suitable for
displaying to users. Alternatively, Solr can output the results in JSON, PHP, Ruby and even
user-defined formats.

Solr Reference Guide Jan 10, 2012

Page of 29 397

Just in case you are not running Solr as you read, the following screen shot shows the result of a
query (the next example, actually) as viewed in Mozilla Firefox. The top-level response contains a

 named and a result named response. Inside result, you can see the threelst responseHeader

docs that represent the search results.

An XML response to a query.

Once you have mastered the basic idea of a query, it is easy to add enhancements to explore the
query syntax. This one is the same as before but the results only contain the ID, name, and price
for each returned document. If you don't specify which fields you want, all of them are returned.

Solr Reference Guide Jan 10, 2012

Page of 30 397

http://localhost:8983/solr/select?q=video&fl=id,name,price

Here is another example which searches for "black" in the name field only. If you do not tell Solr
which field to search, it will search default fields, as specified in the schema.

http://localhost:8983/solr/select?q=name:black

You can provide ranges for fields. The following query finds every document whose price is
between $0 and $400.

http://localhost:8983/solr/select?q=price:0%20TO%20400&fl=id,name,price

 is one of Solr's key features. It allows users to narrow search results in ways thatFaceted browsing
are meaningful to your application. For example, a shopping site could provide facets to narrow
search results by manufacturer or price.

Faceting information is returned as a third part of Solr's query response. To get a taste of this
power, take a look at the following query. It adds and .facet=true facet.field=cat

http://localhost:8983/solr/select?q=price:0%20TO%20400&fl=id,name,price&facet=true&facet.field=cat

In addition to the familiar and response from Solr, a element isresponseHeader facet_counts

also present. Here is a view with the and response collapsed so you can see theresponseHeader

faceting information clearly.

Solr Reference Guide Jan 10, 2012

Page of 31 397

An XML Response with faceting.

The facet information shows how many of the query results have each possible value of the cat
field. You could easily use this information to provide users with a quick way to narrow their query
results. You can filter results by adding one or more filter queries to the Solr request. Here is a
request further constraining the request to documents with a category of "software".

http://localhost:8983/solr/select?q=price:0%20TO%20400&fl=id,name,price&facet=true&facet.field=cat&fq=cat:software

Solr Reference Guide Jan 10, 2012

Page of 32 397

1.

A Quick Overview
Having had some fun with Solr, you will now learn about all the cool things it can do.

Here is a typical configuration:

In the scenario above, Solr runs alongside another application in a Web server like Tomcat. For
example, an online store application would provide a user interface, a shopping cart, and a way to
make purchases. The store items would be kept in some kind of database.

Solr makes it easy to add the capability to search through the online store through the following
steps:

Define a . The schema tells Solr about the contents of documents it will be indexing.schema
In the online store example, the schema would define fields for the product name,
description, price, manufacturer, and so on. Solr's schema is powerful and flexible and allows
you to tailor Solr's behavior to your application. See Documents, Fields, and Schema Design
for all the details.

Solr Reference Guide Jan 10, 2012

Page of 33 397

2.
3.
4.

Deploy Solr to your application server.
Feed Solr the document for which your users will search.
Expose search functionality in your application.

Because Solr is based on open standards, it is highly extensible. Solr queries are RESTful, which
means, in essence, that a query is a simple HTTP request URL and the response is a structured
document: mainly XML, but it could also be JSON, CSV, or some other format. This means that a
wide variety of clients will be able to use Solr, from other web applications to browser clients, rich
client applications, and mobile devices. Any platform capable of HTTP can talk to Solr. See Client

 for details on client APIs.APIs

Solr is based on the Apache Lucene project, a high-performance, full-featured search engine. Solr
offers support for the simplest keyword searching through to complex queries on multiple fields
and faceted search results. has more information about searching and queries.Searching

If Solr's capabilities are not impressive enough, its ability to handle very high-volume applications
should do the trick.

A relatively common scenario is that you have so many queries that the server is unable to
respond fast enough to each one. In this case, you can make copies of an index. This is called
replication. Then you can distribute incoming queries among the copies in any way you see fit. A
round-robin mechanism is one simple way to do this.

Another useful technique, less common than replication, is sharding. If you have so many
documents that you simply cannot fit them all on a single box for RAM or index size reasons, you
can split an index into multiple pieces, called . Each shard lives on its own physical server.shards
An incoming query is sent to all the shard servers, which respond with matching results.

Solr Reference Guide Jan 10, 2012

Page of 34 397

If you are fortunate enough to have huge numbers of documents and users, you might need to
combine the techniques of sharding and replication. In this case, you create some number of
shards, then replicate the shards. Incoming queries are sent to one server for each shard.

For full details on sharding and replication, see .Scaling and Distribution

Best of all, this talk about high-volume applications is not just hypothetical: some of the famous
Internet sites that use Solr today are Macy's, EBay, and Zappo's.

For more information, take a look at .https://wiki.apache.org/solr/PublicServers

https://wiki.apache.org/solr/PublicServers

Solr Reference Guide Jan 10, 2012

Page of 35 397

A Step Closer
You already have some idea of Solr's schema. This section describes Solr's home directory and
other configuration options.

When Solr runs in an application server, it needs access to a home directory. The home directory
contains important configuration information and is the place where Solr will store its index.

The crucial parts of the Solr home directory are shown here:

<solr-home-directory>/

 solr.xml

 conf/

 solrconfig.xml

 schema.xml

 data/

You supply , , and to tell Solr how to behave. By default,solr.xml solrconfig.xml schema.xml

Solr stores its index inside data.

 specifies configuration options for your Solr core, and also allows you to configuresolr.xml

multiple cores. For more information on see .solr.xml The Well-Configured Solr Instance

 controls high-level behavior. You can, for example, specify an alternate locationsolrconfig.xml

for the data directory. For more information on , see solrconfig.xml The Well-Configured Solr
.Instance

 describes the documents you will ask Solr to index. Inside , you define aschema.xml schema.xml

document as a collection of fields. You get to define both the field types and the fields themselves.
Field type definitions are powerful and include information about how Solr processes incoming field
values and query values. For more information on , see schema.xml Documents, Fields, and

.Schema Design

Solr Reference Guide Jan 10, 2012

Page of 36 397

Using the Solr Administration User Interface
This section discusses the Solr Administration User Interface ("Admin UI"). It covers the following
topics:

: An introduction to the Solr Administration User Interface.Overview of the Solr Admin UI

: Detailed information about the Solr section of the Admin UI.The Solr Section

: Detailed information about the App Server section of the Admin UI.The App Server Section

: Detailed information about the Make A Query section of the Admin UI.The Make a Query Section

: Detailed information about the Assistance section of the Admin UI.The Assistance Section

Solr Reference Guide Jan 10, 2012

Page of 37 397

Overview of the Solr Admin UI
Solr features a Web interface that makes it easy for Solr administrators and programmers to:

view detailsSolr configuration
run document fields in order to fine-tune a Solr configurationqueries and analyze
access and other helponline documentation

Users access the Admin UI through the page, which by default is located at solr/admin/ http://

. The name of the Solr installation's top directory appears inhostname :8983/solr/admin/

parentheses at the top of the page.

The Solr Admin UI.

The main page of the Admin UI is divided into three parts:

a section for exploring the Solr server and its application server
a section for running queries
a section on getting assistance, either by accessing documentation or the Solr issue tracker,
or by contacting the Apache Solr project team

If you are running Solr on a Macintosh, you should access the Admin UI in a browser other
than Safari, because Safari will not display raw XML content, such as the contents of the
Solr file.schema.xml

Configuring the Admin UI in solrconfig.xml

Solr Reference Guide Jan 10, 2012

Page of 38 397

You can configure the Solr Admin UI by editing the file . The block in the solrconfig.xml <admin>

 file determines:solrconfig.xml

Which files the Web interface can access
How the interface's PING link should call the ping command
Whether or not the interface displays the ENABLE/DISABLE link in the App Server section

In its default configuration, which is shown below, the Admin UI is configured to access
 and . It also specifies the parameters the interface should pass to thesolrconfig.xml schema.xml

ping command when a user clicks on the interface's PING link. It also creates a file called
server-enabled, which will be created or deleted depending on the server's status.

<admin>

 <defaultQuery>solr</defaultQuery>

 <gettableFiles>

 solrconfig.xml

 schema.xml

 </gettableFiles>

 <pingQuery>q=solr&version=2.0&start=0&rows=0</pingQuery>

 <!-- configure a healthcheck file for servers behind a loadbalancer -->

 <healthcheck type="file">server-enabled</healthcheck>

</admin>

Solr Reference Guide Jan 10, 2012

Page of 39 397

The Solr Section
The Solr section of the Admin UI includes the following links.

Link Description

SCHEMA Displays the file, a configuration file that describes the data to beschema.xml

indexed and searched.

CONFIG Displays the file, a file that contains most of the parameters forsolrconfig.xml

configuring Solr itself.

ANALYSIS Displays a Field Analysis form, which is useful for testing the behavior of
Analyzers, Tokenizers, and TokenFilters on different fields.

SCHEMA
BROWSER

Displays a dynamic HTML interface for exploring the settings of theschema.xml

Solr server.

STATISTICS Displays configuration details and statistics about the following aspects of the
Solr server: , , CORECACHEQUERY handlersUPDATE handlersHIGHLIGHTINGOTHER

(reserved for future use). The Solr server continually updates the statistics
presented on this page.

INFO Displays startup-time data about the following categories: , CORECACHEQUERY

, (reserved for future use). Unlike the statisticshandlersUPDATE handlersOTHER

presented on the STATISTICS page, the statistics presented on the INFO page
do not change after startup.

DISTRIBUTION Displays details about a distributed Solr configuration, if the Solr server is
configured as either a Master or Slave server. On a Master instance, each row
displays the name of the slave and the snapshots the slave has retrieved. On a
Slave instance, the page displays a single line showing the name of its last
attempt to retrieve a snapshot from its master.

PING Runs the ping command against the Solr server in order to confirm that the
server is running and responsive to network requests. If the command is
successful, it returns to the browser but displays nothing. IfHTTP 200

unsuccessful, the command returns (an error) and displays anHTTP 500

exception message.

LOGGING Displays an interactive form for setting and viewing the effective logging levels
of the JDK Log hierarchy.

Displaying the Solr Schema

Solr Reference Guide Jan 10, 2012

Page of 40 397

To display the Solr file in your browser, click the link. The browser will thenschema.xml SCHEMA

display then file, as shown in the image below.schema.xml

The schema.xml file.

For more information on the file, see .schema.xml Documents, Fields, and Schema Design

Displaying the Solr Configuration File
To display the file, click the link. Solr displays the file in the browser, assolrconfig.xml CONFIG

shown below.

Solr Reference Guide Jan 10, 2012

Page of 41 397

The solrconfig.xml file.

Running Field Analysis to Test Analyzers, Tokenizers, and
TokenFilters
When defining fields and field types, and configuring , it'sAnalyzers, Tokenizers, and TokenFilters
helpful to see how the current configuration of Solr indexes a sample text and processes a sample
query. The Field Analysis feature of the Solr Admin UI makes it easy to run queries against sample
text, so you can assess the current configuration of the Solr server.

Click the link to display the Field Analysis form, shown below.ANALYSIS

Solr Reference Guide Jan 10, 2012

Page of 42 397

The Field Analysis form.

The Field Analysis form includes three main parts:

A field, in which you toggle a drop-down menu to select or ,Field name/type name type
then enter the name of the field name or field type in the text box to the right. The value you
enter must correspond to a field name or field type defined in the Solr server's schema.xml
file.

A text box, in which you type sample text for a field, as though it wereField value (Index)
a field in a document indexed by Solr. To see a detailed analysis of how the Solr server calls
Analyzers, Tokenizers, and TokenFilters to index the text, click the checkbox to select
"verbose output."

A text box, in which you type the text to be used in a query performedField value (Query)
by the Server against the text you entered in the text box. To seeField value (Index)
details of how the Server processes the query, click the checkbox to select "verbose output."

The image below shows the Field Analysis form performing a query against text entered in the
 field.Field value (Index)

Solr Reference Guide Jan 10, 2012

Page of 43 397

 Field Analysis form performing a query against text entered in the Field value (Index) field.

To see these processes in detail, one can re-run the analysis, selecting the verbose output
options. The following image shows the verbose output for the indexing process. You can see the
order in which Tokenizers and TokenFilters are called, beginning with the
WhiteSpaceTokenizerFactory, which demarcates words by identifying the white spaces around
them.

Solr Reference Guide Jan 10, 2012

Page of 44 397

The verbose output option reveals the steps involved in the indexing process.

The next image shows the option selected for the querying process. You can seeverbose output
that Solr's Query Analyzer invokes .org.apache.solr.analysis.WhitespaceTokenizerFactory

The "verbose output" option shows you all the analyzers in the order in which they are invoked.

Solr Reference Guide Jan 10, 2012

Page of 45 397

The verbose output option for the query process.

Using the Schema Browser
The Schema Browser is a dynamic Ajax-based window for viewing details of the Solr server's
schema, which defines fields, dynamic fields, and field types used for indexing. When you first open
the browser, it displays three categories on the left side of the screen: fields, dynamic fields, and
field types, as shown below.

Solr Reference Guide Jan 10, 2012

Page of 46 397

The Schema Browser.

Displaying the Configuration of a Field
The Schema Browser makes it easy to explore the definitions of fields, dynamic fields, and field
types. To display the Schema Browser, click the link in the Solr Admin UI.SCHEMA BROWSER

In the left hand navigation bar, click the word to see a list of fields defined in the Fields
 file. Then click on a specific field's name to see details about that particular field.schema.xml

Solr Reference Guide Jan 10, 2012

Page of 47 397

The Schema Browser displaying information about a selected field.

Displaying Additional Details about a Parameter
The schema information for some fields includes low-level details which are not displayed by
default. If an item includes a link, you can click the link to see additional details. To hideDETAILS

the additional details, click the link again.DETAILS

Solr Reference Guide Jan 10, 2012

Page of 48 397

Click the DETAILS link to see additional details about a configuration parameter.

Exploring the Most Popular Terms for a Field
Toward the bottom of the page, the Schema Browser presents a table of terms and a bar chart
related to the selected field. The table, Top Terms, where is by default 10, lets you see then n
most popular terms in that field in the index. You can enter a different number for in the formn n
and see a shortened or lengthened list of terms (depending on whether you enter a lower or higher
number for). If you enter a number that exceeds the number of terms found in that field, then
form automatically substitutes the total number of terms and displays only that number of terms.
The image below shows an example of this display.

Solr Reference Guide Jan 10, 2012

Page of 49 397

 Displaying the top n terms.

A histogram shows the number of terms with a given frequency in the field. For example, in the
image above, there are six terms that appear once, eight terms that appear twice, and so on.

Displaying Statistics of the Solr Server
The link displays statistics related to the Solr server's performance. The serverSTATISTICS

continually updates these statistics. The image below shows an example of the statistics reported
by the Statistics page.

Solr Reference Guide Jan 10, 2012

Page of 50 397

The Solr Statistics page.

The Solr Statistics page groups its data into several sections: core, cache, query, update,
highlighting, and other. To jump to the reported data about a particular topic, click on that topic's
link (for example,) at the top of the Solr Statistics page.CORE

Displaying Start-up Time Statistics about the Solr Server
To display statistics about the server at start-up time, click the INFO link. Unlike the information
displayed by the STATISTICS link, the Solr information displayed by INFO is not continuously
updated.

Solr Reference Guide Jan 10, 2012

Page of 51 397

The Solr Info page reports configuration details and statistics.

Displaying Information about a Distributed Solr Configuration
Click the link to see information about master and slave servers. In master/slaveDISTRIBUTION

configurations, the master server's index is replicated on one or more slave servers, which process
queries (for more information about replicated indexes, see).Scaling and Distribution

On a master server, the Admin UI's Distribution Info reports information about the snapshot of the
index being distributed to slave servers.

Solr Reference Guide Jan 10, 2012

Page of 52 397

On a master server, the Distribution Info page identifies the filename of the master server index
snapshot and reports on the replication of this snapshot to any slave servers.

On a slave server, the Distribution Info page shows simply information for the slave server itself,
as shown below. The page identifies which version of the replicated index the slave server is using.
It also reports on the status of the most recent replication process.

Solr Reference Guide Jan 10, 2012

Page of 53 397

The Distribution Info page for a slave server.

Pinging the Solr Server to Test Its Responsiveness
The command, which is supported by Windows, Linux, and MacOS, sends a signal to aping

network-accessible server and reports the time it takes the server to respond, if it responds at all.
The command executable is stored at on the Solr server. The command is a/admin/ping ping

straightforward, convenient tool for checking whether or not a server is running.

To run ping against the Solr server, click the link. If the server is running, the Admin UIPING

displays an XML-formatted response like that shown below.

Solr Reference Guide Jan 10, 2012

Page of 54 397

 An XML-formatted response to the ping command.

Viewing and Configuring Logfile Settings
Click the link to display a long page that offers radio-button settings for JDK logfiles.LOGGING

Any changes you make to logfile settings through Admin UI will last only as long as the
current Solr session. Once the server is shut down and restarted, settings will revert to the
configuration specified in the logfile configuration files.

Solr Reference Guide Jan 10, 2012

Page of 55 397

The JDK Log Level Selector page.

The table below describes the various levels for logging used in JDK logfiles. See "An Introduction
to the Java Logging API," O'Reilly Media,
http://www.onjava.com/pub/a/onjava/2002/06/19/log.html

Level Usage

SEVERE The highest value; intended for extremely important messages (such as fatal program
errors).

WARNING Intended for warning messages.

INFO Informational run-time messages.

CONFIG Informational messages about configuration settings.

http://www.onjava.com/pub/a/onjava/2002/06/19/log.html

Solr Reference Guide Jan 10, 2012

Page of 56 397

FINE Used for greater detail when debugging/diagnosing problems.

FINEST The lowest value; provides the greatest detail.

ALL All messages.

OFF No messages.

Solr Reference Guide Jan 10, 2012

Page of 57 397

The App Server Section
The App Server section of the Admin UI always displays a link and a JAVA PROPERTIES THREAD

 link. It may also display an link, depending on the configuration of the DUMP ENABLE/DISABLE

 block in the file.<admin> solrconfig.xml

The table below describes the links in the App Server section.

Link Description

JAVA
PROPERTIES

Displays the properties of the Solr server's Java environment.

THREAD DUMP Displays a thread dump of the Solr server's Java HotSpot VM.

ENABLE/DISABLE Enables or disables the Solr application server by creating or removing the file
specified in the optional tag in the block of <healthcheck> <admin>

. If the tag is absent, the solrconfig.xml <healthcheck> ENABLE/DISABLE

link does not appear in the Admin UI.

When using load balancers, this feature makes it easy to take a server in or
out of rotation by enabling or disabling the server and causing its healthcheck
to succeed or fail.

Displaying Java Properties
To see the properties of the Java Runtime Environment in which the Solr server is running, click
the link. The server reports Java configuration details, as shown below.JAVA PROPERTIES

Solr Reference Guide Jan 10, 2012

Page of 58 397

The Java Properties display.

Displaying the Active Threads in the Java Environment
To see which threads are active in the Java Runtime Environment, click the link.THREAD DUMP

Solr Reference Guide Jan 10, 2012

Page of 59 397

The Thread Dump display.

Enabling or Disabling the Server in a Load-balanced Configuration
This link is only displayed if a directive appears in the block of the <healthcheck> <admin>

 file. For example:solrconrfig.xml

<healthcheck type="file">solr/conf/healthcheck.txt</healthcheck>

When using load balancers, the link makes it easy to take a server in or out ofENABLE/DISABLE

rotation by making a healthcheck succeed or fail.

Clicking changes the contents of the healthcheck file:ENABLE/DISABLE

Solr Reference Guide Jan 10, 2012

Page of 60 397

http://localhost:8983/solr/admin/file/?file=healthcheck.txt

Changing the file toggles the function of the server, either enabling or disabling it for rotation with
the load balancer.

http://localhost:8983/solr/admin/file/?file=healthcheck.txt

Solr Reference Guide Jan 10, 2012

Page of 61 397

The Make a Query Section
You can use the section of the Admin UI to submit a search query to the SolrMake a Query
server and analyze the results. The server returns the query results to the browser as XML, as
shown in the following screen shot:

Query results are displayed in XML.

Using the Full Interface to Submit Queries
For more control over the details of the query and its response, click the link. TheFULL INTERFACE

Solr server displays a new page like that shown below.

Solr Reference Guide Jan 10, 2012

Page of 62 397

The Full Search query interface.

The table below explains the fields in this form:

Field Description

Solr/Lucene
Statement

The Lucene/Solr query to be submitted. For a description of query syntax, see
.Searching

Start Row The offset into the query result starting at which documents should be returned.
The default value is 0, meaning that the query should return results starting with
the first document that matches. This field accepts the same syntax as the start
query parameter, which is described in Searching

Maximum
Rows
Returned

The number of rows of results that should be displayed at one time for pagination.
The default is 10. Accepts the same syntax as the rows query parameter.

Fields to
Return

Specifies a list of fields to return. Accepts the same syntax as the fl query
parameter.

Query Type Specifies the query handler for the request. If a query handler is not specified, Solr
processes the query with the standard query handler.

Solr Reference Guide Jan 10, 2012

Page of 63 397

Response
Type

Specifies a response handler for the request. If a response handler is not specified,
Solr processes the response with the standard response handler.

Debug:
enable

Augments the query response with debugging information, including "explain info"
for each document returned. This debugging information is intended to be
intelligible to the administrator or programmer.

Debug:
explain
others

Accepts a Lucene query identifying a set of documents. If non-blank, the "explain
info" data of each document matching this query, relative the main query (specified
in the field) will be returned along with the rest of theSolr/Lucene Statement
debugging information.

Enable
Highlighting

Causes the query response to highlight the fields specified in the Fields to
 box in the form.Highlight

Fields to
Highlight

Specifies which fields in the response to highlight, if highlighting is enabled.

Solr Reference Guide Jan 10, 2012

Page of 64 397

The Assistance Section
The Assistance section includes the following links.

Link Description

DOCUMENTATION Navigates to the Apache Solr documentation hosted on
http://lucene.apache.org/solr/

ISSUES Navigates to the JIRA issue tracking server for the Apache Solr project. This
server resides at http://issues.apache.org/jira/browse/SOLR

SEND EMAIL Invokes the local email client to send email to solr-user@lucene.apache.org

SOLR QUERY
SYNTAX

Navigates to the Apache Wiki page describing the Solr query syntax:
http://wiki.apache.org/solr/SolrQuerySyntax

http://lucene.apache.org/solr/
http://issues.apache.org/jira/browse/SOLR
http://wiki.apache.org/solr/SolrQuerySyntax

Solr Reference Guide Jan 10, 2012

Page of 65 397

Documents, Fields, and Schema Design
This section discusses how Solr organizes its data into documents and field, as well as how to work
with the Solr schema file, . It includes the following topics:schema.xml

: An introduction to the concepts covered inOverview of Documents, Fields, and Schema Design
this section.

: Detailed information about field types in Solr, including the field types in theSolr Field Types
default Solr schema.

: Describes how to define fields in Solr.Defining Fields

: Describes how to copy fields in Solr.Copying Fields

: Information about using dynamic fields in Solr in order to catch and index fieldsDynamic Fields
that do not exactly conform to other field definitions in your schema.

: Describes other important elements in the Solr schema: Unique Key,Other Schema Elements
Default Search Field, and the Query Parser Operator.

: A higher-level view of the Solr schema and how its elements workPutting the Pieces Together
together.

Solr Reference Guide Jan 10, 2012

Page of 66 397

Overview of Documents, Fields, and Schema Design
The fundamental premise of Solr is simple. You give it a lot of information, then later you can ask it
questions and find the piece of information you want. The part where you feed in all the
information is called or . When you ask a question, it's called a .indexing updating query

One way to understand how Solr works is to think of a loose-leaf book of recipes. Every time you
add a recipe to the book, you update the index at the back. You list each ingredient and the page
number of the recipe you just added. Suppose you add one hundred recipes. Using the index, you
can very quickly find all the recipes that use garbanzo beans, or artichokes, or coffee, as an
ingredient. Using the index is much faster than looking through each recipe one by one. Imagine a
book of one thousand recipes, or one million.

Solr allows you to build an index with many different fields, or types of entries. The example above
shows how to build an index with just one field, . You could have other fields in theingredients

index for the recipe's cooking style, like , , or , and you could have an index fieldAsian Cajun vegan

for preparation times. Solr can answer questions like "What Cajun-style recipes that have blood
oranges as an ingredient can be prepared in fewer than 30 minutes?"

The schema is the place where you tell Solr how it should build indexes from input documents.

How Solr Sees the World
Solr's basic unit of information is a , which is a set of data that describes something. Adocument
recipe document would contain the ingredients, the instructions, the preparation time, the cooking
time, the tools needed, and so on. A document about a person, for example, might contain the
person's name, biography, favorite color, and shoe size. A document about a book could contain
the title, author, year of publication, number of pages, and so on.

In the Solr universe, documents are composed of , which are more specific pieces offields
information. Shoe size could be a field. First name and last name could be fields.

Fields can contain different kinds of data. A name field, for example, is text (character data). A
shoe size field might be a floating point number so that it could contain values like 6 and 9.5.
Obviously, the definition of fields is flexible (you could define a shoe size field as a text field rather
than a floating point number, for example), but if you define your fields correctly, Solr will be able
to interpret them correctly and your users will get better results when they perform a query.

You can tell Solr about the kind of data a field contains by specifying its . The field typefield type
tells Solr how to interpret the field and how it can be queried.

When you add a document, Solr takes the information in the document's fields and adds that
information to an index. When you perform a query, Solr can quickly consult the index and return
the matching documents.

Solr Reference Guide Jan 10, 2012

Page of 67 397

Field Analysis
 tells Solr what to do with incoming data when building an index. A more accurateField analysis

name for this process would be or even , but the official name is .processing digestion analysis

Consider, for example, a biography field in a person document. Every word of the biography must
be indexed so that you can quickly find people whose lives have had anything to do with ketchup,
or dragonflies, or cryptography.

However, a biography will likely contains lots of words you don't care about and don't want
clogging up your index—words like "the," "a," "to," and so forth. Furthermore, suppose the
biography contains the word "Ketchup," capitalized at the beginning of a sentence. If a user makes
a query for "ketchup," you want Solr to tell you about the person even though the biography
contains the capitalized word.

The solution to both these problems is field analysis. For the biography field, you can tell Solr how
to break apart the biography into words. You can tell Solr that you want to make all the words
lower case, and you can tell Solr to remove accents marks.

Field analysis is an important part of a field type. Understanding Analyzers, Tokenizers, and Filters
is a detailed description of field analysis.

Solr Reference Guide Jan 10, 2012

Page of 68 397

Solr Field Types
The field type defines how Solr should interpret data in a field and how the field can be queried.
There are many field types included with Solr by default, and they can be defined locally also.

Topics covered in this section:

Field Type Definitions in schema.xml
Field Types Included with Solr
Working with Dates
Working with External Files
Field Type Properties
Field Properties by Use Case

Field Type Definitions in schema.xml
A field type includes four types of information:

The name of the field type
An implementation class name
If the field type is , a description of the field analysis for the field typeTextField

Field attributes

In , the field types are defined in the types element. Here is an example of a field typeschema.xml

definition:

<fieldType name="textTight" class="solr.TextField"

 positionIncrementGap="100" >

 <analyzer>

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

 <filter class="solr.SynonymFilterFactory"

 synonyms="synonyms.txt" ignoreCase="true" expand="false"/>

 <filter class="solr.WordDelimiterFilterFactory"

 generateWordParts="0" generateNumberParts="0"

 catenateWords="1" catenateNumbers="1" catenateAll="0"/>

 <filter class="solr.LowerCaseFilterFactory"/>

 <filter class="solr.SnowballPorterFilterFactory"

 language="English" protected="protwords.txt"/>

 <filter class="solr.RemoveDuplicatesTokenFilterFactory"/>

 </analyzer>

 </fieldType>

Solr Reference Guide Jan 10, 2012

Page of 69 397

The first line in the example above contains the field type name, , and the name of thetextTight

implementing class, . The rest of the definition is about field analysis, described in solr.TextField

.Understanding Analyzers, Tokenizers, and Filters

The implementing class is responsible for making sure the field is handled correctly. In the class
names in , the string solr is shorthand for or schema.xml org.apache.solr.schema

. Therefore, is really org.apache.solr.analysis solr.TextField

org.apache.solr.schema.TextField.

Field Types Included with Solr
The following table lists the field types that are available in Solr. The org.apache.solr.schema
package includes all the classes listed in this table.

Class Description

BCDIntField Binary-coded decimal (BCD) integer. BCD is a relatively inefficient encoding
that offers the benefits of quick decimal calculations and quick conversion to
a string.

BCDLongField BCD long integer

BCDStrField BCD string

BinaryField Binary data

BoolField Contains either true or false. Values of "1", "t", or "T" in the first character
are interpreted as true. Any other values in the first character are
interpreted as false.

ByteField Contains an array of bytes.

DateField Represents a point in time with millisecond precision. See the section below.

DoubleField Double (64-bit IEEE floating point)

ExternalFileField Pulls values from a file on disk. See the section below on working with
external files.

FloatField Floating point (32-bit IEEE floating point)

IntField Integer (32-bit signed integer)

Location For spatial search: a latitude/longitude coordinate pair.

LongField Long integer (64-bit signed integer)

Point For spatial search: An arbitrary n-dimensional point, useful for searching
sources such as blueprints or CAD drawings.

Solr Reference Guide Jan 10, 2012

Page of 70 397

RandomSortField Does not contain a value. Queries that sort on this field type will return
results in random order. Use a dynamic field to use this feature.

ShortField Short integer

SortableDoubleField The Sortable* fields provide correct numeric sorting. If you use the plain
types (, , and so on) sorting will be lexicographicalDoubleField IntField

instead of numeric.

SortableFloatField Numerically sorted floating point

SortableIntField Numerically sorted integer

SortableLongField Numerically sorted long integer

StrField String (UTF-8 encoded string or Unicode)

TextField Text, usually multiple words or tokens

TrieDateField Date field accessible for Lucene TrieRange processing

TrieDoubleField Double field accessible Lucene TrieRange processing

TrieField If this type is used, a "type" attribute must also be specified, with a value of
either: integer, long, float, double, date. Using this field is the same as
using any of the Trie*Fields.

TrieFloatField Floating point field accessible Lucene TrieRange processing

TrieIntField Int field accessible Lucene TrieRange processing

TrieLongField Long field accessible Lucene TrieRange processing

UUIDField Universally Unique Identifier (UUID). Pass in a value of "NEW" and Solr will
create a new UUID.

Working with Dates
 represents a point in time with millisecond precision. The format is:DateField

YYYY-MM-DDThh:mm:ssZ

 is the year.YYYY

 is the month.MM

 is the day of the month.DD

 is the hour of the day as on a 24-hour clock.hh

 is minutes.mm

 is seconds.ss

Solr Reference Guide Jan 10, 2012

Page of 71 397

Note that no time zone can be specified; the time given should be expressed in Coordinated
Universal Time (UTC). Here is an example value:

1972-05-20T17:33:18Z

You can include fractional seconds if you wish, although trailing zeros are not allowed and any
precision beyond milliseconds will be ignored. Here is another example value with milliseconds
included:

1972-05-20T17:33:18.772Z

In addition, also supports . This makes it easy to create times relative to theDateField date math
current time. This represents a point in time two months from now:

+2MONTHS

This is one day ago:

-1DAY

Use a slash to indicate rounding. This represents the beginning of the current hour:

/HOUR

You can combine terms. The following is six months and three days in the future, at the beginning
of the day:

+6MONTHS+3DAYS/DAY

Working with External Files
 makes it possible to specify field values for documents in a file. For such aExternalFileField

field, the file contains mappings from a key field to the field value. Another way to think of this is
that, instead of specifying the field in documents as they are indexed, Solr finds values of this field
in the external file.

External fields are not searchable. They can be used only for function queries. For more
information on function queries, see .Searching

 is handy for cases where you want to update a particular field in manyExternalFileField

documents more often than you want to update the rest of the documents. For example, suppose
you have some kind of document rank based on number of views. You might want to update the
rank of all the documents daily or hourly, while the rest of the contents of the documents might be
updated much less frequently.

Solr Reference Guide Jan 10, 2012

Page of 72 397

Without , you would need to update each document just to change the rank.ExternalFileField

Using is much more efficient because all document values for a particular fieldExternalFileField

are stored in an external file that can be updated as frequently as you wish.

An attribute in the field type declaration, , specifies the actual type of the values that willvalType

be found in the file. Note that only fields are currently supported.pfloat

<fieldType name="entryRankFile" keyField="pkId" defVal="0"

 stored="false" indexed="false"

 class="solr.ExternalFileField" valType="pfloat"/>

The file itself is located in Solr's index directory, which by default is in the Solr homedata/index

directory. The name of the file should be or ._external_<fieldname> _external_<fieldname>.*

For the example above, then, the file could be named or _external_entryRankFile _external_

.entryRankFile.txt

If any files using the name pattern .* appear, the last (after being sorted by name) will be
used and previous versions will be deleted. This behavior supports implementations on
systems where one may not be able to overwrite a file (for example, on Windows, if the file
is in use).

The file contains entries that map a key field, on the left of the equals sign, to a value, on the
right. Here are a few example entries:

doc33=1.414

doc34=3.14159

doc40=42

Field Type Properties
The field type class determines most of the behavior of a field type, but optional properties can
also be defined in . For example, the following definition of a date field type defines twoschema.xml

properties, and .sortMissingLast omitNorms

<fieldType name="date" class="solr.DateField"

 sortMissingLast="true" omitNorms="true"/>

Most properties are either true or false.

Here are some commonly used properties:

Solr Reference Guide Jan 10, 2012

Page of 73 397

Field Property Description Values

indexed If true, the value of the field can be used in queries to
retrieve matching documents

true or
false

stored If true, the actual value of the field can be retrieved by
queries

true or
false

sortMissingFirst
sortMissingLast

Control the placement of documents when a sort field is
not present. As of Solr 3.5, these work for all numeric
fields, including Trie and date fields.

true or
false

multiValued If true, indicates that a single document might contain
multiple values for this field type

true or
false

positionIncrementGap For multivalued fields, specifies a distance between
multiple values, which prevents spurious phrase matches

integer

omitNorms If true, omits the norms associated with this field (this
disables length normalization and index-time boosting for
the field, and saves some memory). Only full-text fields or
fields that need an index-time boost need norms.

true or
false

omitTermFreqAndPositions If true, omits term frequency, positions, and payloads from
postings for this field. This can be a performance boost for
fields that don't require that information. It also reduces
the storage space required for the index. Queries that rely
on position that are issued on a field with this option will
silently fail to find documents. This property defaults to
true for all fields that are not text fields.

true or
false

autoGeneratePhraseQueries For text fields. If true, Solr automatically generates phrase
queries for adjacent terms. If false, terms must be
enclosed in double-quotes to be treated as phrases.

Field Properties by Use Case
Here is a summary of available options on a field, broken down by use case. A true or false
indicates that the option must be set to the given value for the use case to function correctly.

Use Case indexed stored multiValued omitNorms termVectors termPositions

search within
field

true

retrieve contents true

Solr Reference Guide Jan 10, 2012

Page of 74 397

use as unique
key

true false

sort on field true false true [1]

use field boosts
[5]

 false

document boosts
affect searches
within field

 false

highlighting true [4] true [2] true [3]

faceting [5] true

add multiple
values,
maintaining
order

 true

field length
affects doc score

 false

MoreLikeThis [5] true [6]

Notes:

1: Recommended but not necessary.
2: Will be used if present, but not necessary.
3: (if termVectors=true)
4: A tokenizer must be defined for the field, but it doesn't need to be indexed.
5: Described in .Understanding Analyzers, Tokenizers, and Filters
6: Term vectors are not mandatory here. If not true, then a stored field is analyzed. So term
vectors are recommended, but only required if stored=false.

Solr Reference Guide Jan 10, 2012

Page of 75 397

Defining Fields
Once you have the field types set up just the way you like, defining the fields themselves is simple.
All you do is supply a name and a field type. If you wish, you can also provide options that will
override the options for the field type.

Fields are defined in the fields element of . The following example defines a field namedschema.xml

price with a type of .sfloat

<field name="price" type="sfloat" indexed="true" stored="true"/>

Fields can have the same options as field types. The field type options serve as defaults which can
be overridden by options defined per field.

Solr Reference Guide Jan 10, 2012

Page of 76 397

Copying Fields
You might want to interpret some document fields in more than one way. Solr has a mechanism for
making copies of fields so that you can apply several distinct field types to a single piece of
incoming information. For Linux shell geeks, this is something like .tee

The name of the field you want to copy is the , and the name of the copy is the .source destination
In , it's very simple to make copies of fields:schema.xml

<copyField source="cat" dest="text" maxChars="30000" />

If the text field has data of its own in input documents, the contents of will be added to thecat

index for text. The parameter, an parameter, establishes an upper limit for themaxChars int

number of characters to be copied. This limit is useful for situations in which you want to control
the size of index files.

Both the source and the destination of can contain asterisks, which will match anything.copyField

For example, the following line will copy the contents of all incoming fields that match the wildcard
pattern to the text field.:*t

<copyField source="*_t" dest="text" maxChars="25000" />

The command can use a wildcard (*) character in the parameter only ifcopyField dest

the source parameter contains one as well. uses the matching glob from thecopyField

source field for the field name into which the source content is copied.dest

Solr Reference Guide Jan 10, 2012

Page of 77 397

Dynamic Fields
 allow Solr to index fields that you did not explicitly define in your schema. This isDynamic fields

useful if you discover you have forgotten to define one or more fields. Dynamic fields can make
your application less brittle by providing some flexibility in the documents you can add to Solr.

A dynamic field is just like a regular field except it has a name with a wildcard in it. When you are
indexing documents, a field that does not match any explicitly defined fields can be matched with a
dynamic field.

For example, suppose your schema includes a dynamic field with a name of . If you attempt to*_i

index a document with a field, but no explicit field is defined in the schema, thencost_i cost_i

the field will have the field type and analysis defined for .cost_i *_i

Dynamic fields are also defined in the fields element of . Like fields, they have a name,schema.xml

a field type, and options.

<dynamicField name="*_i" type="sint" indexed="true" stored="true"/>

Lucid Imagination recommends that you include basic dynamic field mappings (like that shown
above) in your . The mappings can be very useful.schema.xml

Solr Reference Guide Jan 10, 2012

Page of 78 397

Other Schema Elements
This section describes several other important elements of .schema.xml

Unique Key
The element specifies which field is a unique identifier for documents. Although uniqueKey

 is not required, it is nearly always warranted by your application design. For example, uniqueKey

 should be used if you will ever update a document in the index. For more information,uniqueKey

consult the Solr Wiki at .http://wiki.apache.org/solr/UniqueKey

You can define the unique key field by naming it:

<uniqueKey>id</uniqueKey>

Default Search Field
If you are using the Lucene query parser, queries that don't specify a field name will use the

. The DisMax and Extended DisMax query parsers do not use this value. FordefaultSearchField

more information about query parsers, see .Searching

Just name a field to use it as the default search field:

<defaultSearchField>text</defaultSearchField>

Query Parser Operator
In queries with multiple terms, Solr can either return results where all conditions are met or where
one or more conditions are met. The controls this behavior. An operator of AND meansoperator
that all conditions must be fulfilled, while an operator of OR means that one or more conditions
must be true.

In , use the element to control what operator is used if an operatorschema.xml solrQueryParser

is not specified in the query. The default operator setting only applies to the Lucene query parser,
not the DisMax or Extended DisMax query parsers, which internally hard-code their operators to
OR.

<solrQueryParser defaultOperator="OR"/>

http://wiki.apache.org/solr/UniqueKey

Solr Reference Guide Jan 10, 2012

Page of 79 397

Putting the Pieces Together
At the highest level, is structured as follows. This example is not real XML, but it givesschema.xml

you an idea of the important parts of the file.

<schema>

 <types>

 <fields>

 <uniqueKey>

 <defaultSearchField>

 <solrQueryParser defaultOperator>

 <copyField>

</schema>

Obviously, most of the excitement is in types and fields, where the field types and the actual field
definitions live. These are supplemented by . Sandwiched between fields and the copyFields

 section are the unique key, default search field, and the default query operator.copyField

For more information about , see .schema.xml http://wiki.apache.org/solr/SchemaXml

Choosing Appropriate Numeric Types
For general numeric needs, use the sortable field types, , , SortableIntField SortableLongField

, and . These field types will sort numerically instead ofSortableFloatField SortableDoubleField

lexicographically, which is the main reason they are preferable over their simpler cousins,
, , , and .IntField LongField FloatField DoubleField

If you expect users to make frequent range queries on numeric types, consider using . ItTrieField

offers faster speed for range queries at the expense of increasing index size.

Working With Text
Handling text properly will make your users happy by providing them with the best possible results
for text searches.

One technique is using a text field as a catch-all for keyword searching. Most users are not
sophisticated about their searches and the most common search is likely to be a simple keyword
search. You can use to take a variety of fields and funnel them all into a single text fieldcopyField

for keyword searches. In the example schema representing a store, is used to dump thecopyField

contents of , , , , and into a single field, . In addition, it couldcat name manu features includes text

be a good idea to copy into in case users wanted to search for a particular product byID text

passing its product number to a keyword search.

http://wiki.apache.org/solr/SchemaXml

Solr Reference Guide Jan 10, 2012

Page of 80 397

Another technique is using to use the same field in different ways. Suppose you have acopyField

field that is a list of authors, like this:

Schildt, Herbert; Wolpert, Lewis; Davies, P.

For searching by author, you could tokenize the field, convert to lower case, and strip out
punctuation:

schildt / herbert / wolpert / lewis / davies / p

For sorting, just use an untokenized field, converted to lower case, with punctuation stripped:

schildt herbert wolpert lewis davies p

Finally, for faceting, use the primary author only via a :StringField

Schildt, Herbert

Solr Reference Guide Jan 10, 2012

Page of 81 397

Understanding Analyzers, Tokenizers, and
Filters
This sections describes how Solr breaks down and works with textual data. It covers the following
topics:

: A conceptual introduction to Solr's analyzers,Overview of Analyzers, Tokenizers, and Filters
tokenizers, and filters.

: Detailed conceptual information about Solr analyzers.What Is An Analyzer?

: Detailed conceptual information about Solr tokenizers.What Is A Tokenizer?

: Detailed conceptual information about Solr filters.What Is a Filter?

: Information about configuring tokenizers, and about the tokenizer factory classesTokenizers
included in this distribution of Solr.

: Information about configuring filters, and about the filter factory classesFilter Descriptions
included in this distribution of Solr.

: Information about filters for pre-processing input characters.CharFilterFactories

: Information about tokenizers and filters for character set conversion or for useLanguage Analysis
with specific languages.

: Detailed information about testing and running your Solr analyzer.Running Your Analyzer

Solr Reference Guide Jan 10, 2012

Page of 82 397

Overview of Analyzers, Tokenizers, and Filters
 are used both during ingestion, when a document is indexed, and at query time. AnField analyzers

analyzer examines the text of fields and generates a token stream. Analyzers may be a single class
or they may be composed of a series of tokenizer and filter classes.

 break field data into lexical units, or . examine a stream of tokens andTokenizers tokens Filters
keep them, transform or discard them, or create new ones. Tokenizers and filters may be
combined to form pipelines, or , where the output of one is input to the next. Such achains
sequence of tokenizers and filters is called an and the resulting output of an analyzer isanalyzer
used to match query results or build indices.

Although the analysis process is used for both indexing and querying, the same analysis process
need not be used for both operations. For indexing, you often want to simplify, or normalize,
words. For example, setting all letters to lowercase, eliminating punctuation and accents, mapping
words to their stems, and so on. Doing so can increase recall because, for example, "ram", "Ram"
and "RAM" would all match a query for "ram". To increase query-time precision, a filter could be
employed to narrow the matches by, for example, ignoring all-cap acronyms if you're interested in
male sheep, but not Random Access Memory.

The tokens output by the analysis process define the values, or , of that field and are usedterms
either to build an index of those terms when a new document is added, or to identify which
documents contain the terms your are querying for.

This section will show you how to configure field analyzers and also serves as a reference for the
details of configuring each of the available tokenizer and filter classes. It also serves as a guide so
that you can configure your own analysis classes if you have special needs that cannot be met with
the included filters or tokenizers.

For more information on Solr's analyzers, tokenizers, and filters, see
.http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Solr Reference Guide Jan 10, 2012

Page of 83 397

What Is An Analyzer?
An analyzer examines the text of fields and generates a token stream. Analyzers are specified as a
child of the element in the configuration file that can be found in the <fieldType> schema.xml

 directory, or wherever is located.solr/conf solrconfig.xml

In normal usage, only fields of type will specify an analyzer. The simplest way tosolr.TextField

configure an analyzer is with a single element whose class attribute is a fully qualified<analyzer>

Java class name. The named class must derive from . Fororg.apache.lucene.analysis.Analyzer

example:

<fieldType name="nametext" class="solr.TextField">

 <analyzer class="org.apache.lucene.analysis.WhitespaceAnalyzer"/>

</fieldType>

In this case a single class, , is responsible for analyzing the content of theWhitespaceAnalyzer

named text field and emitting the corresponding tokens. For simple cases, such as plain English
prose, a single analyzer class like this may be sufficient. But it's often necessary to do more
complex analysis of the field content.

Even the most complex analysis requirements can usually be decomposed into a series of discrete,
relatively simple processing steps. As you will soon discover in Sections and , the Solr distribution
comes with a large selection of tokenizers and filters that covers most scenarios you are likely to
encounter. Setting up an analyzer chain is very straightforward; you specify a simple <analyzer>
element (no class attribute) with child elements that name factory classes for the tokenizer and
filters to use, in the order you want them to run.

For example:

<fieldType name="nametext" class="solr.TextField">

 <analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.StandardFilterFactory"/>

 <filter class="solr.LowerCaseFilterFactory"/>

 <filter class="solr.StopFilterFactory"/>

 <filter class="solr.EnglishPorterFilterFactory"/>

 </analyzer>

</fieldType>

Note that classes in the package may be referred to here with theorg.apache.solr.analysis

shorthand prefix.solr.

Solr Reference Guide Jan 10, 2012

Page of 84 397

In this case, no Analyzer class was specified on the element. Rather, a sequence of<analyzer>

more specialized classes are wired together and collectively act as the Analyzer for the field. The
text of the field is passed to the first item in the list (), and thesolr.StandardTokenizerFactory

tokens that emerge from the last one () are the terms that aresolr.EnglishPorterFilterFactory

used for indexing or querying any fields that use the "nametext" .fieldType

Analysis Phases
Analysis takes place in two contexts. At index time, when a field is being created, the token stream
that results from analysis is added to an index and defines the set of terms (including positions,
sizes, and so on) for the field. At query time, the values being searched for are analyzed and the
terms that result are matched against those that are stored in the field's index.

In many cases, the same analysis should be applied to both phases. This is desirable when you
want to query for exact string matches, possibly with case-insensitivity, for example. In other
cases, you may want to apply slightly different analysis steps during indexing than those used at
query time.

If you provide a simple definition for a field type, as in the examples above, then it will<analyzer>

be used for both indexing and queries. If you want distinct analyzers for each phase, you may
include two definitions distinguished with a type attribute. For example:<analyzer>

<fieldType name="nametext" class="solr.TextField">

 <analyzer *type="index"{*}>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.LowerCaseFilterFactory"/>

 <filter class="solr.KeepWordFilterFactory" words="keepwords.txt"/>

 <filter class="solr.SynonymFilterFactory" synonyms="syns.txt"/>

 </analyzer>

 <analyzer *type="query"{*}>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.LowerCaseFilterFactory"/>

 </analyzer>

</fieldType>

In this theoretical example, at index time the text is tokenized, the tokens are set to lowercase,
any that are not listed in are discarded and those that remain are mapped tokeepwords.txt

alternate values as defined by the synonym rules in the file . This essentially builds ansyns.txt

index from a restricted set of possible values and then normalizes them to values that may not
even occur in the original text.

Solr Reference Guide Jan 10, 2012

Page of 85 397

At query time, the only normalization that happens is to convert the query terms to lowercase. The
filtering and mapping steps that occur at index time are not applied to the query terms. Queries
must then, in this example, be very precise, using only the normalized terms that were stored at
index time.

Solr Reference Guide Jan 10, 2012

Page of 86 397

What Is A Tokenizer?
The job of a is to break up a stream of text into tokens, where each token is (usually) atokenizer
sub-sequence of the characters in the text. An analyzer is aware of the field it is configured for, but
a tokenizer is not. Tokenizers read from a character stream (a Reader) and produce a sequence of
Token objects (a TokenStream).

Characters in the input stream may be discarded, such as whitespace or other delimiters. They
may also be added to or replaced, such as mapping aliases or abbreviations to normalized forms. A
token contains various metadata in addition to its text value, such as the location at which the
token occurs in the field. Because a tokenizer may produce tokens that diverge from the input text,
you should not assume that the text of the token is the same text that occurs in the field, or that
its length is the same as the original text. It's also possible for more than one token to have the
same position or refer to the same offset in the original text. Keep this in mind if you use token
metadata for things like highlighting search results in the field text.

<fieldType name="text" class="solr.TextField">

 <analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 </analyzer>

</fieldType>

The class named in the <tokenizer> element is not the actual tokenizer, but rather a class that
implements the interface. This factory class willorg.apache.solr.analysis.TokenizerFactory

be called upon to create new tokenizer instances as needed. Objects created by the factory must
derive from , which indicates that they produceorg.apache.lucene.analysis.TokenStream

sequences of tokens. If the tokenizer produces tokens that are usable as-is, it may be the only
component of the analyzer. Otherwise, the tokenizer's output tokens will serve as input to the first
filter stage in the pipeline.

Solr Reference Guide Jan 10, 2012

Page of 87 397

What Is a Filter?
Like , consume input and produce a stream of tokens. Filters also derive from tokenizers filters

. Unlike tokenizers, a filter's input is anotherorg.apache.lucene.analysis.TokenStream

TokenStream. The job of a filter is usually easier than that of a tokenizer since in most cases a
filter looks at each token in the stream sequentially and decides whether to pass it along, replace it
or discard it.

A filter may also do more complex analysis by looking ahead to consider multiple tokens at once,
although this is less common. One hypothetical use for such a filter might be to normalize state
names that would be tokenized as two words. For example, the single token "california" would be
replaced with "CA", while the token pair "rhode" followed by "island" would become the single
token "RI".

Because filters consume one and produce a new , they can be chainedTokenStream TokenStream

one after another indefinitely. Each filter in the chain in turn processes the tokens produced by its
predecessor. The order in which you specify the filters is therefore significant. Typically, the most
general filtering is done first, and later filtering stages are more specialized.

<fieldType name="text" class="solr.TextField">

 <analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.StandardFilterFactory"/>

 <filter class="solr.LowerCaseFilterFactory"/>

 <filter class="solr.EnglishPorterFilterFactory"/>

 </analyzer>

</fieldType>

This example starts with Solr's standard tokenizer, which breaks the field's text into tokens. Those
tokens then pass through Solr's standard filter, which removes dots from acronyms, and performs
a few other common operations. All the tokens are then set to lowercase, which will facilitate
case-insensitive matching at query time.

The last filter in the above example is a stemmer filter that uses the Porter stemming algorithm. A
stemmer is basically a set of mapping rules that maps the various forms of a word back to the
base, or , word from which they derive. For example, in English the words "hugs", "hugging"stem
and "hugged" are all forms of the stem word "hug". The stemmer will replace all of these terms
with "hug", which is what will be indexed. This means that a query for "hug" will match the term
"hugged", but not "huge".

Conversely, applying a stemmer to your query terms will allow queries containing non stem terms,
like "hugging", to match documents with different variations of the same stem word, such as
"hugged". This works because both the indexer and the query will map to the same stem ("hug").

Solr Reference Guide Jan 10, 2012

Page of 88 397

Word stemming is, obviously, very language specific. Solr includes several language-specific
stemmers created by the generator that are based on the Porter stemming algorithm.Snowball
The generic Snowball Porter Stemmer Filter can be used to configure any of these language
stemmers. Solr also includes a convenience wrapper for the English Snowball stemmer. There are
also several purpose-built stemmers for non-English languages. These stemmers are described in

.Language Analysis

http://snowball.tartarus.org/

Solr Reference Guide Jan 10, 2012

Page of 89 397

Tokenizers
You configure the tokenizer for a text field type in with a element, as aschema.xml <tokenizer>

child of :<analyzer>

<fieldType name="text" class="solr.TextField">

 <analyzer type="index">

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.StandardFilterFactory"/>

 </analyzer>

</fieldType>

The class attribute names a factory class that will instantiate a tokenizer object when needed.
Tokenizer factory classes implement the . Aorg.apache.solr.analysis.TokenizerFactory

TokenizerFactory's method accepts a Reader and returns a TokenStream. When Solrcreate()

creates the tokenizer it passes a Reader object that provides the content of the text field.

Arguments may be passed to tokenizer factories by setting attributes on the element.<tokenizer>

<fieldType name="semicolonDelimited" class="solr.TextField">

 <analyzer type="query">

 <tokenizer class="solr.PatternTokenizerFactory" pattern="; "/>

 <analyzer>

</fieldType>

The following sections describe the tokenizer factory classes included in this release of Solr.

For more information about Solr's tokenizers, see
.http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Solr Reference Guide Jan 10, 2012

Page of 90 397

Tokenizers discussed in this section:

Standard Tokenizer
Classic Tokenizer
Keyword Tokenizer
Letter Tokenizer
Lower Case Tokenizer
N-Gram Tokenizer
Edge N-Gram Tokenizer
ICU Tokenizer
Path Hierarchy Tokenizer
Regular Expression Pattern Tokenizer
UAX29 URL Email Tokenizer
White Space Tokenizer

Standard Tokenizer
This tokenizer splits the text field into tokens, treating whitespace and punctuation as delimiters.
Delimiter characters are discarded, with the following exceptions:

Periods (dots) that are not followed by whitespace are kept as part of the token.

Words are split at hyphens, unless there is a number in the word, in which case the token is
not split and the numbers and hyphen(s) are preserved.

Recognizes Internet domain names and email addresses and preserves them as a single
token.

The Standard Tokenizer supports word boundaries with theUnicode standard annex UAX#29
following token types: , , , , and .<ALPHANUM> <NUM> <SOUTHEAST_ASIAN> <IDEOGRAPHIC> <HIRAGANA>

 solr.StandardTokenizerFactoryFactory class:

Arguments:

maxTokenLength: (integer, default 255) Solr ignores tokens that exceed the number of characters
specified by .maxTokenLength

Example:

http://unicode.org/reports/tr29/#Word_Boundaries

Solr Reference Guide Jan 10, 2012

Page of 91 397

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

</analyzer>

 "Please, email john.doe@foo.com by 03-09, re: m37-xq."In:

 "Please", "email", "john.doe@foo.com", "by", "03-09", "re", "m37-xq"Out:

Classic Tokenizer
The Classic Tokenizer preserves the same behavior as the Standard Tokenizer of Solr versions 3.1
and previous. It does not use the word boundary rules that theUnicode standard annex UAX#29
Standard Tokenizer uses. This tokenizer splits the text field into tokens, treating whitespace and
punctuation as delimiters. Delimiter characters are discarded, with the following exceptions:

Periods (dots) that are not followed by whitespace are kept as part of the token.

Words are split at hyphens, unless there is a number in the word, in which case the token is
not split and the numbers and hyphen(s) are preserved.

Recognizes Internet domain names and email addresses and preserves them as a single
token.

 solr.ClassicTokenizerFactoryFactory class:

Arguments:

maxTokenLength: (integer, default 255) Solr ignores tokens that exceed the number of characters
specified by .maxTokenLength

Example:

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

</analyzer>

 "Please, email john.doe@foo.com by 03-09, re: m37-xq."In:

 "Please", "email", "john.doe@foo.com", "by", "03-09", "re", "m37-xq"Out:

Keyword Tokenizer
This tokenizer treats the entire text field as a single token.

 solr.KeywordTokenizerFactoryFactory class:

http://unicode.org/reports/tr29/#Word_Boundaries

Solr Reference Guide Jan 10, 2012

Page of 92 397

 NoneArguments:

Example:

<analyzer>

 <tokenizer class="solr.KeywordTokenizerFactory"/>

</analyzer>

 "Please, email john.doe@foo.com by 03-09, re: m37-xq."In:

 "Please, email john.doe@foo.com by 03-09, re: m37-xq."Out:

Letter Tokenizer
This tokenizer creates tokens from strings of contiguous letters, discarding all non-letter
characters.

 solr.LetterTokenizerFactoryFactory class:

 NoneArguments:

Example:

<analyzer>

 <tokenizer class="solr.LetterTokenizerFactory"/>

</analyzer>

 "I can't."In:

 "I", "can", "t"Out:

Lower Case Tokenizer
Tokenizes the input stream by delimiting at non-letters and then converting all letters to lowercase.
Whitespace and non-letters are discarded.

 Factory class: solr.LowerCaseTokenizerFactory

 NoneArguments:

Example:

<analyzer>

 <tokenizer class="solr.LowerCaseTokenizerFactory"/>

</analyzer>

Solr Reference Guide Jan 10, 2012

Page of 93 397

 "I just my iPhone!"In: LOVE

 "i", "just", "love", "my", "iphone"Out:

N-Gram Tokenizer
Reads the field text and generates n-gram tokens of sizes in the given range.

 Factory class: solr.NGramTokenizerFactory

Arguments:

minGramSize: (integer, default 1) The minimum n-gram size, must be > 0.

maxGramSize: (integer, default 2) The maximum n-gram size, must be >= maxGramSize.

Example:

Default behavior. Note that this tokenizer operates over the whole field. It does not break the field
at whitespace. As a result, the space character is included in the encoding.

<analyzer>

 <tokenizer class="solr.NGramTokenizerFactory"/>

</analyzer>

 "hey man"In:

 "h", "e", "y", " ", "m", "a", "n", "he", "ey", "y ", " m", "ma", "an"Out:

Example:

With an n-gram size range of 4 to 5:

<analyzer>

 <tokenizer class="solr.NGramTokenizerFactory" minGramSize="4" maxGramSize="5"/>

</analyzer>

 "bicycle"In:

 "bicy", "icyc", "cycl", "ycle", "bicyc", "icycl", "cycle"Out:

Edge N-Gram Tokenizer
Reads the field text and generates edge n-gram tokens of sizes in the given range.

 Factory class: solr.EdgeNGramTokenizerFactory

Solr Reference Guide Jan 10, 2012

Page of 94 397

Arguments:

minGramSize: (integer, default 1) The minimum n-gram size, must be > 0.

maxGramSize: (integer, default 1) The maximum n-gram size, must be >= maxGramSize.

side: ("front" or "back", default "front") Whether to compute the n-grams from the beginning
(front) of the text or from the end (back).

Example:

Default behavior (min and max default to 1):

<analyzer>

 <tokenizer class="solr.EdgeNGramTokenizerFactory"/>

</analyzer>

 "babaloo"In:

 "b"Out:

Example:

Edge n-gram range of 2 to 5

<analyzer>

 <tokenizer class="solr.EdgeNGramTokenizerFactory" minGramSize="2" maxGramSize="5"/>

</analyzer>

 "babaloo"In:

"ba", "bab", "baba", "babal"Out:

Example:

Edge n-gram range of 2 to 5, from the back side:

<analyzer>

 <tokenizer class="solr.EdgeNGramTokenizerFactory" minGramSize="2" maxGramSize="5"

side="back"/>

</analyzer>

 "babaloo"In:

 "oo", "loo", "aloo", "baloo"Out:

Solr Reference Guide Jan 10, 2012

Page of 95 397

ICU Tokenizer
This tokenizer processes multilingual text and tokenizes it appropriately based on its script
attribute.

 solr.ICUTokenizerFactoryFactory class:

 NoneArguments:

Example:

<analyzer>

 <tokenizer class="solr.ICUTokenizerFactory"/>

 </analyzer>

 "Testing ""In:

 "Testing", "", "", "" "Out:

Path Hierarchy Tokenizer
This tokenizer creates synonyms from file path hierarchies.

 solr.PathHierarchyTokenizerFactoryFactory class:

Arguments:

delimiter: (character, no default) You can specify the file path delimiter and replace it with a
delimiter you provide. This can be useful for working with backslash delimiters.

replace: (character, no default) Specifies the delimiter character Solr uses in the tokenized output.

Example:

<fieldType name="text_path" class="solr.TextField" positionIncrementGap="100">

 <analyzer>

 <tokenizer class="solr.PathHierarchyTokenizerFactory" delimiter="\" replace="/"/>

 </analyzer>

</fieldType>

 "c:\usr\local\apache"In:

 "c:", "c:/usr", "c:/usr/local", "c:/usr/local/apache"Out:

Regular Expression Pattern Tokenizer

Solr Reference Guide Jan 10, 2012

Page of 96 397

This tokenizer uses a Java regular expression to break the input text stream into tokens. The
expression provided by the pattern argument can be interpreted either as a delimiter that
separates tokens, or to match patterns that should be extracted from the text as tokens.

See the Javadocs for for more information on Java regular expressionjava.util.regex.Pattern
syntax.

 Factory class: solr.PatternTokenizerFactory

Arguments:

: (Required) The regular expression, as defined by in .pattern java.util.regex.Pattern

: (Optional, default -1) Specifies which regex group to extract as the token(s).The value -1group

means the regex should be treated as a delimiter that separates tokens.Non-negative group
numbers (>= 0) indicate that character sequences matching that regex group should be converted
to tokens. Group zero refers to the entire regex, groups greater than zero refer to parenthesized
sub-expressions of the regex, counted from left to right.

Example:

A comma separated list. Tokens are separated by a sequence of zero or more spaces, a comma,
and zero or more spaces.

<analyzer>

 <tokenizer class="solr.PatternTokenizerFactory" pattern="\s*,\s*"/>

</analyzer>

 "fee,fie, foe , fum, foo"In:

 "fee", "fie", "foe", "fum", "foo"Out:

Example:

Extract simple, capitalized words. A sequence of at least one capital letter followed by zero or more
letters of either case is extracted as a token.

<analyzer>

 <tokenizer class="solr.PatternTokenizerFactory" pattern="\[A-Z\]\[A-Za-z\]"

group="0"/>

</analyzer>

 "Hello. My name is Inigo Montoya. You killed my father. Prepare to die."In:

 "Hello", "My", "Inigo", "Montoya". "You", "Prepare"Out:

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

Solr Reference Guide Jan 10, 2012

Page of 97 397

Example:

Extract part numbers which are preceded by "SKU", "Part" or "Part Number", case sensitive, with
an optional semi-colon separator. Part numbers must be all numeric digits, with an optional
hyphen. Regex capture groups are numbered by counting left parenthesis from left to right. Group
3 is the subexpression "[0-9-]+", which matches one or more digits or hyphens.

<analyzer>

 <tokenizer class="solr.PatternTokenizerFactory"

pattern="(SKU|Part(\sNumber)?):?\s(\[0-9-\]+)" group="3"/>

</analyzer>

 "SKU: 1234, Part Number 5678, Part: 126-987"In:

 "1234", "5678", "126-987"Out:

UAX29 URL Email Tokenizer
This tokenizer splits the text field into tokens, treating whitespace and punctuation as delimiters.
Delimiter characters are discarded, with the following exceptions:

Periods (dots) that are not followed by whitespace are kept as part of the token.

Words are split at hyphens, unless there is a number in the word, in which case the token is
not split and the numbers and hyphen(s) are preserved.

Recognizes top-level (.com) Internet domain names; email addresses; , file:://

, and addresses; IPv4 and IPv6 addresses; and preserves them as ahttp(s):// ftp://

single token.

The UAX29 URL Email Tokenizer supports word boundaries withUnicode standard annex UAX#29
the following token types: , , , , , ,<ALPHANUM> <NUM> URL EMAIL <SOUTHEAST_ASIAN> <IDEOGRAPHIC>

and .<HIRAGANA>

 solr.UAX29URLEmailTokenizerFactoryFactory class:

Arguments:

maxTokenLength: (integer, default 255) Solr ignores tokens that exceed the number of characters
specified by .maxTokenLength

Example:

http://unicode.org/reports/tr29/#Word_Boundaries

Solr Reference Guide Jan 10, 2012

Page of 98 397

<analyzer>

 <tokenizer class="solr.UAX29URLEmailTokenizerFactory"/>

</analyzer>

 "Visit or e-mailIn: http://accarol.com/contact.htm?from=external&a=10
bob.cratchet@accarol.com"

 "Visit", "http://accarol.com/contact.htm?from=external&a=10", "or", "email",Out:
"bob.cratchet@accarol.com"

White Space Tokenizer
Simple tokenizer that splits the text stream on whitespace and returns sequences of
non-whitespace characters as tokens. Note that any punctuation be included in thewill
tokenization.

 Factory class: solr.WhitespaceTokenizerFactory

 NoneArguments:

Example:

<analyzer>

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

</analyzer>

 "To be, or what?"In:

 "To", "be,", "or", "what?"Out:

http://accarol.com/contact.htm?from=external&a=10

Solr Reference Guide Jan 10, 2012

Page of 99 397

Filter Descriptions
You configure each filter with a element in as a child of ,<filter> schema.xml <analyzer>

following the element. Filter definitions should follow a tokenizer or another filter<tokenizer>

definition because they take a as input. For example.TokenStream

<fieldType name="text" class="solr.TextField">

 <analyzer type="index">

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.LowerCaseFilterFactory"/>...

 </analyzer>

</fieldType>

The class attribute names a factory class that will instantiate a filter object as needed. Filter factory
classes must implement the interface. Likeorg.apache.solr.analysis.TokenFilterFactory

tokenizers, filters are also instances of TokenStream and thus are producers of tokens. Unlike
tokenizers, filters also consume tokens from a TokenStream. This allows you to mix and match
filters, in any order you prefer, downstream of a tokenizer.

Arguments may be passed to tokenizer factories to modify their behavior by setting attributes on
the element. For example:<filter>

<fieldType name="semicolonDelimited" class="solr.TextField">

 <analyzer type="query">

 <tokenizer class="solr.PatternTokenizerFactory" pattern="; " />

 <filter class="solr.LengthFilterFactory" *min="2" max="7"/>

 </analyzer>

</fieldType>

The following sections describe the filter factories that are included in this release of Solr.

For more information about Solr's filters, see
.http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Solr Reference Guide Jan 10, 2012

Page of 100 397

Filters discussed in this section:

ASCII Folding Filter
Classic Filter
Common Grams Filter
Collation Key Filter
Edge N-Gram Filter
English Minimal Stem Filter
Hunspell Stem Filter
Hyphenated Words Filter
ICU Folding Filter
ICU Normalizer 2 Filter
ICU Transform Filter
Keep Words Filter
KStem Filter
Length Filter
Lower Case Filter
N-Gram Filter
Numeric Payload Token Filter
Pattern Replace Filter
Phonetic Filter
Porter Stem Filter
Position Filter Factory
Remove Duplicates Token Filter
Reversed Wildcard Filter
Shingle Filter
Snowball Porter Stemmer Filter
Standard Filter
Stop Filter
Synonym Filter
Token Offset Payload Filter
Trim Filter
Type As Payload Filter
Word Delimiter Filter

ASCII Folding Filter
This filter converts alphabetic, numeric, and symbolic Unicode characters which are not in the Basic
Latin Unicode block (the first 127 ASCII characters) to their ASCII equivalents, if one exists. This
filter converts characters from the following Unicode blocks:

Solr Reference Guide Jan 10, 2012

Page of 101 397

 (PDF)C1 Controls and Latin-1 Supplement
 (PDF)Latin Extended-A
 (PDF)Latin Extended-B

 (PDF)Latin Extended Additional
 (PDF)Latin Extended-C
 (PDF)Latin Extended-D

 (PDF)IPA Extensions
 (PDF)Phonetic Extensions

 (PDF)Phonetic Extensions Supplement
 (PDF)General Punctuation

 (PDF)Superscripts and Subscripts
 (PDF)Enclosed Alphanumerics

 (PDF)Dingbats
 (PDF)Supplemental Punctuation

 (PDF)Alphabetic Presentation Forms
 (PDF)Halfwidth and Fullwidth Forms

 solr.ASCIIFilterFactoryFactory class:

 NoneArguments:

Example:

<analyzer>

 <filter class="solr.ASCIIFilterFactory"/>

</analyzer>

 "á" (Unicode character 00E1)In:

 "á" (ASCII character 160)Out:

Classic Filter
This filter takes the output of the and strips periods from acronyms and "'s" fromClassic Tokenizer
possessives.

 solr.ClassicFilterFactoryFactory class:

 NoneArguments:

Example:

http://www.unicode.org/charts/PDF/U0080.pdf
http://www.unicode.org/charts/PDF/U0100.pdf
http://www.unicode.org/charts/PDF/U0180.pdf
http://www.unicode.org/charts/PDF/U1E00.pdf
http://www.unicode.org/charts/PDF/U2C60.pdf
http://www.unicode.org/charts/PDF/UA720.pdf
http://www.unicode.org/charts/PDF/U0250.pdf
http://www.unicode.org/charts/PDF/U1D00.pdf
http://www.unicode.org/charts/PDF/U1D80.pdf
http://www.unicode.org/charts/PDF/U2000.pdf
http://www.unicode.org/charts/PDF/U2070.pdf
http://www.unicode.org/charts/PDF/U2460.pdf
http://www.unicode.org/charts/PDF/U2700.pdf
http://www.unicode.org/charts/PDF/U2E00.pdf
http://www.unicode.org/charts/PDF/UFB00.pdf
http://www.unicode.org/charts/PDF/UFF00.pdf

Solr Reference Guide Jan 10, 2012

Page of 102 397

<analyzer>

 <tokenizer class="solr.ClassicTokenizerFactory"/>

 <filter class="solr.ClassicFilterFactory"/>

</analyzer>

 "I.B.M. cat's can't"In:

 "I.B.M", "cat's", "can't"Tokenizer to Filter:

 "IBM", "cat", "can't"Out:

Common Grams Filter
This filter creates word shingles by combining common tokens such as stop words with regular
tokens. This is useful for creating phrase queries containing common words, such as "the cat." Solr
normally ignores stop words in queried phrases, so searching for "the cat" would return all matches
for the word "cat."

 solr.CommonGramsFilterFactoryFactory class:

Arguments:

words: (a common word file in .txt format) Provide the name of a common word file, such as
.stopwords.txt

ignoreCase: (boolean) If true, the filter ignores the case of words when comparing them to the
common word file.

Example:

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.CommonGramsFilterFactory" words="stopwords.txt"

ignoreCase="true"/>

</analyzer>

 "the Cat"In:

 "the", "Cat"Tokenizer to Filter:

 "the_cat"Out:

Collation Key Filter
See Unicode Collation

Solr Reference Guide Jan 10, 2012

Page of 103 397

Edge N-Gram Filter
This filter generates edge n-gram tokens of sizes within the given range.

 solr.EdgeNGramFilterFactoryFactory class:

Arguments:

: (integer, default 1) The minimum gram size.minGramSize

: (integer, default 1) The maximum gram size.maxGramSize

Example:

Default behavior.

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.EdgeNGramFilterFactory"/>

</analyzer>

 "four score and twenty"In:

 "four", "score", "and", "twenty"Tokenizer to Filter:

 "f", "s", "a", "t"Out:

Example:

A range of 1 to 4.

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.EdgeNGramFilterFactory" minGramSize="1" maxGramSize="4"/>

</analyzer>

 "four score"In:

 "four", "score"Tokenizer to Filter:

 "f", "fo", "fou", "four", "s", "sc", "sco", "scor"Out:

Example:

A range of 4 to 6.

Solr Reference Guide Jan 10, 2012

Page of 104 397

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.EdgeNGramFilterFactory" minGramSize="4" maxGramSize="6"/>

</analyzer>

 "four score and twenty"In:

 "four", "score", "and", "twenty"Tokenizer to Filter:

 "four", "sco", "scor"Out:

English Minimal Stem Filter
This filter stems plural English words to their singular form.

 solr.EnglishMinimalStemFilterFactoryFactory class:

 NoneArguments:

Example:

<analyzer type="index">

 <tokenizer class="solr.StandardTokenizerFactory "/>

 <filter class="solr.EnglishMinimalStemFilterFactory"/>

</analyzer>

 "dogs cats"In:

 "dogs", "cats"Tokenizer to Filter:

 "dog", "cat"Out:

Hunspell Stem Filter
The provides support for several languages. You must provide the dictionary (Hunspell Stem Filter

) and rules () files for each language you wish to use with the Hunspell Stem Filter. You.dic .aff

can download those language files . Be aware that your results will vary widely based on thehere
quality of the provided dictionary and rules files. For example, some languages have only a
minimal word list with no morphological information. On the other hand, for languages that have
no stemmer but do have an extensive dictionary file, the Hunspell stemmer may be a good choice.

 solr.HunspellStemFilterFactoryFactory class:

 NoneArguments:

Example:

http://wiki.apache.org/solr/Hunspell
http://wiki.services.openoffice.org/wiki/Dictionaries

Solr Reference Guide Jan 10, 2012

Page of 105 397

<analyzer type="index">

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

 <filter class="solr.HunspellStemFilterFactory"

 dictionary="en_GB.dic"

 affix="en_GB.aff"

 ignoreCase="true" />

</analyzer>

 "jump jumping jumped"In:

 "jump", "jumping", "jumped"Tokenizer to Filter:

 "jump", "jump", "jump"Out:

Hyphenated Words Filter
This filter reconstructs hyphenated words that have been tokenized as two tokens because of a line
break or other intervening whitespace in the field test. If a token ends with a hyphen, it is joined
with the following token and the hyphen is discarded. Note that for this filter to work properly, the
upstream tokenizer must not remove trailing hyphen characters. This filter is generally only useful
at index time.

 solr.HyphenatedWordsFilterFactoryFactory class:

 NoneArguments:

Example:

<analyzer type="index">

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

 <filter class="solr.HyphenatedWordsFilterFactory"/>

</analyzer>

 "A hyphen- ated word"In:

 "A", "hyphen-", "ated", "word"Tokenizer to Filter:

 "A", "hyphenated", "word"Out:

ICU Folding Filter
This filter is a custom Unicode normalization form that applies the foldings specified in Unicode

 in addition to the normalization form as described in Technical Report 30 NFKC_Casefold ICU
. This filter is a better substitute for the combined behavior of the Normalizer 2 Filter ASCII Folding

, , and .Filter Lower Case Filter ICU Normalizer 2 Filter

http://www.unicode.org/reports/tr30/tr30-4.html
http://www.unicode.org/reports/tr30/tr30-4.html

Solr Reference Guide Jan 10, 2012

Page of 106 397

To use this filter, see for instructions on which jarssolr/contrib/analysis-extras/README.txt

you need to add to your .solr_home/lib

 solr.ICUFoldingFilterFactoryFactory class:

 NoneArguments:

Example:

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.ICUFoldingFilterFactory"/>

</analyzer>

For detailed information on this normalization form, see
.http://www.unicode.org/reports/tr30/tr30-4.html

ICU Normalizer 2 Filter
This filter factory normalizes text according to one of five Unicode Normalization Forms as
described in :Unicode Standard Annex #15

NFC: (name="nfc" mode="compose") Normalization Form C, canonical decomposition
NFD: (name="nfc" mode="decompose") Normalization Form D, canonical decomposition,
followed by canonical composition
NFKC: (name="nfkc" mode="compose") Normalization Form KC, compatibility decomposition
NFKD: (name="nfkc" mode="decompose") Normalization Form KD, compatibility
decomposition, followed by canonical composition
NFKC_Casefold: (name="nfkc_cf" mode="compose") Normalization Form KC, with additional
Unicode case folding. Using the ICU Normalizer 2 Filter is a better-performing substitution for
the and NFKC normalization.Lower Case Filter

 solr.ICUNormalizer2FilterFactoryFactory class:

Arguments:

name: (string) The name of the normalization form; , , , , nfc nfd nfkc nfkd nfkc_cf

mode: (string) The mode of Unicode character composition and decomposition; or compose

decompose

Example:

http://www.unicode.org/reports/tr30/tr30-4.html
http://unicode.org/reports/tr15/

Solr Reference Guide Jan 10, 2012

Page of 107 397

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.ICUNormalizer2FilterFactory"/>

</analyzer>

For detailed information about these Unicode Normalization Forms, see
.http://unicode.org/reports/tr15/

To use this filter, see for instructions on which jarssolr/contrib/analysis-extras/README.txt

you need to add to your .solr_home/lib

ICU Transform Filter
This filter applies to text. This filter supports only ICU System Transforms. CustomICU Tranforms
rule sets are not supported.

 solr.ICUTransformFilterFactoryFactory class:

Arguments:

id: (string) The identifier for the ICU System Transform you wish to apply with this filter. For a full
list of ICU System Transforms, see

.http://demo.icu-project.org/icu-bin/translit?TEMPLATE_FILE=data/translit_rule_main.html

Example:

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.ICUTransformFilterFactory" id="Traditional-Simplified"/>

</analyzer>

For detailed information about ICU Transforms, see
.http://userguide.icu-project.org/transforms/general

To use this filter, see for instructions on which jarssolr/contrib/analysis-extras/README.txt

you need to add to your .solr_home/lib

Keep Words Filter
This filter discards all tokens except those that are listed in the given word list. This is the inverse
of the Stop Words Filter. This filter can be useful for building specialized indices for a constrained
set of terms.

 solr.KeepWordFilterFactoryFactory class:

http://unicode.org/reports/tr15/
http://userguide.icu-project.org/transforms/general
http://demo.icu-project.org/icu-bin/translit?TEMPLATE_FILE=data/translit_rule_main.html
http://userguide.icu-project.org/transforms/general

Solr Reference Guide Jan 10, 2012

Page of 108 397

Arguments:

: (required) Path of a text file containing the list of keep words, one per line. Blank lines andwords

lines that begin with "#" are ignored. This may be an absolute path, or a simple filename in the
Solr config directory.

: (true/false) If then comparisons are done case-insensitively. If this argument isignoreCase true
true, then the words file is assumed to contain only lowercase words. The default is .false

Example:

Where contains:keepwords.txt

happy

funny

silly

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.KeepWordFilterFactory" words="keepwords.txt"/>

</analyzer>

 "Happy, sad or funny"In:

 "Happy", "sad", "or", "funny"Tokenizer to Filter:

 "funny"Out:

Example:

Same , case insensitive:keepwords.txt

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.KeepWordFilterFactory" words="keepwords.txt" ignoreCase="true"/>

</analyzer>

 "Happy, sad or funny"In:

 "Happy", "sad", "or", "funny"Tokenizer to Filter:

 "Happy", "funny"Out:

Example:

Solr Reference Guide Jan 10, 2012

Page of 109 397

Using LowerCaseFilterFactory before filtering for keep words, no flag.ignoreCase

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.LowerCaseFilterFactory"/>

 <filter class="solr.KeepWordFilterFactory" words="keepwords.txt"/>

</analyzer>

 "Happy, sad or funny"In:

 "Happy", "sad", "or", "funny"Tokenizer to Filter:

 "happy", "sad", "or", "funny"Filter to Filter:

 "happy", "funny"Out:

KStem Filter
KStem is an alternative to the Porter Stem Filter for developers looking for a less aggressive
stemmer. KStem was written by Bob Krovetz, ported to Lucene by Sergio Guzman-Lara (UMASS
Amherst). This stemmer is only appropriate for English language text.

 solr.KStemFilterFactoryFactory class:

 NoneArguments:

Example:

<analyzer type="index">

 <tokenizer class="solr.StandardTokenizerFactory "/>

 <filter class="solr.KStemFilterFactory"/>

</analyzer>

 "jump jumping jumped"In:

 "jump", "jumping", "jumped"Tokenizer to Filter:

 "jump", "jump", "jump"Out:

Length Filter
This filter passes tokens whose length falls within the min/max limit specified. All other tokens are
discarded.

 solr.LengthFilterFactoryFactory class:

Solr Reference Guide Jan 10, 2012

Page of 110 397

Arguments:

: (integer, required) Minimum token length. Tokens shorter than this are discarded.min

: (integer, required, must be >= min) Maximum token length. Tokens longer than this aremax

discarded.

Example:

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.LengthFilterFactory" min="3" max="7"/>

</analyzer>

 "turn right at Albuquerque"In:

 "turn", "right", "at", "Albuquerque"Tokenizer to Filter:

 "turn", "right"Out:

Lower Case Filter
Converts any uppercase letters in a token to the equivalent lowercase token. All other characters
are left unchanged.

 solr.LowerCaseFilterFactoryFactory class:

 NoneArguments:

Example:

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.LowerCaseFilterFactory"/>

</analyzer>

 "Down With CamelCase"In:

 "Down", "With", "CamelCase"Tokenizer to Filter:

 "down", "with", "camelcase"Out:

N-Gram Filter
Generates n-gram tokens of sizes in the given range.

 solr.NGramFilterFactoryFactory class:

Solr Reference Guide Jan 10, 2012

Page of 111 397

Arguments:

: (integer, default 1) The minimum gram size.minGramSize

: (integer, default 2) The maximum gram size.maxGramSize

Example:

Default behavior.

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.NGramFilterFactory"/>

</analyzer>

 "four score"In:

 "four", "score"Tokenizer to Filter:

 "f", "o", "u", "r", "fo", "ou", "ur", "s", "c", "o", "r", "e", "sc", "co", "or", "re"Out:

Example:

A range of 1 to 4.

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.NGramFilterFactory" *minGramSize="1" maxGramSize="4"/>

</analyzer>

 "four score"In:

 "four", "score"Tokenizer to Filter:

 "f", "fo", "fou", "four", "s", "sc", "sco", "scor"Out:

Example:

A range of 3 to 5.

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.NGramFilterFactory" *minGramSize="3" maxGramSize="5"/>

</analyzer>

 "four score"In:

Solr Reference Guide Jan 10, 2012

Page of 112 397

 "four", "score"Tokenizer to Filter:

 "fou", "our", "four", "sco", "cor", "ore", "scor", "core", "score"Out:

Numeric Payload Token Filter
This filter adds a numeric floating point payload value to tokens that match a given type. Refer to
the Javadoc for the class for more information about tokenorg.apache.lucene.analysis.Token

types and payloads.

 solr.NumericPayloadTokenFilterFactoryFactory class:

Arguments:

: (required) A floating point value that will be added to all matching tokens.payload

: (required) A token type name string. Tokens with a matching type name will have theirtypeMatch

payload set to the above floating point value.

Example:

<analyzer>

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

 <filter class="solr.NumericPayloadTokenFilterFactory" payload="0.75"

typeMatch="word"/>

</analyzer>

 "bing bang boom"In:

 "bing", "bang", "boom"Tokenizer to Filter:

 "bing"[0.75], "bang"[0.75], "boom"[0.75]Out:

Pattern Replace Filter
This filter applies a regular expression to each token and, for those that match, substitutes the
given replacement string in place of the matched pattern. Tokens which do not match are passed
though unchanged.

 solr.PatternReplaceFilterFactory class:

Arguments:

: (required) The regular expression to test against each token, as per pattern

.java.util.regex.Pattern

Solr Reference Guide Jan 10, 2012

Page of 113 397

: (required) A string to substitute in place of the matched pattern. This string mayreplacement

contain references to capture groups in the regex pattern. See the Javadoc for
java.util.regex.Matcher.

: ("all" or "first", default "all") Indicates whether all occurrences of the pattern in the tokenreplace

should be replaced, or only the first.

Example:

Simple string replace:

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.PatternReplaceFilter" pattern="cat" replacement="dog"/>

</analyzer>

 "cat concatenate catycat"In:

 "cat", "concatenate", "catycat"Tokenizer to Filter:

 "dog", "condogenate", "dogydog"Out:

Example:

String replacement, first occurrence only:

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.PatternReplaceFilter" pattern="cat" replacement="dog"

*replace="first"/>

</analyzer>

 "cat concatenate catycat"In:

 "cat", "concatenate", "catycat"Tokenizer to Filter:

 "dog", "condogenate", "dogycat"Out:

Example:

More complex pattern with capture group reference in the replacement. Tokens that start with
non-numeric characters and end with digits will have an underscore inserted before the numbers.
Otherwise the token is passed through.

Solr Reference Guide Jan 10, 2012

Page of 114 397

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.PatternReplaceFilter" pattern="(\D+)(\d+)$" replacement="$1_$2"/>

</analyzer>

 "cat foo1234 9987 blah1234foo"In:

 "cat", "foo1234", "9987", "blah1234foo"Tokenizer to Filter:

 "cat", "foo_1234", "9987", "blah1234foo"Out:

Phonetic Filter
This filter creates tokens using one of the phonetic encoding algorithms in the

.language package.org.apache.commons.codec

 solr.PhoneticFilterFactoryFactory class:

Arguments:

: (required) The name of the encoder to use. The encoder name must be one of theencoder

following (case insensitive):

" ", " ", " ", " ", " ", or "DoubleMetaphone Metaphone Soundex RefinedSoundex Caverphone
"ColognePhonetic

: (true/false) If true (the default), then new phonetic tokens are added to the stream.inject

Otherwise, tokens are replaced with the phonetic equivalent. Setting this to false will enable
phonetic matching, but the exact spelling of the target word may not match.

: (integer) The maximum length of the code to be generated by the Metaphone ormaxCodeLength

Double Metaphone encoders.

Example:

Default behavior for DoubleMetaphone encoding.

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.PhoneticFilterFactory" encoder="DoubleMetaphone"/>

</analyzer>

 "four score and twenty"In:

 "four"(1), "score"(2), "and"(3), "twenty"(4)Tokenizer to Filter:

http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/DoubleMetaphone.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/Metaphone.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/Soundex.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/RefinedSoundex.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/Caverphone.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/ColognePhonetic.html

Solr Reference Guide Jan 10, 2012

Page of 115 397

 "four"(1), "FR"(1), "score"(2), "SKR"(2), "and"(3), "ANT"(3), "twenty"(4), "TNT"(4)Out:

The phonetic tokens have a position increment of 0, which indicates that they are at the same
position as the token they were derived from (immediately preceding).

Example:

Discard original token.

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.PhoneticFilterFactory" encoder="DoubleMetaphone"

*inject="false"/>

</analyzer>

 "four score and twenty"In:

 "four"(1), "score"(2), "and"(3), "twenty"(4)Tokenizer to Filter:

 "FR"(1), "SKR"(2), "ANT"(3), "TWNT"(4)Out:

Example:

Default Soundex encoder.

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.PhoneticFilterFactory" *encoder="Soundex"/>

</analyzer>

 "four score and twenty"In:

 "four"(1), "score"(2), "and"(3), "twenty"(4)Tokenizer to Filter:

 "four"(1), "F600"(1), "score"(2), "S600"(2), "and"(3), "A530"(3), "twenty"(4), "T530"(4)Out:

Porter Stem Filter
This filter applies the Porter Stemming Algorithm for English. The results are similar to using the
Snowball Porter Stemmer with the argument. But this stemmer is codedlanguage="English"

directly in Java and is not based on Snowball. Nor does it accept a list of protected words. This
stemmer is only appropriate for English language text.

 solr.PorterStemFilterFactoryFactory class:

 NoneArguments:

Solr Reference Guide Jan 10, 2012

Page of 116 397

Example:

<analyzer type="index">

 <tokenizer class="solr.StandardTokenizerFactory "/>

 <filter class="solr.PorterStemFilterFactory"/>

</analyzer>

 "jump jumping jumped"In:

 "jump", "jumping", "jumped"Tokenizer to Filter:

 "jump", "jump", "jump"Out:

Position Filter Factory
This filter sets the position increment values of all tokens in a token stream except the first, which
retains its original position increment value.

 solr.PositionIncrementFilterFactoryFactory class:

Arguments:

: (integer, default = 0) The position increment value to apply to all tokens in apositionIncrement

token stream except the first.

Example:

<analyzer>

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

 <filter class="solr.PositionFilterFactory" positionIncrement="1"/>

</analyzer>

 "hello world"In:

 "hello", "world"Tokenizer to Filter:

 "hello" (token position 1), "world" (token position 3)Out:

Remove Duplicates Token Filter
The filter removes duplicate tokens in the stream. Tokens are considered to be duplicates if they
have the same text and position values.

 solr.RemoveDuplicatesTokenFilterFactoryFactory class:

 NoneArguments:

Solr Reference Guide Jan 10, 2012

Page of 117 397

Example:

This is an artificial example that uses the to generate duplicate symbols, which areSynonym Filter
then removed. The file contains the following:testsyns.txt

blurt => foo,fooblort => bar,bar

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.SynonymFilterFactory" synonyms="testsyns.txt"/>

 <filter class="solr.RemoveDuplicatesTokenFilterFactory"/>

</analyzer>

 "blurt blort"In:

 "blurt"(1), "blurt"(2)Tokenizer to Filter:

 "foo"(1), "foo"(1), "bar"(2), "bar"(2)Tokenizer to Filter:

 "foo"(1), "bar"(2)Out:

Reversed Wildcard Filter
This filter reverses tokens to provide faster leading wildcard and prefix queries. Tokens without
wildcards are not reversed.

 solr.ReveresedWildcardFilterFactoryFactory class:

Arguments:

 (boolean) If true, the filter produces both original and reversed tokens at the samewithOriginal

positions. If false, produces only reversed tokens.

 (integer, default = 2) The maximum position of the asterisk wildcard ('*') thatmaxPosAsterisk

triggers the reversal of the query term. Terms with asterisks at positions above this value are not
reversed.

 (integer, default = 1) The maximum position of the question mark wildcard ('?')maxPosQuestion

that triggers the reversal of query term. To reverse only pure suffix queries (queries with a single
leading asterisk), set this to 0 and to 1.maxPosAsterisk

 (float, default = 0.0) An additional parameter that triggers the reversal ifmaxFractionAsterisk

asterisk ('*') position is less than this fraction of the query token length.

 (integer, default = 2) The minimum number of trailing characters in a query tokenminTrailing

after the last wildcard character. For good performance this should be set to a value larger than 1.

Solr Reference Guide Jan 10, 2012

Page of 118 397

Example:

<analyzer type="index">

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

 <filter class="solr.ReversedWildcardFilterFactory" withOriginal="true"

 maxPosAsterisk="2" maxPosQuestion="1" minTrailing="2" maxFractionAsterisk="0"/>

</analyzer>

 "*foo *bar"In:

 "*foo", "*bar"Tokenizer to Filter:

 "oof*", "rab*"Out:

Shingle Filter
This filter constructs shingles, which are token n-grams, from the token stream. It combines runs
of tokens into a single token.

 solr.ShingleFilterFactoryFactory class:

Arguments:

: (integer, must be >= 2, default 2) The maximum number of tokens per shingle.maxShingleSize

: (true/false) If true (the default), then each individual token is also included at itsoutputUnigrams

original position.

Example:

Default behavior.

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.ShingleFilterFactory"/>

</analyzer>

 "To be, or what?"In:

 "To"(1), "be"(2), "or"(3), "what"(4)Tokenizer to Filter:

 "To"(1), "To be"(1), "be"(2), "be or"(2), "or"(3), "or what"(3), "what"(4)Out:

Example:

A shingle size of four, do not include original token.

Solr Reference Guide Jan 10, 2012

Page of 119 397

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.ShingleFilterFactory" maxShingleSize="4" outputUnigrams="false"/>

</analyzer>

 "To be, or not to be."In:

 "To"(1), "be"(2), "or"(3), "not"(4), "to"(5), "be"(6)Tokenizer to Filter:

 "To be"(1), "To be or"(1), "To be or not"(1), "be or"(2), "be or not"(2), "be or not to"(2), "orOut:
not"(3), "or not to"(3), "or not to be"(3), "not to"(4), "not to be"(4), "to be"(5)

Snowball Porter Stemmer Filter
This filter factory instantiates a language-specific stemmer generated by Snowball. Snowball is a
software package that generates pattern-based word stemmers. This type of stemmer is not as
accurate as a table-based stemmer, but is faster and less complex. Table-driven stemmers are
labor intensive to create and maintain and so are typically commercial products.

This release of Solr contains Snowball stemmers for Armenian, Basque, Catalan, Danish, Dutch,
English, Finnish, French, German, Hungarian, Italian, Norwegian, Portuguese, Romanian, Russian,
Spanish, Swedish and Turkish. For more information on Snowball, visit

.http://snowball.tartarus.org/

 solr.SnowballPorterFilterFactoryFactory class:

Arguments:

: (default "English") The name of a language, used to select the appropriate Porterlanguage

stemmer to use. Case is significant. This string is used to select a package name in the
"org.tartarus.snowball.ext" class hierarchy.

: Path of a text file containing a list of protected words, one per line. Protected wordsprotected

will not be stemmed. Blank lines and lines that begin with "#" are ignored. This may be an
absolute path, or a simple file name in the Solr config directory.

Example:

Default behavior:

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.SnowballPorterFilterFactory"/>

</analyzer>

http://snowball.tartarus.org/

Solr Reference Guide Jan 10, 2012

Page of 120 397

 "flip flipped flipping"In:

 "flip", "flipped", "flipping"Tokenizer to Filter:

 "flip", "flip", "flip"Out:

Example:

French stemmer, English words:

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.SnowballPorterFilterFactory" language="French"/>

</analyzer>

 "flip flipped flipping"In:

 "flip", "flipped", "flipping"Tokenizer to Filter:

 "flip", "flipped", "flipping"Out:

Example:

Spanish stemmer, Spanish words:

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.SnowballPorterFilterFactory" language="Spanish"/>

</analyzer>

 "cante canta"In:

 "cante", "canta"Tokenizer to Filter:

 "cant", "cant"Out:

Standard Filter
This filter removes dots from acronyms and the substring "'s" from the end of tokens. This filter
depends on the tokens being tagged with the appropriate term-type to recognize acronyms and
words with apostrophes.

 solr.StandardFilterFactoryFactory class:

 NoneArguments:

Example:

Solr Reference Guide Jan 10, 2012

Page of 121 397

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.StandardFilterFactory"/>

</analyzer>

 "Bob's I.O.U."In:

 "Bob's", "I.O.U."Tokenizer to Filter:

 "Bob". "IOU"Out:

Stop Filter
This filter discards, or analysis of, tokens that are on the given stop words list. A standardstops
stop words list is included in the Solr config directory, named stopwords.txt, which is appropriate
for typical English language text.

 solr.StopFilterFactoryFactory class:

Arguments:

: (optional) The path of a file that contains a list of stop words, one per line. Blank lines andwords

lines that begin with "#" are ignored. This may be an absolute path, or path relative to the Solr
config directory.

: (true/false, default false) Ignore case when testing for stop words. If true, the stopignoreCase

list should contain lowercase words.

: (true/false, default false) When true, if a token is stoppedenablePositionIncrements

(discarded) then the position of the following token is incremented.

Example:

Case-sensitive matching, capitalized words not stopped. Token positions skip stopped words.

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.StopFilterFactory" words="stopwords.txt"/>

</analyzer>

 "To be or what?"In:

 "To"(1), "be"(2), "or"(3), "what"(4)Tokenizer to Filter:

 "To"(1), "what"(2)Out:

Solr Reference Guide Jan 10, 2012

Page of 122 397

Example:

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.StopFilterFactory" words="stopwords.txt" ignoreCase="true"/>

</analyzer>

 "To be or what?"In:

 "To"(1), "be"(2), "or"(3), "what"(4)Tokenizer to Filter:

 "what"(1)Out:

Example:

Position increment enabled, original positions retained. No tokens at positions of stopped words.

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.StopFilterFactory" words="stopwords.txt" ignoreCase="true"

enablePositionIncrements="true"/>

</analyzer>

 "You are a star"In:

 "You"(1), "are"(2), "a"(3), "star"(4)Tokenizer to Filter:

 "You"(1), "star"(4)Out:

Synonym Filter
This filter does synonym mapping. Each token is looked up in the list of synonyms and if a match is
found, then the synonym is emitted in place of the token. The position value of the new tokens are
set such they all occur at the same position as the original token.

 solr.SynonymFilterFactoryFactory class:

Arguments:

: (required) The path of a file that contains a list of synonyms, one per line. Blank linessynonyms

and lines that begin with "#" are ignored. This may be an absolute path, or path relative to the
Solr config directory.There are two ways to specify synonym :mappings

A comma-separated list of words. If the token matches any of the words, then all the words
in the list are substituted, which will include the original token.

Solr Reference Guide Jan 10, 2012

Page of 123 397

Two comma-separated lists of words with the symbol "=>" between them. If the token
matches any word on the left, then the list on the right is substituted. The original token will
not be included unless it is also in the list on the right.

For the following examples, assume the following file:synonyms.txt

couch,sofa,divan

teh => the

huge,ginormous,humungous => large

small => tiny,teeny,weeny

Example:

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.SynonymFilterFactory" synonyms="mysynonyms.txt"/>

</analyzer>

 "teh small couch"In:

 "teh"(1), "small"(2), "couch"(3)Tokenizer to Filter:

 "the"(1), "tiny"(2), "teeny"(2), "weeny"(2), "couch"(3), "sofa"(3), "divan"(3)Out:

Example:

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory "/>

 <filter class="solr.SynonymFilterFactory" synonyms="mysynonyms.txt"/>

</analyzer>

 "teh ginormous, humungous sofa"In:

 "teh"(1), "ginormous"(2), "humungous"(3), "sofa"(4)Tokenizer to Filter:

 "the"(1), "large"(2), "large"(3), "couch"(4), "sofa"(4), "divan"(4)Out:

Token Offset Payload Filter
This filter adds the numeric character offsets of the token as a payload value for that token.

 solr.TokenOffsetPayloadTokenFilterFactoryFactory class:

 NoneArguments:

Example:

Solr Reference Guide Jan 10, 2012

Page of 124 397

<analyzer>

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

 <filter class="solr.TokenOffsetPayloadTokenFilterFactory"/>

</analyzer>

 "bing bang boom"In:

 "bing", "bang", "boom"Tokenizer to Filter:

 "bing"[0,4], "bang"[5,9], "boom"[10,14]Out:

Trim Filter
This filter trims leading and/or trailing whitespace from tokens. Most tokenizers break tokens at
whitespace, so this filter is most often used for special situations.

 solr.TrimFilterFactoryFactory class:

Arguments:

: (true/false, default false) If true, the token's start/end offsets are adjusted toupdateOffsets

account for any whitespace that was removed.

Example:

The PatternTokenizerFactory configuration used here splits the input on simple commas, it does not
remove whitespace.

<analyzer>

 <tokenizer class="solr.PatternTokenizerFactory" pattern=","/>

 <filter class="solr.TrimFilterFactory"/>

</analyzer>

 "one, two , three ,four "In:

 "one", " two ", " three ", "four "Tokenizer to Filter:

 "one", "two", "three", "four"Out:

Type As Payload Filter
This filter adds the token's type, as an encoded byte sequence, as its payload.

 solr.TypeAsPayloadTokenFilterFactoryFactory class:

 NoneArguments:

Solr Reference Guide Jan 10, 2012

Page of 125 397

Example:

<analyzer>

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

 <filter class="solr.TypeAsPayloadTokenFilterFactory"/>

</analyzer>

 "Pay Bob's I.O.U."In:

 "Pay", "Bob's", "I.O.U."Tokenizer to Filter:

 "Pay"[<ALPHANUM>], "Bob's"[<APOSTROPHE>], "I.O.U."[<ACRONYM>]Out:

Word Delimiter Filter
This filter splits tokens at word delimiters. The rules for determining delimiters are determined as
follows:

A change in case within a word: "CamelCase" "Camel", "Case"This can be disabled by->
setting splitOnCaseChange="0" (see below).

A transition from alpha to numeric characters or vice versa:"Gonzo5000" > "Gonzo",
 "4500", "XL" This can be disabled by setting splitOnNumerics ="0"."5000""4500XL" >

Non-alphanumeric characters (discarded): "hot-spot" "hot", "spot"->

A trailing "'s" is removed: "O'Reilly's" "O", "Reilly"->

Any leading or trailing delimiters are discarded: "- "hot", "spot"hot-spot" >

 solr.WordDelimiterFilterFactoryFactory class:

Arguments:

: (integer, default 1) If non-zero, splits words at delimiters. ForgenerateWordParts

example:"CamelCase", "hot-spot" "Camel", "Case", "hot", "spot"->

: (integer, default 1) If non-zero, splits numeric strings atgenerateNumberParts

delimiters:"1947-32" "1947", "32"->

: (integer, default 1) If 0, words are not split on camel-casesplitOnCaseChange

changes:"BugBlaster-XL" "BugBlaster", "XL"Example 1 below illustrates the default (non-zero)->
splitting behavior.

: (integer, default 1) If 0, don't split words on transitions from alpha tosplitOnNumerics

numeric:"FemBot3000" "Fem", "Bot3000"->

Solr Reference Guide Jan 10, 2012

Page of 126 397

: (integer, default 0) If non-zero, maximal runs of word parts will be joined:catenateWords

"hot-spot-sensor's" "hotspotsensor"->

: (integer, default 0) If non-zero, maximal runs of number parts will be joined:catenateNumbers

1947-32" "194732"->

: (0/1, default 0) If non-zero, runs of word and number parts will be joined:catenateAll

"Zap-Master-9000" "ZapMaster9000"->

: (integer, default 0) If non-zero, the original token is preserved:preserveOriginal

"Zap-Master-9000" "Zap-Master-9000", "Zap", "Master", "9000"->

: (optional) The pathname of a file that contains a list of protected words that should beprotected

passed though without splitting.

: (integer, default 1) If 1, strips the possessive "'s" from each subword.stemEnglishPossessive

Example:

Default behavior. The whitespace tokenizer is used here to preserve non-alphanumeric characters.

<analyzer>

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

 <filter class="solr.WordDelimiterFilterFactory"/>

</analyzer>

 "hot-spot RoboBlaster/9000 100XL"In:

 "hot-spot", "RoboBlaster/9000", "100XL"Tokenizer to Filter:

 "hot", "spot", "Robo", "Blaster", "9000", "100", "XL"Out:

Example:

Do not split on case changes, and do not generate number parts. Note that by not generating
number parts, tokens containing only numeric parts are ultimately discarded.

<analyzer>

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

 <filter class="solr.WordDelimiterFilterFactory" generateNumberParts="0"

splitOnCaseChange="0"/>

</analyzer>

 "hot-spot RoboBlaster/9000 100-42"In:

 "hot-spot", "RoboBlaster/9000", "100-42"Tokenizer to Filter:

Solr Reference Guide Jan 10, 2012

Page of 127 397

 "hot", "spot", "RoboBlaster", "9000"Out:

Example:

Concatenate word parts and number parts, but not word and number parts that occur in the same
token.

<analyzer>

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

 <filter class="solr.WordDelimiterFilterFactory" catenateWords="1"

catenateNumbers="1"/>

</analyzer>

 "hot-spot 100+42 XL40"In:

 "hot-spot"(1), "100+42"(2), "XL40"(3)Tokenizer to Filter:

 "hot"(1), "spot"(2), "hotspot"(2), "100"(3), "42"(4), "10042"(4), "XL"(5), "40"(6)Out:

Example:

Concatenate all. Word and/or number parts are joined together.

<analyzer>

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

 <filter class="solr.WordDelimiterFilterFactory" catenateAll="1"/>

</analyzer>

 "XL-4000/ES"In:

 "XL-4000/ES"(1)Tokenizer to Filter:

 "XL"(1), "4000"(2), "ES"(3), "XL4000ES"(3)Out:

Example:

Using a protected words list that contains "AstroBlaster" and "XL-5000" (among others).

<analyzer>

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

 <filter class="solr.WordDelimiterFilterFactory" protected="protwords.txt"/>

</analyzer>

 "FooBar AstroBlaster XL-5000 ==ES-34-"In:

 "FooBar", "AstroBlaster", "XL-5000", "==ES-34-"Tokenizer to Filter:

Solr Reference Guide Jan 10, 2012

Page of 128 397

 "FooBar", "FooBar", "AstroBlaster", "XL-5000", "ES", "34"Out:

Solr Reference Guide Jan 10, 2012

Page of 129 397

CharFilterFactories
Char Filter is a component that pre-processes input characters. Char Filters can be chained like
Token Filters and placed in front of a Tokenizer. can add, change, or removeChar Filters
characters without worrying about fault of Token offsets.

For more information about Solr's Char Filters, see
.http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

solr.MappingCharFilterFactory
This filter creates , which can be used fororg.apache.lucene.analysis.MappingCharFilter

changing one character to another (for example, for normalizing é to e.)

solr.HTMLStripCharFilterFactory
This filter creates . org.apache.solr.analysis.HTMLStripCharFilter HTMLStripCharFilter

strips HTML from the input stream and passes the result to either CharFilter or Tokenizer.

This filter:

Removes HTML/XML tags while preserving other content.
Removes attributes within tags and supports optional attribute quoting.
Removes XML processing instructions, such as: <?foo bar?>
Removes XML comments.
Removes XML elements starting with <! and ending with >
Removes contents of <script> and <style> elements.
Handles XML comments inside these elements (normal comment processing will not always
work).
Replaces numeric character entities references like ; or ;.A

The terminating ';' is optional if the entity reference is followed by whitespace.
Replaces all named character entity references.

; is replaced with a space instead of 0xa0.

The terminating ';' is mandatory to avoid false matches on something like "Alpha&Omega
Corp"

The input need not be an HTML document. The filter removes only constructs that look like
HTML. If the input doesn't include anything that looks like HTML, the filter won't remove
any input.

The table below presents examples of HTML stripping.

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Solr Reference Guide Jan 10, 2012

Page of 130 397

Input Output

my link my link

<?xml?>
hello<!--comment--> hello

hello<script><-- f('<--internal--></script>'); --></script> hello

if a<b then print a; if a<b then print a;

hello <td height=22 nowrap align="left"> hello

a<b A Alpha&Omega a<b A Alpha&Omega Ω

solrPatternReplaceCharFilterFactory
This filter uses to replace or change character patterns.regular expressions

You can configure this filter in like this:schema.xml

<fieldType name="textCharNorm" class="solr.TextField" positionIncrementGap="100" >

 <analyzer>

 <charFilter class="solr.PatternReplaceCharFilterFactory"

 pattern="([nN][oO]\.)\s*(\d+)"

 replaceWith="$1$2"/>

 <charFilter class="solr.MappingCharFilterFactory"

mapping="mapping-ISOLatin1Accent.txt"/>

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

 </analyzer>

</fieldType>

The table below presents examples of regex-based pattern replacement:

Input pattern replaceWith Output Description

see-ing looking (\w+)(ing) 1 see-ing look Removes "ing" from the
end of word.

see-ing looking (\w+)ing 1 see-ing look Same as above. 2nd
parentheses can be
omitted.

http://www.regular-expressions.info/reference.html

Solr Reference Guide Jan 10, 2012

Page of 131 397

No.1 NO. no.
543

[nN][oO]

\.\s*(\d+)

{ },1# #1 NO. #543 Example of literal. Do
not forget to set a
non-period

 whenblockDelimiter

using periods in
patterns.

abc=1234=5678 (\w+)=(\d+)=(\d+) 3,{ },1,{= =

},2
5678=abc=1234 Change the order of the

groups.

Solr Reference Guide Jan 10, 2012

Page of 132 397

Language Analysis
This section contains information about tokenizers and filters related to character set conversion or
for use with specific languages. For the European languages, tokenization is fairly straightforward.
Tokens are delimited by whitespace and/or a relatively small set of punctuation characters. In
other languages the tokenization rules are often not so simple. Some European languages may
require special tokenization rules as well, such as rules for decompounding German words.

For information about language detection at index time, see .Detecting Languages During Indexing
For more information about Solr's Language Analysis capabilities, see

.http://wiki.apache.org/solr/LanguageAnalysis

http://wiki.apache.org/solr/LanguageAnalysis

Solr Reference Guide Jan 10, 2012

Page of 133 397

Topics discussed in this section:

KeyWordMarkerFilterFactory
StemmerOverrideFilterFactory
Dictionary Compound Word Token Filter
Unicode Collation
ISO Latin Accent Filter
Arabic
Brazilian Portuguese
Bulgarian
Chinese
Simplified Chinese
CJK
Czech
Dutch
Finnish
French
Galician
German
Greek
Hindi
Indonesian
Italian
Lao, Myanmar, Khmer
Latvian
Persian
Polish
Portuguese
Russian
Spanish
Swedish
Thai
Turkish

KeyWordMarkerFilterFactory
Protects words from being modified by stemmers. A customized protected word list may be
specified with the "protected" attribute in the schema. Any words in the protected word list will not
be modified by any stemmer in Solr.

Solr Reference Guide Jan 10, 2012

Page of 134 397

A sample Solr with comments can be found in the directory:protwords.txt /solr/conf/

<fieldtype name="myfieldtype" class="solr.TextField">

 <analyzer>

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

 <filter class="solr.KeywordMarkerFilterFactory" protected="protwords.txt" />

 <filter class="solr.PorterStemFilterFactory" />

 </analyzer>

</fieldtype>

StemmerOverrideFilterFactory
Overrides stemming algorithms by applying a custom mapping, then protecting these terms from
being modified by stemmers.

A customized mapping of words to stems, in a tab-separated file, can be specified to the
"dictionary" attribute in the schema. Words in this mapping will be stemmed to the stems from the
file, and will not be further changed by any stemmer.

A sample with comments can be found in the Source Repository.stemdict.txt

<fieldtype name="myfieldtype" class="solr.TextField">

 <analyzer>

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

 <filter class="solr.StemmerOverrideFilterFactory" dictionary="stemdict.txt" />

 <filter class="solr.PorterStemFilterFactory" />

 </analyzer>

</fieldtype>

Dictionary Compound Word Token Filter
This filter splits, or , compound words into individual words using a dictionary of thedecompounds
component words. Each input token is passed through unchanged. If it can also be decompounded
into subwords, each subword is also added to the stream at the same logical position.

Compound words are most commonly found in Germanic languages.

 solr.DictionaryCompoundWordTokenFilterFactoryFactory class:

Arguments:

: (required) The path of a file that contains a list of simple words, one per line. Blankdictionary

lines and lines that begin with "#" are ignored. This path may be an absolute path, or path relative
to the Solr config directory.

http://svn.apache.org/repos/asf/lucene/dev/trunk/solr/core/src/test-files/solr/conf/stemdict.txt

Solr Reference Guide Jan 10, 2012

Page of 135 397

: (integer, default 5) Any token shorter than this is not decompounded.minWordSize

: (integer, default 2) Subwords shorter than this are not emitted as tokens.minSubwordSize

: (integer, default 15) Subwords longer than this are not emitted as tokens.maxSubwordSize

: (true/false) If true (the default), only the longest matching subwords willonlyLongestMatch

generate new tokens.

Example:

Assume that contains at least the following words:germanwords.txt

dummkopfdonaudampfschiff

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.DictionaryCompoundWordTokenFilterFactory"

dictionary="germanwords.txt"/>

</analyzer>

 "Donaudampfschiff dummkopf"In:

 "Donaudampfschiff"(1), "dummkopf"(2),Tokenizer to Filter:

 "Donaudampfschiff"(1), "Donau"(1), "dampf"(1), "schiff"(1), "dummkopf"(2), "dumm"(2),Out:
"kopf"(2)

Unicode Collation
Unicode Collation is a language-sensitive method of sorting text that also be used for advanced
search purposes.

Unicode Collation in Solr is fast, because all the work is done at index time. It uses a
 to create a sort field, followed by . The KeywordTokenizerFactory CollationKeyFilterFactory

 adds "sort keys" to the field at index time, so that at queryCollationKeyFilterFactory sort

time you can sort on the field and your results comes back in collated order.sort

Sorting Text for a Specific Language
In this example, text is sorted according to the default German rules provided by Java. The rules
for sorting German in Java are defined in a package called a Java Locale.

Solr Reference Guide Jan 10, 2012

Page of 136 397

Locales are typically defined as a combination of language and country, but you can specify just
the language if you want. For example, if you specify "de" as the language, you will get sorting
that works well for German language. If you specify "de" as the language and "CH" as the country,
you will get German sorting specifically tailored for Switzerland.

You can see a list of supported Locales .here

<!-- define a field type for German collation -->

<fieldType name="collatedGERMAN" class="solr.TextField">

 <analyzer>

 <tokenizer class="solr.KeywordTokenizerFactory"/>

 <filter class="solr.CollationKeyFilterFactory"

 language="de"

 strength="primary"

 />

 </analyzer>

</fieldType>

...

<!-- define a field to store the German collated manufacturer names -->

<field name="manuGERMAN" type="collatedGERMAN" indexed="true" stored="false" />

...

<!-- copy the text to this field. we could create French, English, Spanish versions

too,

 and sort differently for different users! --

<copyField source="manu" dest="manuGERMAN"/>

In the example above, we defined the strength as "primary". The strength of the collation
determines how strict the sort order will be, but it also depends upon the language. For example,
in English, "primary" strength ignores differences in case and accents.

For more information, see the .Collator javadocs

Sorting Text for Multiple Languages
There are two approaches to supporting multiple languages: if there is a small list of languages you
wish to support, consider defining collated fields for each language and using . However,copyField

adding a large number of sort fields can increase disk and indexing costs. An alternative approach
is to use the Unicode collator.default

The Unicode or locale has rules that are designed to work well for most languages.default ROOT

To use the locale, simply define the language as the empty string. This Unicode defaultdefault

sort is still significantly more advanced than the standard Solr sort.

http://java.sun.com/j2se/1.5.0/docs/guide/intl/locale.doc.html#util-text
http://java.sun.com/j2se/1.5.0/docs/api/java/text/Collator.html

Solr Reference Guide Jan 10, 2012

Page of 137 397

<fieldType name="collatedROOT" class="solr.TextField">

 <analyzer>

 <tokenizer class="solr.KeywordTokenizerFactory"/>

 <filter class="solr.CollationKeyFilterFactory"

 language=""

 strength="primary"

 />

 </analyzer>

</fieldType>

Sorting Text with Custom Rules
You can define your own set of sorting rules. Its easiest to take existing rules that are close to
what you want and customize them.

In the example below, we create a custom rule set for German called DIN 5007-2. This rule set
treats umlauts in German differently: it treats ö as equivalent to oe. For more information, see the

.RuleBasedCollator javadocs

This example shows how to create a custom rule set and dump it to a file:

// get the default rules for Germany

// these are called DIN 5007-1 sorting

RuleBasedCollator baseCollator = (RuleBasedCollator) Collator.getInstance(new

Locale("de", "DE"));

// define some tailorings, to make it DIN 5007-2 sorting.

// For example, this makes ö equivalent to oe

String DIN5007_2_tailorings =

"& ae , a\u0308 & AE , A\u0308"+

"& oe , o\u0308 & OE , O\u0308"+

"& ue , u\u0308 & UE , u\u0308";

// concatenate the default rules to the tailorings, and dump it to a String

RuleBasedCollator tailoredCollator = new RuleBasedCollator(baseCollator.getRules() +

DIN5007_2_tailorings);

String tailoredRules = tailoredCollator.getRules();

// write these to a file, be sure to use UTF-8 encoding!!!

IOUtils.write(tailoredRules, new FileOutputStream("/solr_home/conf/customRules.dat"),

"UTF-8");

This rule set can now be used for custom collation in Solr:

http://java.sun.com/j2se/1.5.0/docs/api/java/text/RuleBasedCollator.html

Solr Reference Guide Jan 10, 2012

Page of 138 397

<fieldType name="collatedCUSTOM" class="solr.TextField">

 <analyzer>

 <tokenizer class="solr.KeywordTokenizerFactory"/>

 <filter class="solr.CollationKeyFilterFactory"

 custom="customRules.dat"

 strength="primary"

 />

 </analyzer>

</fieldType>

Searching
Collation can also be used to search on a tokenized field.

In this example, we use the same custom German rules defined above on a tokenized field. As with
stemmers, although the output tokens are nonsense they are the same values and will match for
search purposes.

<fieldType name="collatedCUSTOM" class="solr.TextField">

 <analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.CollationKeyFilterFactory"

 custom="customRules.dat"

 strength="primary"

 />

 </analyzer>

</fieldType>

ICU Collation
For better performance, less memory usage, and support for more locales, you can add the

 contrib and use instead. See the foranalysis-extras ICUCollationKeyFilterFactory javadocs
more information.

The principles of ICU Collation are the same as those of Unicode Collation; you just specify an
RFC3066 language identifier with the locale parameter instead of specifying

.language+country+variant

For example, to get German phonebook sort order:

http://svn.apache.org/repos/asf/lucene/dev/trunk/solr/contrib/analysis-extras/src/java/org/apache/solr/analysis/ICUCollationKeyFilterFactory.java

Solr Reference Guide Jan 10, 2012

Page of 139 397

<fieldType name="collatedICU" class="solr.TextField">

 <analyzer>

 <tokenizer class="solr.KeywordTokenizerFactory"/>

 <filter class="solr.ICUCollationKeyFilterFactory"

 locale="de@collation=phonebook"

 strength="primary"

 />

 </analyzer>

</fieldType>

To use the filter, see ICUCollationKeyFilterFactory

 for instructions on which jars you need to add tosolr/contrib/analysis-extras/README.txt

your .SOLR_HOME/lib

ISO Latin Accent Filter
This filter replaces any accented characters in a token with the unaccented equivalent. This can
increase recall by causing more matches. On the other hand, it can reduce precision because
language-specific character differences may be lost.

Characters in the ISO Latin 1 (ISO-8859-1) character set are recognized and letter case will be
preserved, so that "Â" becomes "A" and "á" becomes "a".

This filter only looks for accented characters, it does not filter out other non-ASCII
characters.

 solr.ISOLatin1AccentFilterFactoryFactory class:

 NoneArguments:

Example:

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.ISOLatin1AccentFilterFactory"/>

</analyzer>

 "Björn Ångström"In:

 "Björn", "Ångström"Tokenizer to Filter:

 "Bjorn", "Angstrom"Out:

Solr Reference Guide Jan 10, 2012

Page of 140 397

Arabic
Solr provides support for the (PDF) stemming algorithm, and Lucene includes an exampleLight-10
stopword list.

This algorithm defines both character normalization and stemming, so these are split into two
filters to provide more flexibility.

 solr.ArabicStemFilterFactory, solr.ArabicNormalizationFilterFactoryFactory classes:

 NoneArguments:

Example:

<analyzer>

 <filter class="solr.ArabicNormalizationFilterFactory"/>

 <filter class="solr.ArabicStemFilterFactory"/>

</analyzer>

:Inلوتقم

:Tokenizer to Filterلوتق ,لتق

:Outلتق لتق

Brazilian Portuguese
This is a Java filter written specifically for stemming the Brazilian dialect of the Portuguese
language. It uses the Lucene class .org.apache.lucene.analysis.br.BrazilianStemmer

Although that stemmer can be configured to use a list of protected words (which should not be
stemmed), this factory does not accept any arguments to specify such a list.

 solr.BrazilianStemFilterFactoryFactory class:

 NoneArguments:

Example:

<analyzer type="index">

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.BrazilianStemFilterFactory"/>

</analyzer>

 "praia praias"In:

 "praia", "praias"Tokenizer to Filter:

http://www.mtholyoke.edu/~lballest/Pubs/arab_stem05.pdf

Solr Reference Guide Jan 10, 2012

Page of 141 397

 "pra", "pra"Out:

Bulgarian
Solr includes a light stemmer for Bulgarian, following (PDF), and Lucene includes anthis algorithm
example stopword list.

 solr.BulgarianStemFilterFactoryFactory class:

 NoneArguments:

Example:

<analyzer>

 <filter class="solr.LowerCaseFilterFactory"/>

 <filter class="solr.BulgarianStemFilterFactory"/>

</analyzer>

 "вания ване ването"In:

 "вания", "ване", "ването"Tokenizer to Filter:

 "ван", "ван", "ван"Out:

Chinese

Chinese Tokenizer
The Chinese Tokenizer is deprecated as of Solr 3.4. Use the solr.StandardTokenizerFactory
instead.

 solr.ChineseTokenizerFactoryFactory class:

 NoneArguments:

Example:

<analyzer type="index">

 <tokenizer class="solr.ChineseTokenizerFactory"/>

</analyzer>

 "你好，我不讲中文"In:

 "你", "好", "我", "不", "讲", "中", "文"Out:

Chinese Filter Factory

http://members.unine.ch/jacques.savoy/Papers/BUIR.pdf

Solr Reference Guide Jan 10, 2012

Page of 142 397

The Chinese Filter Factory is deprecated as of Solr 3.4. Use the instead.solr.StopFilterFactory

 solr.ChineseFilterFactoryFactory class:

 NoneArguments:

Example:

<analyzer type="index">

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.ChineseFilterFactory"/>

</analyzer>

 "你好, and 我不讲中文"In:

 "你", "好", "and", "我", "不", "讲", "中", "文"Tokenizer to Filter:

"你", "好", "我", "不", "讲", "中", "文"Out:

Simplified Chinese
For Simplified Chinese, Solr provides support for Chinese sentence and word segmentation with the

 and solr.SmartChineseSentenceTokenFilterFactory

 in the contrib module. Thissolr.SmartChineseWordTokenFilterFactory analysis-extras

component includes a large dictionary and segments Chinese text into words with the Hidden
Markov Model. To use this filter, see for instructionssolr/contrib/analysis-extras/README.txt

on which jars you need to add to your .solr_home/lib

 solr.SmartChineseWordTokenFilterFactoryFactory class:

 NoneArguments:

Examples:

To use the default setup with fallback to English Porter stemmer for english words, use:

<analyzer class="org.apache.lucene.analysis.cn.smart.SmartChineseAnalyzer"/>

Or to configure your own analysis setup, use the alongSmartChineseSentenceTokenizerFactory

with your custom filter setup. The sentence tokenizer tokenizes on sentence boundaries and the
 breaks this further up into words.SmartChineseWordTokenFilter

Solr Reference Guide Jan 10, 2012

Page of 143 397

<analyzer>

 <tokenizer class="solr.SmartChineseSentenceTokenizerFactory"/>

 <filter class="solr.SmartChineseWordTokenFilterFactory"/>

 <filter class="solr.LowerCaseFilterFactory"/>

 <filter class="solr.PositionFilterFactory" />

</analyzer>

CJK
This tokenizer breaks Chinese, Japanese and Korean language text into tokens. These are not
whitespace delimited languages. The tokens generated by this tokenizer are "doubles", overlapping
pairs of CJK characters found in the field text.

 solr.CJKTokenizerFactoryFactory class:

 NoneArguments:

Example:

<analyzer type="index">

 <tokenizer class="solr.CJKTokenizerFactory"/>

</analyzer>

 "你好，我不讲中文"In:

 "你好", "我不", "不讲", "讲中", "讲", "中文", ""Out:

Czech
Solr includes a light stemmer for Czech, following , and Lucene includes an examplethis algorithm
stopword list.

 solr.CzechStemFilterFactoryFactory class:

 NoneArguments:

Example:

<analyzer>

 <filter class="solr.LowerCaseFilterFactory"/>

 <filter class="solr.CzechStemFilterFactory"/>

<analyzer>

 "prezidenští, prezidenta, prezidentského"In:

https://dl.acm.org/citation.cfm?id=1598600

Solr Reference Guide Jan 10, 2012

Page of 144 397

 "prezidenští", "prezidenta", "prezidentského"Tokenizer to Filter:

 "preziden", "preziden", "preziden"Out:

Dutch
This is a Java filter written specifically for stemming the Dutch language. It uses the Lucene class

. Although that stemmer can be configured toorg.apache.lucene.analysis.nl.DutchStemmer

use a list of protected words (which should not be stemmed), this factory does not accept any
arguments to specify such a list.

Another option for stemming Dutch words is to use the Snowball Porter Stemmer with an argument
of .language="Dutch"

 solr.DutchStemFilterFactoryFactory class:

 NoneArguments:

Example:

<analyzer type="index">

 <tokenizer class="solr.StandardTokenizerFactory "/>

 <filter class="solr.DutchStemFilterFactory"/>

</analyzer>

 "kanaal kanalen"In:

 "kanaal", "kanalen"Tokenizer to Filter:

 "kanal", "kanal"Out:

Finnish
Solr includes support for stemming Finnish, and Lucene includes an example stopword list.

 solr.FinnishLightStemFilterFactoryFactory class:

 NoneArguments:

Example:

<analyzer type="index">

 <tokenizer class="solr.StandardTokenizerFactory "/>

 <filter class="solr.FinnishLightStemFilterFactory"/>

</analyzer>

Solr Reference Guide Jan 10, 2012

Page of 145 397

 "kala kalat"In:

 "kala", "kalat"Tokenizer to Filter:

 "kala", "kala"Out:

French

Elision Filter
Removes article elisions from a token stream. This filter primarily applies to the French language
and makes use of the ElisionFilter class in .org.apache.lucene.analysis.fr

 solr.ElisionFilterFactoryFactory class:

Arguments:

: (required) The pathname of a file that contains a list of articles, one per line, to bearticles

stripped. Articles are words such as "le", which are commonly abbreviated, such as (thel'avion
plane). This file should include the abbreviated form, which precedes the apostrophe. In this case,
simply " ".l

Example:

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.ElisionFilterFactory"/>

</analyzer>

 "L'histoire d'art"In:

 "L'histoire", "d'art"Tokenizer to Filter:

 "histoire", "art"Out:

French Light Stem Filter
Solr includes three stemmers for French: one in the , asolr.SnowballPorterFilterFactory

lighter stemmer called , and an even less aggressivesolr.FrenchLightStemFilterFactory

stemmer called . Lucene includes an example stopwordsolr.FrenchMinimalStemFilterFactory

list.

 solr.FrenchLightStemFilterFactory, solr.FrenchMinimalStemFilterFactoryFactory classes:

 NoneArguments:

Solr Reference Guide Jan 10, 2012

Page of 146 397

Examples:

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.LowerCaseFilterFactory"/>

 <filter class="solr.ElisionFilterFactory"/>

 <filter class="solr.FrenchLightStemFilterFactory"/>

</analyzer>

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.LowerCaseFilterFactory"/>

 <filter class="solr.ElisionFilterFactory"/>

 <filter class="solr.FrenchMinimalStemFilterFactory"/>

</analyzer>

 "le chat, les chats"In:

 "le", "chat", "les", "chats"Tokenizer to Filter:

 "le", "chat", "le", "chat"Out:

Galician
Solr includes a stemmer for Galician following , and Lucene includes an examplethis algorithm
stopword list.

 solr.GalicianStemFilterFactoryFactory class:

 NoneArguments:

Example:

<analyzer>

 <filter class="solr.LowerCaseFilterFactory"/>

 <filter class="solr.GalicianStemFilterFactory"/>

</analyzer>

 "felizmente Luzes"In:

 "felizmente", "luzes"Tokenizer to Filter:

 "feliz", "luz"Out:

German

http://bvg.udc.es/recursos_lingua/stemming.jsp

Solr Reference Guide Jan 10, 2012

Page of 147 397

Solr includes four stemmers for German: one in the solr.SnowballPorterFilterFactory
, a stemmer called , a lighter stemmer called language="German" solr.GermanStemFilterFactory

, and an even less aggressive stemmer called solr.GermanLightStemFilterFactory

. Lucene includes an example stopword list.solr.GermanMinimalStemFilterFactory

 solr.GermanStemFilterFactory, solr.LightGermanStemFilterFactory,Factory classes:
solr.MinimalGermanStemFilterFactory

 NoneArguments:

Examples:

<analyzer type="index">

 <tokenizer class="solr.StandardTokenizerFactory "/>

 <filter class="solr.GermanStemFilterFactory"/>

</analyzer>

<analyzer type="index">

 <tokenizer class="solr.StandardTokenizerFactory "/>

 <filter class="solr.GermanLightStemFilterFactory"/>

</analyzer>

<analyzer type="index">

 <tokenizer class="solr.StandardTokenizerFactory "/>

 <filter class="solr.GermanMinimalStemFilterFactory"/>

</analyzer>

 "hund hunden"In:

 "hund", "hunden"Tokenizer to Filter:

 "hund", "hund"Out:

Greek
This filter converts uppercase letters in the Greek character set to the equivalent lowercase
character.

 solr.GreekLowerCaseFilterFactoryFactory class:

Arguments:

: (optional, default "UnicodeGreek") Specifies the name of the character set to use. Mustcharset

be "UnicodeGreek", "ISO" or "CP1253".

Solr Reference Guide Jan 10, 2012

Page of 148 397

Use of custom charsets was deprecated in Solr 1.4 and is unsupported in Solr 3.1. If you
need to index text in these encodings, please use Java's character set conversion facilities
(InputStreamReader, and so on.) during I/O, so that Lucene can analyze this text as
Unicode instead.

Example:

<analyzer type="index">

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.GreekLowerCaseFilterFactory"/>

</analyzer>

 "Ελληνική Δημοκρατία Ellīnikī́ Dīmokratía"In:

 "Ελληνική", "Δημοκρατία", "Ellīnikī́", "Dīmokratía"Tokenizer to Filter:

 "ελληνικη", "δημοκρατια", "ellīnikī", "dīmokratía"Out:

Hindi
Solr includes support for stemming Hindi following (PDF), support for commonthis algorithm
spelling differences through the , support for encodingsolr.HindiNormalizationFilterFactory

differences through the following , andsolr.IndicNormalizationFilterFactory this algorithm
Lucene includes an example stopword list.

 solr.IndicNormalizationFilterFactory, solr.HindiNormalizationFilterFactory,Factory classes:
solr.HindiStemFilterFactory

 NoneArguments:

Example:

<filter class="solr.IndicNormalizationFilterFactory"/>

 <filter class="solr.HindiNormalizationFilterFactory"/>

 <filter class="solr.HindiStemFilterFactory"/>

 "बैबहना गुसपेतियोम"In:

 "बैबहन", "गुसपेट"Out:

Indonesian

http://computing.open.ac.uk/Sites/EACLSouthAsia/Papers/p6-Ramanathan.pdf
http://ldc.upenn.edu/myl/IndianScriptsUnicode.html

Solr Reference Guide Jan 10, 2012

Page of 149 397

Solr includes support for stemming Indonesian (Bahasa Indonesia) following (PDF),this algorithm
and Lucene includes an example stopword list.

 solr.IndonesianStemFilterFactoryFactory class:

 NoneArguments:

Example:

<analyzer>

 <filter class="solr.LowerCaseFilterFactory"/>

 <filter class="solr.IndonesianStemFilterFactory" stemDerivational="true" />

</analyzer>

 "sebagai sebagainya"In:

 "sebagai", "sebagainya"Tokenizer to Filter:

 "bagai", "bagai"Out:

Italian
Solr includes two stemmers for Italian: one in the solr.SnowballPorterFilterFactory

, and a lighter stemmer called .language="Italian" solr.ItalianLightStemFilterFactory

Lucene includes an example stopword list.

 solr.ItalianStemFilterFactoryFactory class:

 NoneArguments:

Example:

<analyzer>

 <filter class="solr.LowerCaseFilterFactory"/>

 <filter class="solr.ItalianLightStemFilterFactory"/>

</analyzer>

 "propaga propagare propagamento"In:

 "propaga", "propagare", "propagamento"Tokenizer to Filter:

 "propag", "propag", "propag"Out:

Lao, Myanmar, Khmer

http://www.illc.uva.nl/Publications/ResearchReports/MoL-2003-02.text.pdf

Solr Reference Guide Jan 10, 2012

Page of 150 397

Lucene provides support for segmenting these languages into syllables with the
 in the contrib module. To use this tokenizer, see solr.ICUTokenizerFactory analysis-extras

 instructions on which jars you need to add tosolr/contrib/analysis-extras/README.txt for

your .solr_home/lib

Latvian
Solr includes support for stemming Latvian, and Lucene includes an example stopword list.

 solr.LatvianStemFilterFactoryFactory class:

 NoneArguments:

Example:

<fieldType name="text_lvstem" class="solr.TextField" positionIncrementGap="100">

 <analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.LowerCaseFilterFactory"/>

 <filter class="solr.LatvianStemFilterFactory"/>

 </analyzer>

</fieldType>

 "tirgiem tirgus"In:

 "tirgiem", "tirgus"Tokenizer to Filter:

 "tirg", "tirg"Out:

Persian

Persian Filter Factories
Solr includes support for normalizing Persian, and Lucene includes an example stopword list.

 solr.PersianNormalizationFilterFactoryFactory class:

 NoneArguments:

Example:

<analyzer>

 <filter class="solr.ArabicNormalizationFilterFactory"/>

 <filter class="solr.PersianNormalizationFilterFactory">

</analyzer>

Solr Reference Guide Jan 10, 2012

Page of 151 397

:In"اه‌گرب اه گرب"

:Tokenizer to Filter"اه گرب" ,"اه‌گرب"

:Out"گرب" ,"گرب"

Polish
Lucene provides support for Polish stemming with the insolr.StempelPolishStemFilterFactory

the module. This component includes an algorithmic stemmer withcontrib/analysis-extras

tables for Polish. To use this filter, see forsolr/contrib/analysis-extras/README.txt

instructions on which jars you need to add to your .solr_home/lib

 solr.StempelPolishStemFilterFactoryFactory class:

 NoneArguments:

Example:

<analyzer>

 <filter class="solr.LowerCaseFilterFactory"/>

 <filter class="solr.solr.StempelPolishStemFilterFactory"/>

</analyzer>

 ""studenta studenci"In:

 "studenta", "studenci"Tokenizer to Filter:

 "student", "student"Out:

Portuguese
Solr includes four stemmers for Portuguese: one in the , ansolr.SnowballPorterFilterFactory

alternative stemmer called , a lighter stemmer called solr.PortugueseStemFilterFactory

, and an even less aggressive stemmer called solr.PortugueseLightStemFilterFactory

. Lucene includes an example stopword list.solr.PortugueseMinimalStemFilterFactory

 solr.PortugueseStemFilterFactory, solr.PortugueseLightStemFilterFactory,Factory class:
solr.PortugueseMinimalStemFilterFactory

 NoneArguments:

Example:

Solr Reference Guide Jan 10, 2012

Page of 152 397

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.LowerCaseFilterFactory"/>

 <filter class="solr.PortugueseStemFilterFactory"/>

</analyzer>

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.LowerCaseFilterFactory"/>

 <filter class="solr.PortugueseLightStemFilterFactory"/>

</analyzer>

<analyzer>

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.LowerCaseFilterFactory"/>

 <filter class="solr.PortugueseMinimalStemFilterFactory"/>

</analyzer>

 "praia praias"In:

 "praia", "praias"Tokenizer to Filter:

 "pra", "pra"Out:

Russian

Russian Letter Tokenizer
This tokenizer breaks Russian language text into tokens. It is similar to LetterTokenizer, but
additionally looks up letters in the appropriate Russian character set.

 solr.RussianLetterTokenizerFactoryFactory class:

Arguments:

: (optional, default "UnicodeRussian") The name of the character set to use. Must becharset

"UnicodeRussian", "KOI8" or "CP1251".

Use of custom charsets was deprecated in Solr 1.4 and is unsupported in Solr 3.1. If you
need to index text in these encodings, please use Java's character set conversion facilities
(InputStreamReader, and so on.) during I/O, so that Lucene can analyze this text as
Unicode instead.

Solr Reference Guide Jan 10, 2012

Page of 153 397

Example:

<analyzer type="index">

 <tokenizer class="solr.RussianLetterTokenizerFactory"/>

</analyzer>

 "Здравствулте!. Я не говорю русского."In:

 "Здравствулте", "Я", "не", "говорю", "русского"Out:

Russian Lower Case Filter
This filter converts uppercase letters in the Russian character set to the equivalent lowercase
character.

 solr.RussianLowerCaseFilterFactoryFactory class:

Arguments:

: (optional, default "UnicodeRussian") Specifies the name of the character set to use. Mustcharset

be "UnicodeRussian", "KOI8" or "CP1251".

Use of custom charsets was deprecated in Solr 1.4 and is unsupported in Solr 3.1. If you
need to index text in these encodings, please use Java's character set conversion facilities
(InputStreamReader, and so on.) during I/O, so that Lucene can analyze this text as
Unicode instead.

Example:

<analyzer type="index">

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.RussianLowerCaseFilterFactory"/>

</analyzer>

 "Здравствулте!. Я не говорю русского."In:

 "Здравствулте", "Я", "не", "говорю", "русского"Tokenizer to Filter:

 "здравствулте", "я", "не", "говорю", "русского"Out:

Russian Stem Filter

Solr Reference Guide Jan 10, 2012

Page of 154 397

Solr includes two stemmers for Russian: one in the solr.SnowballPorterFilterFactory
, and a lighter stemmer called .language="Russian" solr.RussianLightStemFilterFactory

Lucene includes an example stopword list.

 solr.RussianLightStemFilterFactoryFactory class:

Arguments:

charset: (optional, default "UnicodeRussian") Specifies the name of the character set to use. Must
be "UnicodeRussian", "KOI8" or "CP1251".

Use of custom charsets was deprecated in Solr 1.4 and is unsupported in Solr 3.4. If you
need to index text in these encodings, please use Java's character set conversion facilities
(InputStreamReader, and so on.) during I/O, so that Lucene can analyze this text as
Unicode instead.

Example:

<analyzer type="index">

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.RussianLowerCaseFilterFactory"/>

 <filter class="solr.RussianLightStemFilterFactory"/>

</analyzer>

 "вал валы"In:

 "вал", "валы"Tokenizer to Filter:

 "вал", "вал"Out:

Spanish
Solr includes two stemmers for Spanish: one in the solr.SnowballPorterFilterFactory

, and a lighter stemmer called .language="Spanish" solr.SpanishLightStemFilterFactory

Lucene includes an example stopword list.

 solr.SpanishStemFilterFactoryFactory class:

 NoneArguments:

Example:

Solr Reference Guide Jan 10, 2012

Page of 155 397

<analyzer>

 <filter class="solr.LowerCaseFilterFactory"/>

 <filter class="solr.SpanishLightStemFilterFactory"/>

</analyzer>

 "torear toreara torearlo"In:

 "torear", "toreara", "torearlo"Tokenizer to Filter:

 "tor", "tor", "tor"Out:

Swedish

Swedish Stem Filter
Solr includes two stemmers for Swedish: one in the solr.SnowballPorterFilterFactory

, and a lighter stemmer called .language="Swedish" solr.SwedishLightStemFilterFactory

Lucene includes an example stopword list.

 solr.SwedishStemFilterFactoryFactory class:

 NoneArguments:

Example:

<analyzer>

 <filter class="solr.LowerCaseFilterFactory"/>

 <filter class="solr.SwedishLightStemFilterFactory"/>

</analyzer>

 "kloke klokhet klokheten"In:

 "kloke", "klokhet", "klokheten"Tokenizer to Filter:

 "klok", "klok", "klok"Out:

Thai
This filter converts sequences of Thai characters into individual Thai words. Unlike European
languages, Thai does not use whitespace to delimit words.

 solr.ThaiWordFilterFactoryFactory class:

 NoneArguments:

Example:

Solr Reference Guide Jan 10, 2012

Page of 156 397

<analyzer type="index">

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.ThaiWordFilterFactory"/>

</analyzer>

 "ช้างสิบสามเชือก"In:

 "ช้างสิบสามเชือก"Tokenizer to Filter:

 "ช้าง", "สิบ", "สาม", "เชือก"Out:

Turkish
Solr includes support for stemming Turkish through the , assolr.SnowballPorterFilterFactory

well as support for case-insensitive search through the ,solr.TurkishLowerCaseFilterFactory

and Lucene includes an example stopword list.

 solr.TurkishLowerCaseFilterFactoryFactory class:

 NoneArguments:

Example:

<filter class="solr.TurkishLowerCaseFilterFactory"/>

 <filter class="solr.SnowballPorterFilterFactory" language="Turkish" />

Solr Reference Guide Jan 10, 2012

Page of 157 397

Running Your Analyzer
Once you've defined a field type in and specified the analysis steps that you wantschema.xml

applied to it, you should test it out to make sure that it behaves the way you expect it to. Luckily,
there is a very handy page in the Solr that lets you do just that. You can invokeadmin interface
the analyzer for any text field, provide sample input, and display the resulting token stream.

For example, assume that the following field type definition has been added to :schema.xml

<fieldType name="mytextfield" class="solr.TextField">

 <analyzer type="index">

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.HyphenatedWordsFilterFactory"/>

 <filter class="solr.LowerCaseFilterFactory"/>

 </analyzer>

 <analyzer type="query">

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.LowerCaseFilterFactory"/>

 </analyzer>

</fieldType>

The objective here (during indexing) is to reconstruct hyphenated words, which may have been
split across lines in the text, then to set all words to lowercase. For queries, you want to skip the
de-hyphenation step.

To test this out, point your browser at the Field Analysis page of the . BySolr Admin Web interface
default, this will be at the following URL (adjust the hostname and/or port to match your
configuration): . You should see a page like this.http://localhost:8983/solr/admin/analysis.jsp

http://localhost:8983/solr/admin/analysis.jsp

Solr Reference Guide Jan 10, 2012

Page of 158 397

Empty Field Analysis screen.

We want to test the field type definition for "mytextfield", defined above. The drop-down labeled
"Field" has two values, "name" and "type". Choosing "type" allows you to give the value of the
name attribute in a definition, "mytextfield" for this example.<fieldType>

You can also select "name" and provide the name of a <field> definition from . A fieldschema.xml

definition refers to a type definition, so this is essentially an indirect way of the selecting the field's
type.

In the "Field Value" box enter some sample text to be processed by the analyzer. The results of
each analysis stage will be displayed when you click the button. Let's test the indexAnalyze
analyzer by providing some sample text. We will leave the query field value empty for now. The
result we expect is that will join the hyphenated pair "Super-" andHyphenatedWordsFilter

"computer" into the single word "Supercomputer", and then will set it toLowerCaseFilter

"supercomputer". Let's see what happens:

Solr Reference Guide Jan 10, 2012

Page of 159 397

Running index-time analyzer, verbose output.

The result is two distinct tokens rather than the one we expected. What went wrong? Looking at
the first token that came out of , we can see the trailing hyphen has beenStandardTokenizer

stripped off of "Super-". Checking the documentation for , we see that it treatsStandardTokenizer

all punctuation characters as delimiters and discards them. What we really want in this case is a
whitespace tokenizer that will preserve the hyphen character when it breaks the text into tokens.

Let's make this change and try again:

Solr Reference Guide Jan 10, 2012

Page of 160 397

<fieldType name="mytextfield" class="solr.TextField">

 <analyzer type="index">

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

 <filter class="solr.HyphenatedWordsFilterFactory"/>

 <filter class="solr.LowerCaseFilterFactory"/>

 </analyzer>

 <analyzer type="query">

 <tokenizer class="solr.StandardTokenizerFactory"/>

 <filter class="solr.LowerCaseFilterFactory"/>

 </analyzer>

</fieldType>

Using WhitespaceTokenizer, expected results.

Solr Reference Guide Jan 10, 2012

Page of 161 397

Re-submitting the form by clicking "Analyze" again, we see the result in the screen shot above.

That's more like it. Because the whitespace tokenizer preserved the trailing hyphen on the first
token, was able to reconstruct the hyphenated word, which then passedHyphenatedWordsFilter

it on to , where capital letters are set to lowercase.LowerCaseFilter

Now let's see what happens when invoking the analyzer for query processing. For query terms, we
don't want to do de-hyphenation and we want to discard punctuation, so let's try the samedo
input on it. We'll copy the same text to the "Field value (Query)" box and clear the one for index
analysis. We'll also include the full, unhyphenated word as another term to make sure it is
processed to lower case as we expect. Submitting again yields these results:

Query-time analyzer, good results.

Solr Reference Guide Jan 10, 2012

Page of 162 397

We can see that for queries the analyzer behaves the way we want it to. Punctuation is stripped
out, doesn't run, and we wind up with the three tokens we expected.HyphenatedWordsFilter

Refer to the section for moreRunning Field Analysis to Test Analyzers, Tokenizers, and TokenFilters
information about conducting field analysis through the Admin Web interface.

Solr Reference Guide Jan 10, 2012

Page of 163 397

Indexing and Basic Data Operations
This section describes how Solr adds data to its index. It covers the following topics:

: An overview of Solr's indexing process.What Is Indexing?

: Information about using the Solr Cell frameworkUploading Data with Solr Cell using Apache Tika
to upload data for indexing.

: Information about using Solr's Index Handlers to upload XMLUploading Data with Index Handlers
and CSV data.

: Information about uploadingUploading Structured Data Store Data with the Data Import Handler
and indexing data from a structured data store.

: Information about using language identification during theDetecting Languages During Indexing
indexing process.

: Information about integrating Solr with Apache's Unstructured InformationUIMA Integration
Management Architecture (UIMA). UIMA lets you define custom pipelines of Analysis Engines that
incrementally add metadata to your documents as annotations.

: Information about streaming content to Solr Request Handlers.Content Streams

Solr Reference Guide Jan 10, 2012

Page of 164 397

What Is Indexing?
This section describes the process of indexing: adding content to a Solr index and, if necessary,
modifying that content or deleting it. By adding content to an index, we make it searchable by Solr.

A Solr index can accept data from many different sources, including XML files, comma-separated
value (CSV) files, data extracted from tables in a database, and files in common file formats such
as Microsoft Word or PDF.

Here are the three most common ways of loading data into a Solr index:

Using the framework built on Apache Tika for ingesting binary files or structuredSolr Cell
files such as Office, Word, PDF, and other proprietary formats.

Uploading XML files by sending HTTP requests to the Solr server from any environment
where such requests can be generated.

Writing a custom Java application to ingest data through Solr's Java Client API (which is
described in more detail in . See also the JavaDocs for the SolrJ API: Client APIs

). Using the Java API may be the besthttp://lucene.apache.org/solr/api/solrj/index.html
choice if you're working with an application, such as a Content Management System (CMS),
that offers a Java API.

Regardless of the method used to ingest data, there is a common basic data structure for data
being fed into a Solr index: a containing multiple each with a and containingdocument fields, name

 which may be empty. One of the fields is usually designated as a unique ID fieldcontent,
(analogous to a primary key in a database), although the use of a unique ID field is not strictly
required by Solr.

If the field name is defined in the file that is associated with the index, then theschema.xml

analysis steps associated with that field will be applied to its content when the content is tokenized.
Fields that are not explicitly defined in the schema will either be ignored or mapped to a dynamic
field definition (see), if one matching the field name exists.Documents, Fields, and Schema Design

For more information on indexing in Solr, see the .Solr Wiki

The Solr Example Directory
The directory includes a sample Solr implementation, along with sample documents forexample/

uploading into an index. You will find the example docs in .solr_home /example/exampledocs

The curl Utility for Transferring Files

http://lucene.apache.org/solr/api/solrj/index.html
https://wiki.apache.org/solr/FrontPage

Solr Reference Guide Jan 10, 2012

Page of 165 397

Many of the instructions and examples in this section make use of the utility for transferringcurl

content through a URL. posts and retrieves data over HTTP, FTP, and many other protocols.curl

Most Linux distributions include a copy of . You'll find curl downloads for Linux, Windows, andcurl

many other operating systems at . Documentation for ishttp://curl.haxx.se/download.html curl

available here: .http://curl.haxx.se/docs/manpage.html

Using or other command line tools for posting data is just fine for examples or tests,curl

but it's not the recommended method for achieving the best performance for updates in
production environments. You will achieve better performance with Solr Cell or or the other
methods described in this section.

Instead of , you can use utilities such as GNU (curl wget

) or manage GETs and POSTS with Perl, although thehttp://www.gnu.org/software/wget/
command line options will differ.

http://curl.haxx.se/download.html
http://curl.haxx.se/docs/manpage.html
http://www.gnu.org/software/wget/

Solr Reference Guide Jan 10, 2012

Page of 166 397

Uploading Data with Solr Cell using Apache Tika
Earlier releases of Solr could easily index data that was already in XML format, but indexing
non-XML data, such as binary files or Office documents, required extra processing. Solr uses code
from the project to provide a framework for incorporating many different file-formatApache Tika
parsers such as and into Solr itself. Working with this framework,Apache PDFBox Apache POI
Solr's can use Tika to support uploading binary files—including files inExtractingRequestHandler

popular formats such as Word and PDF—for data extraction and indexing.

When this framework was under development, it was called the Solr Content Extraction Library or
CEL; from that abbreviation came this framework's name: Solr Cell.

For more information on Solr's Extracting Request Handler, see
.https://wiki.apache.org/solr/ExtractingRequestHandler

Topics covered in this section:

Key Concepts
Trying out Tika with the Solr Example Directory
Input Parameters
Order of Operations
Configuring the Solr ExtractingRequestHandler
Metadata
Examples of Uploads Using the Extraction Request Handler
Sending Documents to Solr with a POST
Sending Documents to Solr with Solr Cell and SolrJ

Key Concepts
When using the Solr Cell framework, it is helpful to keep the following in mind:

Tika will automatically attempt to determine the input document type (Word, PDF, HTML) and
extract the content appropriately. If you like, you can explicitly specify a MIME type for Tika
with the parameter.stream.type

Tika works by producing an XHTML stream that it feeds to a SAX ContentHandler. SAX is a
common interface implemented for many different XML parsers. For more information, see

.http://www.saxproject.org/quickstart.html

Solr then responds to Tika's SAX events and creates the fields to index.

http://lucene.apache.org/tika/
http://incubator.apache.org/pdfbox/
http://poi.apache.org/index.html
https://wiki.apache.org/solr/ExtractingRequestHandler
http://www.saxproject.org/quickstart.html

Solr Reference Guide Jan 10, 2012

Page of 167 397

Tika produces metadata such as Title, Subject, and Author according to specifications such as
the DublinCore. See for the file types supported.http://tika.apache.org/1.0/formats.html

Tika adds all the extracted text to the field.content

You can map Tika's metadata fields to Solr fields. You can also boost these fields.

You can pass in literals for field values.

You can apply an XPath expression to the Tika XHTML to restrict the content that is
produced.

Trying out Tika with the Solr Example Directory
You can try out the Tika framework using the example application included in Solr.

Start the Solr example server:

cd example -jar start.jar

In a separate window go to the directory (which contains some nice example docs), or thedocs/

site directory if you built Solr from source, and send Solr a file via HTTP POST:

cd docs

curl 'http://localhost:8983/solr/update/extract?literal.id=doc1&commit=true'

 -F "myfile=@tutorial.html"

The URL above calls the Extraction Request Handler, uploads the file and assigns ittutorial.html

the unique ID . Here's a closer look at the components of this command:doc1

The parameter provides the necessary unique ID for the document beingliteral.id=doc1

indexed.

The causes Solr to perform a commit after indexing the document,commit=true parameter

making it immediately searchable. For optimum performance when loading many documents,
don't call the commit command until you are done.

The flag instructs curl to POST data using the Content-Type and-F multipart/form-data

supports the uploading of binary files. The @ symbol instructs curl to upload the attached
file.

http://tika.apache.org/1.0/formats.html

Solr Reference Guide Jan 10, 2012

Page of 168 397

The argument needs a valid path, which can be absolute or relativemyfile=@tutorial.html

(for example, if you are still in exampledocsmyfile=@../../site/tutorial.html

directory).

Now you should be able to execute a query and find that document (open the following link in your
browser): .http://localhost:8983/solr/select?q=tutorial

You may notice that although you can search on any of the text in the sample document, you may
not be able to see that text when the document is retrieved. This is simply because the "content"
field generated by Tika is mapped to the Solr field called text, which is indexed but not stored. This
operation is controlled by default map rule in the handler in ,/update/extract solrconfig.xml

and its behavior can be easily changed or overridden. For example, to store and see all metadata
and content, execute the following:

curl

'http://localhost:8983/solr/update/extract?literal.id=doc1&uprefix=attr_&fmap.content=attr_content&commit=true'

-F "myfile=@tutorial.html"

In this command, the parameter causes all generated fields that aren't defined inuprefix=attr_

the schema to be prefixed with , which is a dynamic field that is stored.attr_

The parameter overrides the default causing thefmap.content=attr_content fmap.content=text

content to be added to the field instead.attr_content

Then run this command to query the document:
http://localhost:8983/solr/select?q=attr_content:tutorial

Input Parameters
The table below describes the parameters accepted by the Extraction Request Handler.

Parameter Description

boost.< >=<fieldname
>float

Boosts the specified field. (Boosting a field alters its importance in a
query response. To learn about boosting fields, see .)Searching

capture=<
>Tika_XHTML_name

Captures XHTML elements with the specified name for a supplementary
addition to the Solr document. This parameter can be useful for copying
chunks of the XHTML into a separate field. For instance, it could be
used to grab paragraphs () and index them into a separate field.<p>

Note that content is still also captured into the overall "content" field.

http://localhost:8983/solr/select?q=tutorial
http://localhost:8983/solr/select?q=attr_content:tutorial

Solr Reference Guide Jan 10, 2012

Page of 169 397

captureAttr=true|false Indexes attributes of the Tika XHTML elements into separate fields,
named after the element. For example, when extracting from HTML,
Tika can return the href attributes in <a> tags as fields named "a". See
the examples below.

commitWithin Add the document within the specified number of milliseconds.

defaultField=<
>field_name

If the uprefix parameter (see below) is not specified and a field cannot
be determined, the default field will be used.

extractOnly=true|false Default is false. If true, returns the extracted content from Tika without
indexing the document. This literally includes the extracted XHTML as a
string in the response. When viewing manually, it may be useful to use
a response format other than XML to aid in viewing the embedded
XHTML tags.For an example, see

.http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput

extractFormat=xml|text Default is xml. Controls the serialization format of the extract content.
The xml format is actually XHTML, the same format that results from
passing the command to the Tika command line application, while-x

the text format is like that produced by Tika's -t command. This
parameter is valid only if is set to true.extractOnly

fmap.<source_field
>=< >target_field

Maps (moves) one field name to another. Example:
 causes the content field generated by Tika to befmap.content=text

moved to the "text" field.

literal.< >=<fieldname
>value

Creates a field with the specified value. The data can be multivalued if
the field is multivalued.

lowernames=true|false Maps all field names to lowercase with underscores. For example,
"Content-Type" would be mapped to "content_type."

resource.name=<
>file_name

Specifies the optional name of the file. Tika can use it as a hint for
detecting a file's MIME type.

uprefix=< >prefix Prefixes all fields that are not defined in the schema with the given
prefix. This is very useful when combined with dynamic field definitions.
Example: would effectively ignore all unknown fieldsuprefix=ignored_

generated by Tika given the example schema contains
<dynamicField name="ignored_*" type="ignored"/>

xpath=<
>XPath_expression

When extracting, only return Tika XHTML content that satisfies the
XPath expression. See for detailshttp://tika.apache.org/1.0/index.html
on the format of Tika XHTML. See also

.http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput

http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput
http://tika.apache.org/1.0/index.html
http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput

Solr Reference Guide Jan 10, 2012

Page of 170 397

1.

2.
3.
4.

Order of Operations
Here is the order in which the Solr Cell framework, using the Extraction Request Handler and Tika,
processes its input.

Tika generates fields or passes them in as literals specified by
.literal.<fieldname>=<value>

If , Tika maps fields to lowercase.lowernames=true

Tika applies the mapping rules specified by parameters.fmap. source = target

If is specified, any unknown field names are prefixed with that value, else if uprefix

 is specified, any unknown fields are copied to the default field.defaultField

Configuring the Solr ExtractingRequestHandler
If you are not working in the supplied directory, you must copy all libraries from example/solr

 into a directory within your own solr directory or to a directory you'veexample/solr/libs libs

specified in using the new directive. The is notsolrconfig.xml libs ExtractingRequestHandler

incorporated into the Solr WAR file, so you have to install it separately.

Here is an example of configuring the in .ExtractingRequestHandler solrconfig.xml

<requestHandler name="/update/extract"

class="org.apache.solr.handler.extraction.ExtractingRequestHandler">

 <lst name="defaults">

 <str name="fmap.Last-Modified">last_modified</str>

 <str name="uprefix">ignored_</str>

 </lst>

 <!--Optional. Specify a path to a tika configuration file. See the Tika docs for

details.-->

 <str name="tika.config">/my/path/to/tika.config</str>

 <!-- Optional. Specify one or more date formats to parse. See

DateUtil.DEFAULT_DATE_FORMATS

 for default date formats -->

 <lst name="date.formats">

 <str>yyyy-MM-dd</str>

 </lst>

 </requestHandler>

In the defaults section, we are mapping Tika's Last-Modified Metadata attribute to a field named
. We are also telling it to ignore undeclared fields. These are all overriddenlast_modified

parameters.

Solr Reference Guide Jan 10, 2012

Page of 171 397

The entry points to a file containing a Tika configuration. You would only need thistika.config

entry if you have customized your Tika configuration. The Tika configuration file contains
information about parsers, MIME types, and so on.

You may also need to adjust the attribute as follows if you aremultipartUploadLimitInKB

submitting very large documents.

<requestDispatcher handleSelect="true" >

 <requestParsers enableRemoteStreaming="false" multipartUploadLimitInKB="20480" />

 ...

Lastly, the allows you to specify various datedate.formats java.text.SimpleDateFormats

formats for working with transforming extracted input to a Date. Solr comes configured with the
following date formats (see the in Solr):DateUtil

yyyy-MM-dd'T'HH:mm:ss'Z'

yyyy-MM-dd'T'HH:mm:ss

yyyy-MM-dd

yyyy-MM-dd hh:mm:ss

yyyy-MM-dd HH:mm:ss

EEE MMM d hh:mm:ss z yyyy

EEE, dd MMM yyyy HH:mm:ss zzz

EEEE, dd-MMM-yy HH:mm:ss zzz

EEE MMM d HH:mm:ss yyyy

Multi-Core Configuration
For a multi-core configuration, specify in in insharedLib='lib' <solr/> example/solr/solr.xml

order for Solr to find the JAR files in .example/solr/lib

For more information about Solr cores, see .The Well-Configured Solr Instance

Metadata
As mentioned before, Tika produces metadata about the document. Metadata describes different
aspects of a document, such as the author's name, the number of pages, the file size, and so on.
The metadata produced depends on the type of document submitted. For instance, PDFs have
different metadata than Word documents do.

In addition to Tika's metadata, Solr adds the following metadata (defined in
):ExtractingMetadataConstants

Solr Metadata Description

Solr Reference Guide Jan 10, 2012

Page of 172 397

stream_name The name of the Content Stream as uploaded to Solr. Depending on how
the file is uploaded, this may or may not be set

stream_source_info Any source info about the stream. (See the section on Content Streams
later in this section.)

stream_size The size of the stream in bytes.

stream_content_type The content type of the stream, if available.

We recommend that you try using the option to discover which values Solr isextractOnly

setting for these metadata elements.

Examples of Uploads Using the Extraction Request Handler

Capture and Mapping
The command below captures tags separately, and then maps all the instances of that field<div>

to a dynamic field named .foo_t

curl "http://localhost:8983/solr/update/extract?literal.id=doc2&captureAttr=true

&defaultField=text&fmap.div=foo_t&capture=div" -F "tutorial=@tutorial.pdf"

Capture, Mapping, and Boosting
The command below captures tags separately, maps the field to a dynamic field named <div>

, then boosts by 3.foo_t foo_t

curl "http://localhost:8983/solr/update/extract?literal.id=doc3&captureAttr=true

&defaultField=text&capture=div&fmap.div=foo_t&boost.foo_t=3"

-F "tutorial=@tutorial.pdf"

Using Literals to Define Your Own Metadata
To add in your own metadata, pass in the literal parameter along with the file:

curl "http://localhost:8983/solr/update/extract?literal.id=doc4&captureAttr=true

&defaultField=text&capture=div&fmap.div=foo_t&boost.foo_t=3&literal.blah_s=Bah"

-F "tutorial=@tutorial.pdf"

Solr Reference Guide Jan 10, 2012

Page of 173 397

XPath
The example below passes in an XPath expression to restrict the XHTML returned by Tika:

curl "http://localhost:8983/solr/update/extract?literal.id=doc5&captureAttr=true

&defaultField=text&capture=div&fmap.div=foo_t&boost.foo_t=3&literal.id=id

&xpath=/xhtml:html/xhtml:body/xhtml:div/descendant:node()"

-F "tutorial=@tutorial.pdf"

Extracting Data without Indexing It
Solr allows you to extract data without indexing. You might want to do this if you're using Solr
solely as an extraction server or if you're interested in testing Solr extraction.

The example below sets the to extract data without indexing it.extractOnly=true parameter

curl "http://localhost:8983/solr/update/extract?&extractOnly=true"

--data-binary @tutorial.html

-H 'Content-type:text/html'

The output includes XML generated by Tika (and further escaped by Solr's XML) using a different
output format to make it more readable:

curl "http://localhost:8983/solr/update/extract?&extractOnly=true&wt=ruby&indent=true"

--data-binary @tutorial.html

-H 'Content-type:text/html'

Sending Documents to Solr with a POST
The example below streams the file as the body of the POST, which does not, then, provide
information to Solr about the name of the file.

curl "http://localhost:8983/solr/update/extract?literal.id=doc5&defaultField=text"

--data-binary @tutorial.html

-H 'Content-type:text/html'

Sending Documents to Solr with Solr Cell and SolrJ
SolrJ is a Java client that you can use to add documents to the index, update the index, or query
the index. You'll find more information on SolrJ in .Client APIs

Solr Reference Guide Jan 10, 2012

Page of 174 397

Here's an example of using Solr Cell and SolrJ to add documents to a Solr index.

First, let's use SolrJ to create a new SolrServer, then we'll construct a request containing a
ContentStream (essentially a wrapper around a file) and sent it to Solr:

public class SolrCellRequestDemo \{

 public static void main (String\[\] args){color} throws IOException,

SolrServerException \{

 SolrServer server = new CommonsHttpSolrServer("http://localhost:8983/solr");

 ContentStreamUpdateRequest req = new ContentStreamUpdateRequest("/update/extract");

 req.addFile(new File("apache-solr/site/features.pdf"));

 req.setParam(ExtractingParams.EXTRACT_ONLY, "true");

 NamedList<Object> result = server.request(req);

 System.out.println("Result: " + result);

}

This operation streams the file into the Solr index.features.pdf

The sample code above calls the extract command, but you can easily substitute other commands
that are supported by Solr Cell. The key class to use is the , whichContentStreamUpdateRequest

makes sure the ContentStreams are set properly. SolrJ takes care of the rest.

Note that the is not just specific to Solr Cell. You can send CSV toContentStreamUpdateRequest

the CSV Update handler and to any other Request Handler that works with Content Streams for
updates.

Solr Reference Guide Jan 10, 2012

Page of 175 397

Uploading Data with Index Handlers
Index Handlers are Update Handlers designed to add, delete and update documents to the index.
Solr includes several of these to allow indexing documents in XML, CSV and JSON.

The example URLs given here reflect the handler configuration in the supplied . Ifsolrconfig.xml

the name associated with the handler is changed then the URLs will need to be modified. It is quite
possible to access the same handler using more than one name, which can be useful if you wish to
specify different sets of default options.

Index Handlers covered in this section:

XMLUpdateRequestHandler for XML-formatted Data
XSLTRequestHandler to Transform XML Content
CSVRequestHandler for CSV Content
Using the JSONRequestHandler for JSON Content
Indexing Using SolrJ

XMLUpdateRequestHandler for XML-formatted Data

Configuration
The default configuration file has the update request handler configured by default.

<requestHandler name="/update" class="solr.XmlUpdateRequestHandler" />

Adding Documents
Documents are added to the index by sending an XML message to the update handler.

The XML schema recognized by the update handler is very straightforward:

The element introduces one more more documents to be added.<add>

The element introduces the fields making up a document.<doc>

The element presents the content for a specific field.<field>

For example:

Solr Reference Guide Jan 10, 2012

Page of 176 397

<add>

 <doc>

 <field name="authors">Patrick Eagar</field>

 <field name="subject">Sports</field>

 <field name="dd">796.35</field>

 <field name="numpages">128</field>

 <field name="desc"></field>

 <field name="price">12.40</field>

 <field name="title" boost="2.0">Summer of the all-rounder: Test and championship

cricket in England 1982</field>

 <field name="isbn">0002166313</field>

 <field name="yearpub">1982</field>

 <field name="publisher">Collins</field>

 </doc>

 <doc boost="2.5">

 ...

 </doc>

</add>

If the document schema defines a unique key, then an operation silently replaces a/update

document in the index with the same unique key, unless the element sets the <add> allowDups

attribute to . If no unique key has been defined, indexing performance is somewhat faster, astrue

no search has to be made for an existing document.

Each element has certain optional attributes which may be specified.

Command Command Description Optional
Parameter

Parameter Description

<add> Introduces one or more
documents to be added to
the index.

commitWithin=
number

Add the document within the specified
number of milliseconds

<doc> Introduces the definition of
a specific document.

boost=float Default is 1.0. Sets a boost value for
the document.To learn more about
boosting, see .Searching

<field> Defines a field within a
document.

boost=float Default is 1.0. Sets a boost value for
the field.

Other optional parameters for , including , , and <add> allowDups overwritePending

, are now deprecated.overwriteCommitted

Solr Reference Guide Jan 10, 2012

Page of 177 397

Commit and Optimize Operations
The operation writes all documents loaded since the last commit to one or more segment<commit>

files on the disk. Before a commit has been issued, newly indexed content is not visible to
searches. The commit operation opens a new searcher, and triggers any event listeners that have
been configured.

Commits may be issued explicitly with a message, and can also be triggered from <commit/>

 parameters in .<autocommit> solrconfig.xml

The operation requests Solr to merge internal data structures in order to improve<optimize>

search performance. For a large index, optimization will take some time to complete, but by
merging many small segment files into a larger one, search performance will improve. If you are
using Solr's replication mechanism to distribute searches across many systems, be aware that after
an optimize, a complete index will need to be transferred. In contrast, post-commit transfers are
usually much smaller.

The and elements accept these optional attributes:<commit> <optimize>

Optional
Attribute

Description

maxSegments Default is 1. Optimizes the index to include no more than this number of
segments.

waitFlush Default is true. Blocks until index changes are flushed to disk.

waitSearcher Default is true. Blocks until a new searcher is opened and registered as the
main query searcher, making the changes visible.

expungeDeletes Default is false. Merges segments and removes deleted documents.

Here are examples of <commit> and <optimize> using optional attributes:

<commit waitFlush="false" waitSearcher="false"/>

<commit waitFlush="false" waitSearcher="false" expungeDeletes="true"/>

<optimize waitFlush="false" waitSearcher="false"/>

Delete Operations
Documents can be deleted from the index in two ways. "Delete by ID" deletes the document with
the specified ID, and can be used only if a UniqueID field has been defined in the schema. "Delete
by Query" deletes all documents matching a specified query. A single delete message can contain
multiple delete operations.

Solr Reference Guide Jan 10, 2012

Page of 178 397

<delete>

 <id>0002166313</id>

 <id>0031745983</id>

 <query>subject:sport</query>

 <query>publisher:penguin</query>

</delete>

Rollback Operations
The rollback command rolls back all add and deletes made to the index since the last commit. It
neither calls any event listeners nor creates a new searcher. Its syntax is simple: .<rollback/>

Using curl to Perform Updates with the Update Request Handler.
You can use the utility to perform any of the above commands, using its curl --data-binary

option to append the XML message to the command, and generating a HTTP POST request.curl

For example:

curl http://localhost:8983/update -H "Content-Type: text/xml" --data-binary '

<add>

 <doc>

 <field name="authors">Patrick Eagar</field>

 <field name="subject">Sports</field>

 <field name="dd">796.35</field>

 <field name="isbn">0002166313</field>

 <field name="yearpub">1982</field>

 <field name="publisher">Collins</field>

 </doc>

</add>'

For posting XML messages contained in a file, you can use the alternative form:

curl http://localhost:8983/update -H "Content-Type: text/xml"

 --data-binary @myfile.xml

Short requests can also be sent using a HTTP GET command, URL-encoding the request, as in the
following. Note the escaping of "<" and ">":

curl http://localhost:8983/update?stream.body=%3Ccommit/%3E

Responses from Solr take the form shown here:

Solr Reference Guide Jan 10, 2012

Page of 179 397

<?xml version="1.0" encoding="UTF-8"?>

<response>

 <lst name="responseHeader">

 <int name="status">0</int>

 <int name="QTime">127</int>

 </lst>

</response>

The status field will be non-zero in case of failure. The servlet container will generate an
appropriate HTML-formatted message in the case of an error at the HTTP layer.

A Simple Cross-Platform Posting Tool
For demo purposes, the file includes a cross-platform Java toolexample/exampledocs/post.jar

for POST-ing XML documents. Open a window and run:

java -jar post.jar <list of files with messages>

By default, this will contact the server at . The "-help" option outputs the followinglocalhost:8983

information on its usage:

SimplePostTool: version 1.2

This is a simple command line tool for POSTing raw XML to a Solr port. XML data can be read from
files specified as command line args; as raw commandline arg strings; or via STDIN.

Examples:

java -Ddata=files -jar post.jar *.xml

 java -Ddata=args -jar post.jar '<delete><id>42</id></delete>'

 java -Ddata=stdin -jar post.jar < hd.xml

Other options controlled by System Properties include the Solr URL to POST to, and whether a
commit should be executed. These are the defaults for all System Properties.

-Ddata=files

 -Durl=[http://localhost:8983/solr/update|http://localhost:8983/solr/update]

 -Dcommit=yes

For more information about the XML Update Request Handler, see
.https://wiki.apache.org/solr/UpdateXmlMessages

https://wiki.apache.org/solr/UpdateXmlMessages

Solr Reference Guide Jan 10, 2012

Page of 180 397

XSLTRequestHandler to Transform XML Content

Configuration
The default configuration file has the update request handler configured by default, although the
"lazy load" flag is set.

The XSLTRequestHandler allows you to index any XML data with the . You mustXML command<tr>

have an XSLT stylesheet in the solr/conf/xslt directory that can transform the incoming data to the
expected format.<add><doc/></add>

<requestHandler name="/update/xslt" startup="lazy"

class="solr.XsltUpdateRequestHandler"/>

Here is an example XSLT stylesheet:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:template match="/">

 <add>

 <xsl:apply-templates select="/random/document"/>

 </add>

 </xsl:template>

 <xsl:template match="document">

 <doc boost="5.5">

 <xsl:apply-templates select="*"/>

 </doc>

 </xsl:template>

 <xsl:template match="node">

 <field name="{@name}">

 <xsl:if test="@enhance!=''">

 <xsl:attribute name="boost"><xsl:value-of select="@enhance"/></xsl:attribute>

 </xsl:if>

 <xsl:value-of select="@value"/>

 </field>

 </xsl:template>

</xsl:stylesheet>

CSVRequestHandler for CSV Content

http://xmlstar.sourceforge.net/doc/UG/ch04s02.html

Solr Reference Guide Jan 10, 2012

Page of 181 397

Configuration
The default configuration file has the update request handler configured by default, although the
"lazy load" flag is set.

<requestHandler name="/update/csv" class="solr.CSVRequestHandler" startup="lazy" />

Parameters
The CSV handler allows the specification of many parameters in the URL in the form: f.

.parameter . optional_fieldname = value

The table below describes the parameters for the update handler.

Parameter Usage Global
(g) or
Per
Field
(f)

Example

separator Character used as field separator; default is
","

g,(f:
see
split)

separator=%

trim If true, remove leading and trailing
whitespace from values. Default=false.

g,f f.isbn.trim=true
trim=false

header Set to true if first line of input contains field
names. These will be used if the

 parameter is absent.fieldnames

g

fieldnames Comma separated list of field names to use
when adding documents.

g fieldnames=isbn,price,title

skip Comma separated list of field names to
skip.

g skip=uninteresting,shoesize

skipLines Number of lines to discard in the input
stream before the CSV data starts, including
the header, if present. Default=0.

g skipLines=5

Solr Reference Guide Jan 10, 2012

Page of 182 397

encapsulator The character optionally used to surround
values to preserve characters such as the
CSV separator or whitespace. This standard
CSV format handles the encapsulator itself
appearing in an encapsulated value by
doubling the encapsulator.

g,(f:
see
split)

encapsulator="

escape The character used for escaping CSV
separators or other reserved characters. If
an escape is specified, the encapsulator is
not used unless also explicitly specified
since most formats use either encapsulation
or escaping, not both

g escape=\

keepEmpty Keep and index zero length (empty) fields.
Default=false.

g,f f.price.keepEmpty=true

map Map one value to another. Format is
value:replacement (which can be empty.)

g,f map=left:right
f.subject.map=history:bunk

split If true, split a field into multiple values by a
separate parser.

f

overwrite If true (the default), check for and overwrite
duplicate documents, based on the
uniqueKey field declared in the Solr
schema. If you know the documents you
are indexing do not contain any duplicates
then you may see a considerable speed up
setting this to false.

g

commit Issues a commit after the data has been
ingested.

g

commitWithin Add the document within the specified
number of milliseconds.

g commitWithin=10000

For more information on the CSV Update Request Handler, see
.https://wiki.apache.org/solr/UpdateCSV

Using the JSONRequestHandler for JSON Content
JSON formatted update requests may be sent to Solr using the URL. All of the/solr/update/json

normal methods for uploading content are supported.

https://wiki.apache.org/solr/UpdateCSV

Solr Reference Guide Jan 10, 2012

Page of 183 397

Configuration
The default configuration file has the update request handler configured by default, although the
"lazy load" flag is set.

<requestHandler name="/update/json" class="solr.JsonUpdateRequestHandler"

startup="lazy" />

Examples
There is a sample JSON file at that you can use to addexample/exampledocs/books.json

documents to the Solr example server.

cd example/exampledocs

curl 'http://localhost:8983/solr/update/json?commit=true'

 --data-binary @books.json -H 'Content-type:application/json'

Adding to the URL makes the documents immediately searchable.commit=true

You should now be able to query for the newly added documents:

 returns:http://localhost:8983/solr/select?q=title:monsters&wt=json&indent=true

Solr Reference Guide Jan 10, 2012

Page of 184 397

{

 "responseHeader":{

 "status":0,

 "QTime":2,

 "params":{

 "indent":"true",

 "wt":"json",

 "q":"title:monsters"}},

 "response":{"numFound":1,"start":0,"docs":[

 {

 "id":"978-1423103349",

 "author":"Rick Riordan",

 "series_t":"Percy Jackson and the Olympians",

 "sequence_i":2,

 "genre_s":"fantasy",

 "inStock":true,

 "price":6.49,

 "pages_i":304,

 "title":[

 "The Sea of Monsters"],

 "cat":["book","paperback"]}]

 }

}

Update Commands
The JSON update handler accepts all of the update commands that the XML update handler
supports, through a straightforward mapping. Multiple commands may be contained in one
message:

Solr Reference Guide Jan 10, 2012

Page of 185 397

{

"add": {

 "doc": {

 "id": "DOC1",

 "my_boosted_field": { /* use a map with boost/value for a boosted field */

 "boost": 2.3,

 "value": "test"

 },

 "my_multivalued_field": ["aaa", "bbb"] /* use an array for a multi-valued field

*/

 }

},

"add": {

 "commitWithin": 5000, /* commit this document within 5 seconds */

 "overwrite": false, /* don't check for existing documents with the same

uniqueKey */

 "boost": 3.45, /* a document boost */

 "doc": {

 "f1": "v1",

 "f1": "v2"

 }

},

"commit": {},

"optimize": { "waitFlush":false, "waitSearcher":false },

"delete": { "id":"ID" }, /* delete by ID */

"delete": { "query":"QUERY" } /* delete by query */

}

Comments are not allowed JSON, but duplicate names are.

As with other update handlers, parameters such as , , , and commit commitWithin optimize

 may be specified in the URL instead of in the body of the message.overwrite

For more information about the JSON Update Request Handler, see
.https://wiki.apache.org/solr/UpdateJSON

Indexing Using SolrJ
Use of the the SolrJ client library is covered in .Client APIs

https://wiki.apache.org/solr/UpdateJSON

Solr Reference Guide Jan 10, 2012

Page of 186 397

Uploading Structured Data Store Data with the Data
Import Handler
Many search applications store the content to be indexed in a structured data store, such as a
relational database. The Data Import Handler (DIH) provides a mechanism for importing content
from a data store and indexing it. In addition to relational databases, DIH can index content from
HTTP based data sources such as RSS and ATOM feeds, e-mail repositories, and structured XML
where an XPath processor is used to generate fields.

The DataImportHandler jars are no longer included in the Solr WAR. You should add them
to Solr's lib directory, or reference them via the directive in .<lib> solrconfig.xml

For more information about the Data Import Handler, see
.https://wiki.apache.org/solr/DataImportHandler

Topics covered in this section:

Concepts and Terminology
Configuration
Data Import Handler Commands
Data Sources
Entity Processors
Transformers
Special Commands for the Data Import Handler
The Data Import Handler Development Console

Concepts and Terminology
Descriptions of the Data Import Handler use several familiar terms, such as entity and processor,
in specific ways, as explained in the table below.

Term Definition

Datasource As its name suggests, a datasource defines the location of the data of interest. For
a database, it's a DSN. For an HTTP datasource, it's the base URL.

https://wiki.apache.org/solr/DataImportHandler

Solr Reference Guide Jan 10, 2012

Page of 187 397

Entity Conceptually, an entity is processed to generate a set of documents, containing
multiple fields, which (after optionally being transformed in various ways) are sent
to Solr for indexing. For a RDBMS data source, an entity is a view or table, which
would be processed by one or more SQL statements to generate a set of rows
(documents) with one or more columns (fields).

Processor An entity processor does the work of extracting content from a data source,
transforming it, and adding it to the index. Custom entity processors can be written
to extend or replace the ones supplied.

Transformer Each set of fields fetched by the entity may optionally be transformed. This process
can modify the fields, create new fields, or generate multiple rows/documents form
a single row. There are several built-in transformers in the DIH, which perform
functions such as modifying dates and stripping HTML. It is possible to write custom
transformers using the publicly available interface.

Configuration
The Data Import Handler has to be registered in . For example:solrconfig.xml

<requestHandler name="/dataimport"

class="org.apache.solr.handler.dataimport.DataImportHandler">

 <lst name="defaults">

 <str name="config">/path/to/my/DIHconfigfile.xml</str>

 </lst>

 </requestHandler>

You can have multiple DIH configuration files. Each file would require a separate definition in the
 file, specifying a path to the file.solrconfig.xml

The DIH configuration file contains specifications for the data source, how to fetch data, what data
to fetch, and how to process it to generate the Solr documents to be posted to the index.

There is a sample DIH application distributed with Solr in the directory example/example-DIH. This
accesses a small hsqldb database. Details of how to run this example can be found in the
README.txt file. Its DIH configuration can be found in the file

.example/example-DIH/solr/db/conf/db-data-config.xml

Solr Reference Guide Jan 10, 2012

Page of 188 397

An annotated configuration file, based on the sample, is shown below. It extracts fields from the
four tables defining a simple product database, with this schema.

<dataConfig>

<!-- The first element is the dataSource, in this case an HSQLDB database.

 The path to the JDBC driver and the JDBC URL and login credentials are all

specified here.

 Other permissible attributes include whether or not to autocommit to Solr,the

batchsize

 used in the JDBC connection, a 'readOnly' flag -->

<dataSource

 driver="org.hsqldb.jdbcDriver"

 url="jdbc:hsqldb:./example-DIH/hsqldb/ex"

 user="sa"

 password="mypass" />

<!-- a 'document' element follows, containing multiple 'entity' elements.

 Note that 'entity' elements can be nested, and this allows the entity

 relationships in the sample database to be mirrored here, so that we can

 generate a denormalized Solr record which may include multiple features

 for one item, for instance -->

<!--The possible attributes for the entity element are described below.

 Entity elements may contain one or more 'field' elements, which map

 the data source field names to Solr fields, and optionally specify

 per-field transformations -->

Solr Reference Guide Jan 10, 2012

Page of 189 397

 <document name="products">

<!-- this entity is the 'root' entity. -->

 <entity name="item" pk="ID"

 query="select * from item"

 deltaQuery="select id from item where last_modified >

'$\{dataimporter.last_index_time\}'">

 <field column="ID" name="id" />

<!-- multiple Solr fields are generated from a single column in the table -->

 <field column="NAME" name="name" />

 <field column="NAME" name="nameSort" />

 <field column="NAME" name="alphaNameSort" />

<!-- This entity is nested and reflects the one-to-many relationship between an item

and its multiple features.

 Note the use of variables; $\{item.ID\} is the value of the column 'ID' for the

current item

 ('item' referring to the entity name) -->

 <entity name="feature" pk="ITEM_ID"

 query="select DESCRIPTION from FEATURE where ITEM_ID='$\{item.ID\}'"

 deltaQuery="select ITEM_ID from FEATURE where last_modified >

'$\{dataimporter.last_index_time\}'"

 parentDeltaQuery="select ID from item where ID=$\{feature.ITEM_ID\}">

 <field name="features" column="DESCRIPTION" />

 </entity>

 <entity name="item_category" pk="ITEM_ID, CATEGORY_ID"

 query="select CATEGORY_ID from item_category where ITEM_ID='$\{item.ID\}'"

 deltaQuery="select ITEM_ID,CATEGORY_ID from item_category where last_modified

> '$\{dataimporter.last_index_time\}'"

 parentDeltaQuery="select ID from item where ID=$\{item_category.ITEM_ID\}">

 <entity name="category" pk="ID"

 query="select DESCRIPTION from category where ID =

'$\{item_category.CATEGORY_ID\}'"

 deltaQuery="select ID from category where last_modified >

'$\{dataimporter.last_index_time\}'"

 parentDeltaQuery="select ITEM_ID, CATEGORY_ID from item_category where

CATEGORY_ID=$\{category.ID\}">

 field column="description" name="cat" />

 </entity>

 </entity>

 </entity>

</document>

Solr Reference Guide Jan 10, 2012

Page of 190 397

Data Import Handler Commands
DIH commands are sent to Solr via an HTTP request. The following operations are supported.

Command Description

abort Aborts an ongoing operation. The URL is
.http://<host>:<port>/solr/dataimport?command=abort

delta-import For incremental imports and change detection. The command is of the form
. It supportshttp://<host>:<port>/solr/dataimport?command=delta-import

the same clean, commit, optimize and debug parameters as full-import
command.

full-import A Full Import operation can be started with a URL of the form
. Thehttp://<host>:<port>/solr/dataimport?command=full-import

command returns immediately. The operation will be started in a new thread
and the attribute in the response should be shown as . The operationstatus busy
may take some time depending on the size of dataset. Queries to Solr are not
blocked during full-imports.
When a full-import command is executed, it stores the start time of the
operation in a file located at . This storedconf/dataimport.properties

timestamp is used when a delta-import operation is executed.
For a list of parameters that can be passed to this command, see below.

reload-config If the configuration file has been changed and you wish to reload it without
restarting Solr, run the command

.http://<host>:<port>/solr/dataimport?command=reload-config

status The URL is . Ithttp://<host>:<port>/solr/dataimport?command=status

returns statistics on the number of documents created, deleted, queries run,
rows fetched, status, and so on.

Parameters for the full-import Command
The command accepts the following parameters:full-import

Parameter Description

clean Default is true. Tells whether to clean up the index before the indexing is started.

commit Default is true. Tells whether to commit after the operation.

Solr Reference Guide Jan 10, 2012

Page of 191 397

debug Default is false Runs the command in debug mode. It is used by the interactive
development mode. Note that in debug mode, documents are never committed
automatically. If you want to run debug mode and commit the results too, add

 as a request parameter.commit=true

entity The name of an entity directly under the tag in the configuration file.<document>

Use this to execute one or more entities selectively. Multiple "entity" parameters can
be passed on to run multiple entities at once. If nothing is passed, all entities are
executed.

optimize Default is true. Tells Solr whether to optimize after the operation.

Data Sources
A data source specifies the origin of data and its type. Somewhat confusingly, some data sources
are configured within the associated entity processor. Data sources can also be specified in

, which is useful when you have multiple environments (for example,solrconfig.xml

development, QA, and production) differing only in their data sources.

You can create a custom data source by writing a class that extends
.org.apache.solr.handler.dataimport.DataSource

The mandatory attributes for a data source definition are its name and type. The name identifies
the data source to an Entity element.

The types of data sources available are described below.

ContentStreamDataSource
This takes the POST data as the data source. This can be used with any EntityProcessor that uses a

.DataSource<Reader>

FieldReaderDataSource
This can be used where a database field contains XML which you wish to process using the
XpathEntityProcessor. You would set up a configuration with both JDBC and FieldReader data
sources, and two entities, as follows:

Solr Reference Guide Jan 10, 2012

Page of 192 397

<dataSource name = "a1" driver="org.hsqldb.jdbcDriver" ... />

 <dataSource name="a2" type=FieldReaderDataSource" />

 <!-- processor for database -->

 <entity name ="e1" dataSource="a1" processor="SQLEntityProcessor" pk="docid"

 query="select * from t1 ...">

<!-- nested XpathEntity; the field in the parent which is to be used for

 Xpath is set in the 'datafield attribute inplace of the "url" attribute -->

<entity name="e2"

 dataSource="a2"

 processor="XPathEntityProcessor"

 dataField="e1.fieldToUseForXPath"

<!-- Xpath configuration follows -->

 ...

 </entity>

 </entity>

FileDataSource
This can be used like an , but is used to fetch content from files on disk. The onlyURLDataSource
difference from URLDataSource, when accessing disk files, is how a pathname is specified. The
signature is as follows:

public class FileDataSource extends DataSource<Reader>

This data source accepts these optional attributes.

Optional
Attribute

Description

basePath The base path relative to which the value is evaluated if it is not absolute.

encoding If the files are to be read in an encoding that is not same as the platform
encoding.

JdbcDataSource
This is the default datasource. It's used with the . See the example in the SQLEntityProcessor

 section for details on configuration.FieldReaderDataSource

Solr Reference Guide Jan 10, 2012

Page of 193 397

URLDataSource
This data source is often used with XPathEntityProcessor to fetch content from an underlying

 or location. The signature is as follows:file:// http://

public class URLDataSource extends DataSource<Reader>

Here's an example:

<dataSource name="a"

 type="URLDataSource"

 baseUrl="http://host:port/"

 encoding="UTF-8"

 connectionTimeout="5000"

 readTimeout="10000"/>

The URLDataSource type accepts these optional parameters:

Optional
Parameter

Description

baseURL Specifies a new baseURL for pathnames. You can use this to specify
host/port changes between Dev/QA/Prod environments. Using this attribute
isolates the changes to be made to the solrconfig.xml

connectionTimeout Specifies the length of time in milliseconds after which the connection should
time out. The default value is 5000ms.

encoding By default the encoding in the response header is used. You can use this
property to override the default encoding.

readTimeout Specifies the length of time in milliseconds after which a read operation
should time out. The default value is 10000ms.

Entity Processors
Entity processors extract data, transform it, and add it to a Solr index. Examples of entities include
views or tables in a data store.

Each processor has its own set of attributes, described in its own section below. In addition, there
are non-specific attributes common to all entities which may be specified.

Attribute Use

Solr Reference Guide Jan 10, 2012

Page of 194 397

datasource The name of a dataSource. Used if there are multiple datasources,
specified, in which case each one must have a name.

name Required. The unique name used to identify an entity.

pk The primary key for the entity. It is optional, and required only when
using delta-imports. It has no relation to the uniqueKey defined in

 but they can both be the same. It is mandatory if you doschema.xml

delta-imports and then refers to the column name in
} which is used as the primary${dataimporter.delta.<column-name>

key.

processor Default is SQLEntityProcessor. Required only if the datasource is not
RDBMS.

onError Permissible values are (abort|skip|continue) . The default value is
'abort'. 'Skip' skips the current document. 'Continue' ignores the error
and processing continues.

preImportDeleteQuery Before a full-import command, use this query this to cleanup the index
instead of using '*:*'. This is honored only on an entity that is an
immediate sub-child of .<document>

postImportDeleteQuery Similar to the above, but executed after the import has completed.

rootEntity By default the entities immediately under the are root<document>

entities. If this attribute is set to false, the entity directly falling under
that entity will be treated as the root entity (and so on). For every row
returned by the root entity, a document is created in Solr.

transformer Optional. One or more transformers to be applied on this entity.

The SQL Entity Processor
The SqlEntityProcessor is the default processor. The associated should be a JDBC URL.data source

The entity attributes specific to this processor are shown in the table below.

Attribute Use

query Required. The SQL query used to select rows.

deltaQuery SQL query used if the operation is delta-import. This query selects the
primary keys of the rows which will be parts of the delta-update. The pks will
be available to the deltaImportQuery through the variable

}.${dataimporter.delta.<column-name>

Solr Reference Guide Jan 10, 2012

Page of 195 397

parentDeltaQuery SQL query used if the operation is delta-import.

deletedPkQuery SQL query used if the operation is delta-import.

deltaImportQuery SQL query used if the operation is delta-import. If this is not present, DIH
tries to construct the import query by(after identifying the delta) modifying
the 'query' (this is error prone). There is a namespace

} which can be used in this query. For${dataimporter.delta.<column-name>

example, }.select * from tbl where id=${dataimporter.delta.id

The XPathEntityProcessor
This processor is used when indexing XML formatted data. The data source is typically

 or . Xpath can also be used with the URLDataSource FileDataSource FileListEntityProcessor
described below, to generate a document from each file.

The entity attributes unique to this processor are shown below.

Attribute Use

Processor Required. Must be set to "XpathEntityProcessor".

url Required. HTTP URL or file location.

stream Optional: Set to true for a large file or download.

forEach Required unless you define . The Xpath expression whichuseSolrAddSchema

demarcates each record. This will be used to set up the processing loop.

xsl Optional: Its value (a URL or filesystem path) is the name of a resource used
as a preprocessor for applying the XSL transformation.

useSolrAddSchema Set this to true if the content is in the form of the standard Solr update XML
schema.

flatten Optional: If set true, then text from under all the tags is extracted into one
field.

Each field element in the entity can have the following attributes as well as the default ones.

Attribute Use

xpath Required. The XPath expression which will extract the content from the record for
this field. Only a subset of Xpath syntax is supported.

commonField Optional. If true, then when this field is encountered in a record it will be copied to
future records when creating a Solr document.

Solr Reference Guide Jan 10, 2012

Page of 196 397

Example:

Solr Reference Guide Jan 10, 2012

Page of 197 397

<!-- slashdot RSS Feed --->

<dataConfig>

 <dataSource type="HttpDataSource" />

 <document>

<entity name="slashdot"

 pk="link"

 url="http://rss.slashdot.org/Slashdot/slashdot"

 processor="XPathEntityProcessor"

 <!-- forEach sets up a processing loop ; here there are two expressions-->

forEach="/RDF/channel | /RDF/item"

 transformer="DateFormatTransformer">

 <field column="source"

 xpath="/RDF/channel/title"

 commonField="true" />

 <field column="source-link"

 xpath="/RDF/channel/link"

 commonField="true"/>

 <field column="subject"

 xpath="/RDF/channel/subject"

 commonField="true" />

 <field column="title"

 xpath="/RDF/item/title" />

 <field column="link"

 xpath="/RDF/item/link" />

 <field column="description"

 xpath="/RDF/item/description" />

 <field column="creator"

 xpath="/RDF/item/creator" />

 <field column="item-subject"

 xpath="/RDF/item/subject" />

 <field column="date"

 xpath="/RDF/item/date"

 dateTimeFormat="yyyy-MM-dd'T'hh:mm:ss" />

 <field column="slash-department"

 xpath="/RDF/item/department" />

 <field column="slash-section"

 xpath="/RDF/item/section" />

 <field column="slash-comments"

 xpath="/RDF/item/comments" />

 </entity>

 </document>

 </dataConfig>

http://wiki.apache.org/solr/MailEntityProcessor

http://wiki.apache.org/solr/MailEntityProcessor

Solr Reference Guide Jan 10, 2012

Page of 198 397

The FileListEntityProcessor
This processor is basically a wrapper, and is designed to generate a set of files satisfying conditions
specified in the attributes which can then be passed to another processor, such as the

. The entity information for this processor would be nested within theXPathEntityProcessor
FileListEnitity entry. It generates four implicit fields: , , fileAbsolutePath fileSize

, which can be used in the nested processor. This processor does notfileLastModified fileName

use a data source.

The attributes specific to this processor are described in the table below:

Attribute Use

fileName Required. A regular expression pattern to identify files to be included.

basedir Required. The base directory (absolute path).

recursive Whether to search directories recursively. Default is 'false'.

excludes A regular expression pattern to identify files which will be excluded.

newerThan A date in the format or a date math expression (yyyy-MM-ddHH:mm:ss NOW - 2YEARS

).

olderThan A date, using the same formats as newerThan.

rootEntity This should be set to false. This ensures that each row (filepath) emitted by this
processor is considered to be a document.

dataSource Must be set to null.

The example below shows the combination of the FileListEntityProcessor with another processor
which will generate a set of fields from each file found.

Solr Reference Guide Jan 10, 2012

Page of 199 397

<dataConfig>

<dataSource type="FileDataSource"/><document>

 <!-- this outer processor generates a list of files satisfying the conditions

 specified in the attributes -->

 <entity name="f" processor="FileListEntityProcessor"

 fileName=".*xml"

 newerThan="'NOW-30DAYS'"

 recursive="true"

 rootEntity="false"

 dataSource="null"

 baseDir="/my/document/directory">

 <!-- this processor extracts content using Xpath from each file found -->

<entity name="nested" processor="XPathEntityProcessor"

 forEach="/rootelement" url="${f.fileAbsolutePath}" >

 <field column="name" xpath="/rootelement/name"/>

 <field column="number" xpath="/rootelement/number"/>

 </entity>

 </entity>

 </document>

</dataConfig>

LineEntityProcessor
This EntityProcessor reads all content from the data source on a line by line basis and returns a
field called for each line read. The content is not parsed in any way; however, you mayrawLine

add transformers to manipulate the data within the field, or to create other additionalrawLine

fields.

The lines read can be filtered by two regular expressions specified with the and acceptLineRegex

 attributes. The table below describes the LineEntityProcessor's attributes:omitLineRegex

Attribute Description

url A required attribute that specifies the location of the input file in a way that is
compatible with the configured data source. If this value is relative and you are
using FileDataSource or URLDataSource, it assumed to be relative to baseLoc.

acceptLineRegex An optional attribute that if present discards any line which does not match the
regExp.

omitLineRegex An optional attribute that is applied after any acceptLineRegex and that
discards any line which matches this regExp.

Solr Reference Guide Jan 10, 2012

Page of 200 397

For example:

<entity name="jc"

 processor="LineEntityProcessor"

 acceptLineRegex="^.*\.xml$"

 omitLineRegex="/obsolete"

 url="file:///Volumes/ts/files.lis"

 rootEntity="false"

 dataSource="myURIreader1"

 transformer="RegexTransformer,DateFormatTransformer"

 >

 ...

While there are use cases where you might need to create a Solr document for each line read from
a file, it is expected that in most cases that the lines read by this processor will consist of a
pathname, which in turn will be consumed by another EntityProcessor, such as

.XPathEntityProcessor

PlainTextEntityProcessor
This EntityProcessor reads all content from the data source into an single implicit field called

. The content is not parsed in any way, however you may add transformers toplainText

manipulate the data within the as needed, or to create other additional fields.plainText

For example:

<entity processor="PlainTextEntityProcessor" name="x" url="http://abc.com/a.txt"

dataSource="data-source-name">

 <!-- copies the text to a field called 'text' in Solr-->

 <field column="plainText" name="text"/>

</entity>

Ensure that the dataSource is of type (,).DataSource<Reader> FileDataSource URLDataSource

Transformers
Transformers manipulate the fields in a document returned by an entity. A transformer can create
new fields or modify existing ones. You must tell the entity which transformers your import
operation will be using, by adding an attribute containing a comma separated list to the <entity>
element.

<entity name="abcde"

 transformer="org.apache.solr....,my.own.transformer,..." />

http://wiki.apache.org/solr/PathEntityProcessor

Solr Reference Guide Jan 10, 2012

Page of 201 397

Specific transformation rules are then added to the attributes of a element, as shown in<field>

the examples below. The transformers are applied in the order in which they are specified in the
transformer attribute.

The Data Import Handler contains several built-in transformers. You can also write your own
custom transformers, as described in the Solr Wiki (see

). The ScriptTransformer (described below)http://wiki.apache.org/solr/DIHCustomTransformer
offers an alternative method for writing your own transformers.

Solr includes the following built-in transformers:

Transformer Name Use

ClobTransformer Used to create a String out of a Clob type in database.

DateFormatTransformer Parse date/time instances.

HTMLStripTransformer Strip HTML from a field.

LogTransformer Used to log data to log files or a console.

NumberFormatTransformer Uses the NumberFormat class in java to parse a string into a
number.

RegexTransformer Use regular expressions to manipulate fields.

ScriptTransformer Write transformers in Javascript or any other scripting language
supported by Java. Requires Java 6.

TemplateTransformer Transform a field using a template.

These transformers are described below.

ClobTransformer
You can use the ClobTransformer to create a string out of a CLOB in a database. A CLOB is a
character large object: a collection of character data typically stored in a separate location that is
referenced in the database. See . Here's anhttp://en.wikipedia.org/wiki/Character_large_object
example of invoking the ClobTransformer.

<entity name="e" transformer="ClobTransformer" ..>

<field column="hugeTextField" clob="true" />

...

</entity>

The ClobTransformer accepts these attributes:

http://wiki.apache.org/solr/DIHCustomTransformer
http://en.wikipedia.org/wiki/Character_large_object

Solr Reference Guide Jan 10, 2012

Page of 202 397

Attribute Description

clob Boolean value to signal if ClobTransformer should process this field or not. If this
attribute is omitted, then the corresponding field is not transformed.

sourceColName The source column to be used as input. If this is absent source and target are
same

The DateFormatTransformer
This transformer converts dates from one format to another. This would be useful, for example, in
a situation where you wanted to convert a field with a fully specified date/time into a less precise
date format, for use in faceting.

DateFormatTransformer applies only on the fields with an attribute . Other fieldsdateTimeFormat

are not modified.

This transformer recognizes the following attributes:

Attribute Description

dateTimeFormat The format used for parsing this field. This must comply with the syntax of the
 class.JavaSimpleDateFormat

sourceColName The column on which the dateFormat is to be applied. If this is absent source
and target are same.

Here is example code that returns the date rounded up to the month "2007-JUL":

<entity name="en" pk="id" transformer="DateTimeTransformer" ... >

 ...

 <field column="date"

 sourceColName="fulldate"

 dateTimeFormat="yyyy-MMM"/>

</entity>

The HTMLStripTransformer
You can use this transformer to strip HTML out of a field. For example:

<entity name="e" transformer="HTMLStripTransformer" ..>

<field column="htmlText" stripHTML="true" />

...

</entity>

http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

Solr Reference Guide Jan 10, 2012

Page of 203 397

There is one attribute for this transformer, , which is a boolean value (true/false) tostripHTML

signal if the HTMLStripTransformer should process the field or not.

The LogTransformer
You can use this transformer to log data to the console or log files. For example:

<entity ...

transformer="LogTransformer"

logTemplate="The name is $\{e.name\}" logLevel="debug" >

....

</entity>

Unlike other transformers, the LogTransformer does not apply to any field, so the attributes are
applied on the entity itself.

The NumberFormatTransformer
Use this transformer to parse a number from a string, converting it into the specified format, and
optionally using a different locale.

NumberFormatTransformer will be applied only to fields with an attribute .formatStyle

This transformer recognizes the following attributes:

Attribute Description

formatStyle The format used for parsing this field. The value of the attribute must be one of
(). This uses the semantics of the Javanumber|percent|integer|currency

NumberFormat class.

sourceColName The column on which the NumberFormat is to be applied. This is attribute is
absent. The source column and the target column are the same.

locale The locale to be used for parsing the strings. If this is absent, the system's
default locale is used. It must be specified as language-country. For example,

.en-US

For example:

Solr Reference Guide Jan 10, 2012

Page of 204 397

<entity name="en" pk="id" transformer="NumberFormatTransformer" ...>

 ...

<!-- treat this field as UK pounds -->

<field name="price_uk"

 column="price"

 formatStyle="currency"

 locale="en-UK" />

</entity>

The RegexTransformer
The regex transformer helps in extracting or manipulating values from fields (from the source)
using Regular Expressions. The actual class name is

. But as it belongs to the defaultorg.apache.solr.handler.dataimport.RegexTransformer

package the package-name can be omitted.

The table below describes the attributes recognized by the regex transformer.

Attribute Description

regex The regular expression that is used to match against the column or
sourceColName's value(s). If replaceWith is absent, each regex is takengroup
as a value and a list of values is returned.

sourceColName The column on which the regex is to be applied. If not present, then the source
and target are identical.

splitBy Used to split a string. It returns a list of values.

groupNames A comma separated list of field column names, used where the regex contains
groups and each group is to be saved to a different field. If some groups are not
to be named leave a space between commas.

replaceWith Used along with regex . It is equivalent to the method new
.String(<sourceColVal>).replaceAll(<regex>, <replaceWith>)

Here is an example of configuring the regex transformer:

Solr Reference Guide Jan 10, 2012

Page of 205 397

<entity name="foo" transformer="RegexTransformer"

query="select full_name , emailids from foo"/>

... />

 <field column="full_name"/>

 <field column="firstName" regex="Mr(\w*)\b.*" sourceColName="full_name"/>

 <field column="lastName" regex="Mr.*?\b(\w*)" sourceColName="full_name"/>

 <!-- another way of doing the same -->

 <field column="fullName" regex="Mr(\w*)\b(.*)" groupNames="firstName,lastName"/>

 <field column="mailId" splitBy="," sourceColName="emailids"/>

</entity>

In this example, regex and sourceColName are custom attributes used by the transformer. The
transformer reads the field from the resultset and transforms it to two new target fields,full_name

 and . Even though the query returned only one column, , in thefirstName lastName full_name

result set, the Solr document gets two extra fields and which are "derived"firstName lastName

fields. These new fields are only created if the regexp matches.

The emailids field in the table can be a comma-separated value. It ends up producing one or more
email IDs, and we expect the to be a multivalued field in Solr.mailId

Note that this transformer can either be used to split a string into tokens based on a splitBy
pattern, or to perform a string substitution as per replaceWith, or it can assign groups within a
pattern to a list of groupNames. It decides what it is to do based upon the above attributes

, and which are looked for in order. This first one found is actedsplitBy replaceWith groupNames

upon and other unrelated attributes are ignored.

The ScriptTransformer
The script transformer allows arbitrary transformer functions to be written in any scripting
language supported by Java, such as Javascript, JRuby, Jython, Groovy, or BeanShell. Javascript is
integrated into Java 6; you'll need to integrate other languages yourself.

Each function you write must accept a row variable (which corresponds to a Java
, thus permitting operations). Thus you can modify the valueMap<String,Object> get,put,remove

of an existing field or add new fields. The return value of the function is the returned object.

The script is inserted into the DIH configuration file file at the top level and is called once for each
row.

Here is a simple example.

Solr Reference Guide Jan 10, 2012

Page of 206 397

<dataconfig>

 <!-- simple script to generate a new row, converting a temperature from Fahrenheit

to Centigrade -->

 <script>

<CDATA

 function f2c(row) { var tempf, tempc; tempf = row.get('temp_f'); if (tempf !=

null) { tempc = (tempf - 32.0)*5.0/9.0

 row.put('temp_c', temp_c);

 }

 return row;

 }

 >

</script>

 <document>

 <!-- the function is specified as an entity attribute -->

 <entity name="e1" pk="id" transformer="script:f2c" query="select * from X">

 </entity>

 </document>

</dataConfig>

The TemplateTransformer
You can use the template transformer to construct or modify a field value, perhaps using the value
of other fields. You can insert extra text into the template.

<entity name="en" pk="id" transformer="TemplateTransformer" ...>

 ...

<!-- generate a full address from fields containing the component parts -->

<field column="full_address"

 template="$en.\{street\},$en\{city\},$en\{zip\}" />

</entity>

Special Commands for the Data Import Handler
You can pass special commands to the DIH by adding any of the variables listed below to any row
returned by any component:

Variable Description

Solr Reference Guide Jan 10, 2012

Page of 207 397

$skipDoc Skip the current document; that is, do not add it to Solr. The value can be
the string .true|false

$skipRow Skip the current row. The document will be added with rows from other
entities. The value can be the string true|false

$docBoost Boost the current document. The boost value can be a number or the
 conversion of a number.toString

$deleteDocById Delete a document from Solr with this ID. The value has to be the
 value of the document.uniqueKey

$deleteDocByQuery Delete documents from Solr using this query. The value must be a Solr
Query.

The Data Import Handler Development Console
The Data Import Handler includes a browser-based console to help with development. You can
access the console at this address: .http://_host_:_port_/solr/admin/dataimport.jsp

The screenshot below shows the DIH Development Console.

Solr Reference Guide Jan 10, 2012

Page of 208 397

The Data Import Handler Console

The console features two panels: the left-hand panel holds input (a file in the dataconfig.xml

 directory), and the right-hand panel shows output.conf/

When you click the button, the console runs the configuration and shows theDebug Now
documents created.

You can configure the start and rows parameters to debug a specific range of documents: for
example, documents 115 to 118 as shown in the figure below.

Solr Reference Guide Jan 10, 2012

Page of 209 397

Limiting Output to a Specific Set of Rows

Choose the "verbose" option, as shown in the figure below, to see details about the intermediate
steps in a response: the original data the query emitted, the data that went into the transformer,
and the data that the transformer then produced.

Solr Reference Guide Jan 10, 2012

Page of 210 397

Verbose mode shows details about intermediate steps

If an exception occurred during the run, the console's right-hand panel shows the stacktrace.

Fields produced by the entities or transformers may not be visible in documents if the
fields are either not present in the of there is an explicit declaration.schema.xml <field>

Solr Reference Guide Jan 10, 2012

Page of 211 397

Detecting Languages During Indexing
Solr can identify languages and map text to language-specific fields during indexing using the

 UpdateRequestProcessor. Solr supports two implementations of this feature:langid

Tika's language detection feature: http://tika.apache.org/0.10/detection.html
LangDetect language detection: http://code.google.com/p/language-detection/

You can see a comparison between the two implementations here:
. In general,http://blog.mikemccandless.com/2011/10/accuracy-and-performance-of-googles.html

the LangDetect implementation supports more languages with higher performance.

For specific information on each of these language identification implementations, including a list of
supported languages for each, see the relevant project websites. For more information about the

 UpdateRequestProcessor, see the Solr wiki: .langid http://wiki.apache.org/solr/LanguageDetection
For more information about language analysis in Solr, see .Language Analysis

Configuring Language Detection
You can configure the UpdateRequestProcessor in . Both implementationslangid solrconfig.xml

take the same parameters, which are described in the following section. At a minimum, you must
specify the fields for language identification and a field for the resulting language code.

Configuring Tika Language Detection
Here is an example of a minimal Tika configuration in :langid solrconfig.xml

<processor

class="org.apache.solr.update.processor.TikaLanguageIdentifierUpdateProcessorFactory">

 <lst name="defaults">

 <str name="langid.fl">title,subject,text,keywords</str>

 <str name="langid.langField">language_s</str>

 </lst>

</processor>

Configuring LangDetect Language Detection
Here is an example of a minimal LangDetect configuration in :langid solrconfig.xml

http://tika.apache.org/0.10/detection.html
http://code.google.com/p/language-detection/
http://blog.mikemccandless.com/2011/10/accuracy-and-performance-of-googles.html
http://wiki.apache.org/solr/LanguageDetection

Solr Reference Guide Jan 10, 2012

Page of 212 397

<processor

class="org.apache.solr.update.processor.LangDetectLanguageIdentifierUpdateProcessorFactory">

<lst name="defaults">

 <str name="langid.fl">title,subject,text,keywords</str>

 <str name="langid.langField">language_s</str>

 </lst>

</processor>

langid Parameters
As previously mentioned, both implementations of the UpdateRequestProcessor take thelangid

same parameters.

Parameter Type Default Required Description

langid Boolean true no Enables and disables language
detection.

langid.fl string none yes A comma- or space-delimited list of
fields to be processed by .langid

langid.langField string none yes Specifies the field for the returned
language code.

langid.langsField multivalued
string

none no Specifies the field for a list of returned
language codes. If you use

, eachlangid.map.individual

detected language will be added to
this field.

langid.overwrite Boolean false no Specifies whether the content of the
 and fields willlangField langsField

be overwritten if they already contain
values.

Solr Reference Guide Jan 10, 2012

Page of 213 397

langid.threshold float 0.5 no Specifies a threshold value between 0
and 1 that the language identification
score must reach before langid
accepts it. With longer text fields, a
high threshold such at 0.8 will give
good results. For shorter text fields,
you may need to lower the threshold
for language identification, though
you will be risking somewhat lower
quality results. We recommend
experimenting with your data to tune
your results.

langid.whitelist string none no Specifies a list of allowed language
identification codes. Use this in
combination with tolangid.map

ensure that you only index documents
into fields that are in your schema.

langid.map Boolean false no Enables field name mapping. If true,
Solr will map field names for all fields
listed in .langid.fl

langid.map.fl string none no A comma-separated list of fields for
 that is different than thelangid.map

fields specified in .langid.fl

langid.map.keepOrig Boolean false no If true, Solr will copy the field during
the field name mapping process,
leaving the original field in place.

langid.map.individual Boolean false no If true, Solr will detect and map
languages for each field individually.

langid.map.individual.fl string none no A comma-separated list of fields for
use with langid.map.individual
that is different than the fields
specified in .langid.fl

Solr Reference Guide Jan 10, 2012

Page of 214 397

langid.fallbackFields string none no If no language is detected that meets
the score, or if thelangid.threshold

detected language is not on the
, this field specifieslangid.whitelist

language codes to be used as fallback
values. If no appropriate fallback
languages are found, Solr will use the
language code specified in

.langid.fallback

langid.fallback string none no Specifies a language code to use if no
language is detected or specified in

.langid.fallbackFields

langid.map.lcmap string none no A space-separated list specifying a
language code map. For example, you
might use this to make Chinese,
Japanese, and Korean language fields
to a field in your schema, or toCJK

map American and British English
fields to a single field.EN

langid.map.pattern Java
regular
expression

none no By default, fields are mapped as
<field>_<language>. To change this
pattern, you can specify a Java
regular expression in this parameter.

langid.map.replace Java
replace

none no By default, fields are mapped as
<field>_<language>. To change this
pattern, you can specify a Java
replace in this parameter.

langid.enforceSchema Boolean true no If false, the processor doeslangid

not validate field names against your
schema. This may be useful if you
plan to rename or delete fields later in
the UpdateChain.

Solr Reference Guide Jan 10, 2012

Page of 215 397

1.

2.

3.

UIMA Integration
You can integrate the Apache Unstructured Information Management Architecture () withUIMA
Solr. UIMA lets you define custom pipelines of Analysis Engines that incrementally add metadata to
your documents as annotations.

For more information about Solr UIMA integration, see .https://wiki.apache.org/solr/SolrUIMA

Configuring UIMA
The SolrUIMA UpdateRequestProcessor is a custom update request processor that takes documents
being indexed, sends them to a UIMA pipeline, and then returns the documents enriched with the
specified metadata. To configure UIMA for Solr, follow these steps:

Copy (under) and its librariesapache-solr-uima-3.x.0.jar /apache-solr-3.x.0/dist/

(under) to a Solr libraries directory, or set tags in contrib/uima/lib <lib/>

 appropriately to point to those jar files:solrconfig.xml

<lib dir="../../contrib/uima/lib" />

<lib dir="../../dist/" regex="apache-solr-uima-\d.*\.jar" />

Modify , adding your desired metadata fields specifying proper values for type,schema.xml

indexed, stored, and multiValued options. For example:

<field name="language" type="string" indexed="true" stored="true"

required="false"/>

<field name="concept" type="string" indexed="true" stored="true"

multiValued="true" required="false"/>

<field name="sentence" type="text" indexed="true" stored="true"

multiValued="true" required="false" />

Add the following snippet to :solrconfig.xml

<updateRequestProcessorChain name="uima">

 <processor

class="org.apache.solr.uima.processor.UIMAUpdateRequestProcessorFactory">

 <lst name="uimaConfig">

 <lst name="runtimeParameters">

 <str name="keyword_apikey">VALID_ALCHEMYAPI_KEY</str>

 <str name="concept_apikey">VALID_ALCHEMYAPI_KEY</str>

 <str name="lang_apikey">VALID_ALCHEMYAPI_KEY</str>

 <str name="cat_apikey">VALID_ALCHEMYAPI_KEY</str>

 <str name="entities_apikey">VALID_ALCHEMYAPI_KEY</str>

 <str name="oc_licenseID">VALID_OPENCALAIS_KEY</str>

 </lst>

https://uima.apache.org/
https://wiki.apache.org/solr/SolrUIMA

Solr Reference Guide Jan 10, 2012

Page of 216 397

3.

 <str

name="analysisEngine">/org/apache/uima/desc/OverridingParamsExtServicesAE.xml</str>

<!-- Set to true if you want to continue indexing even if text processing fails.

 Default is false. That is, Solr throws RuntimeException and

 never indexed documents entirely in your session. -->

 <bool name="ignoreErrors">true</bool>

 <!-- This is optional. It is used for logging when text processing fails.

 If logField is not specified, uniqueKey will be used as logField.

 <str name="logField">id</str>

 -->

 <lst name="analyzeFields">

 <bool name="merge">false</bool>

 <arr name="fields">

 <str>text</str>

 </arr>

 </lst>

 <lst name="fieldMappings">

 <lst name="type">

 <str name="name">org.apache.uima.alchemy.ts.concept.ConceptFS</str>

 <lst name="mapping">

 <str name="feature">text</str>

 <str name="field">concept</str>

 </lst>

 </lst>

 <lst name="type">

 <str name="name">org.apache.uima.alchemy.ts.language.LanguageFS</str>

 <lst name="mapping">

 <str name="feature">language</str>

 <str name="field">language</str>

 </lst>

 </lst>

 <lst name="type">

 <str name="name">org.apache.uima.SentenceAnnotation</str>

 <lst name="mapping">

 <str name="feature">coveredText</str>

 <str name="field">sentence</str>

 </lst>

 </lst>

 </lst>

 </lst>

 </processor>

 <processor class="solr.LogUpdateProcessorFactory" />

 <processor class="solr.RunUpdateProcessorFactory" />

 </updateRequestProcessorChain>

Solr Reference Guide Jan 10, 2012

Page of 217 397

3.

4.

 is your AlchemyAPI Access Key. You need to register anVALID_ALCHEMYAPI_KEY

AlchemyAPI Access key to use AlchemyAPI services:
.http://www.alchemyapi.com/api/register.html

 is your Calais Service Key. You need to register a CalaisVALID_OPENCALAIS_KEY

Service key to use the Calais services: .http://www.opencalais.com/apikey

 must contain an AE descriptor inside the specified path in theanalysisEngine

classpath.

 must contain the input fields that need to be analyzed by UIMA. If analyzeFields

 then their content will be merged and analyzed only once.merge=true

Field mapping describes which features of which types should go in a field.

In your replace the existing default UpdateRequestHandler or create a newsolrconfig.xml

UpdateRequestHandler:

<requestHandler name="/update" class="solr.XmlUpdateRequestHandler">

 <lst name="defaults">

 <str name="update.processor">uima</str>

 </lst>

 </requestHandler>

Once you are done with the configuration your documents will be automatically enriched with the
specified fields when you index them.

http://www.alchemyapi.com/api/register.html
http://www.opencalais.com/apikey

Solr Reference Guide Jan 10, 2012

Page of 218 397

Content Streams
When Solr RequestHandlers are accessed using path based URLs, the objectSolrQueryRequest

containing the parameters of the request may also contain a list of ContentStreams containing bulk
data for the request. (The name SolrQueryRequest is a bit misleading: it is involved in all requests,
regardless of whether it is a query request or an update request.)

Stream Sources
Currently RequestHandlers can get content streams in a variety of ways:

For multipart file uploads, each file is passed as a stream.
For POST requests where the content-type is not , theapplication/x-www-form-urlencoded

raw POST body is passed as a stream.
The contents of parameter is passed as a stream.stream.body

If remote streaming is enabled, the contents of each and stream.url stream.file

parameters are fetched and passed as a stream.

If the contentType is , the full POST body is parsed asapplication/x-www-form-urlencoded

parameters and included in the Solr parameters.

By default, curl sends a header. If youcontentType="application/x-www-form-urlencoded"

need to test a SolrContentHeader content stream, you will need to set the content type with the
"-H" flag. For example:

curl $URL -H 'Content-type:text/xml; charset=utf-8' --data-binary @$f

RemoteStreaming
Remote streaming allows you to send the contents of a URL as a stream to a given
SolrRequestHandler. You could use remote streaming to send a remote or local file to an update
plugin. For security reasons, remote streaming is disabled in the included in thesolrconfig.xml

example directory.

If you enable streaming, be aware that this allows to send a request to any URL oranyone
local file. If dump is enabled, it will allow anyone to view any file on your system.

<!--Make sure your system has authentication before enabling remote streaming!-->

 <requestParsers enableRemoteStreaming="true" multipartUploadLimitInKB="2048" />

Solr Reference Guide Jan 10, 2012

Page of 219 397

Debugging Requests
The example includes a "dump" RequestHandler:solrconfig.xml

<requestHandler name="/debug/dump" class="solr.DumpRequestHandler" />

This handler simply outputs the contents of the SolrQueryRequest using the specified writer type
. This is a useful tool to help understand what streams are available to to the RequestHandlers.wt

Solr Reference Guide Jan 10, 2012

Page of 220 397

Searching
This section describes how Solr works with search requests. It covers the following topics:

: Conceptual information about searching with Solr.Overview of Searching in Solr

: Conceptual information about relevance in search results.Relevance

: A brief conceptual overview of query syntax and parsing.Query Syntax and Parsing

: Detailed information about Solr's DisMax query parser.The DisMax Query Parser

: Detailed information about Solr's Extended DisMax (eDisMax)The Extended DisMax Query Parser
Query Parser.

: Detailed information about the standard Lucene query parser.The Standard Query Parser

: Detailed information about the common query parameters in Solr.Common Query Parameters

: Detailed information about arguments specific to a particular queryLocal Parameters in Queries
parameter.

: Detailed information about parameters for generating relevancy scores usingFunction Queries
values from one or more numeric fields.

: Detailed information about Solr's highlighting utilities.Highlighting

: Detailed information about Solr's similar results query component.MoreLikeThis

: Detailed information about categorizing search results based on indexed terms.Faceting

: Detailed information about grouping results based on common field values.Result Grouping

: Detailed information about Solr's spelling checker.Spell Checking

: Detailed information about Suggester, Solr's powerful autosuggest component.Suggester

: Detailed information about Solr's spatial search capabilities.Spatial Search

: Detailed information about accessing indexed terms and the documentsThe Terms Component
that include them.

: Detailed information about returning term information about specificThe Term Vector Component
documents.

Solr Reference Guide Jan 10, 2012

Page of 221 397

: Detailed information about returning information from numeric fields withinThe Stats Component
a document set.

: Detailed information about configuring and using Solr's response writers.Response Writers

Solr Reference Guide Jan 10, 2012

Page of 222 397

Overview of Searching in Solr
Solr offers a rich, flexible set of features for search. To understand the extent of this flexibility, it's
helpful to begin with an overview of the steps and components involved in a Solr search.

When a user runs a search in Solr, the search query is processed by a . A requestrequest handler
handler is a Solr plug-in that defines the logic to be used when Solr processes a request. Solr
supports a variety of request handlers. Some are designed for processing search queries, while
others manage tasks such as index replication.

Search applications select a particular request handler by default. In addition, applications can be
configured to allow users to override the default selection in preference of a different request
handler.

To process a search query, a request handler calls a , which interprets the terms andquery parser
parameters of a query. Different query parsers support different syntax. The default query parser
is the query parser. Solr also includes an earlier "standard" (Lucene) query parser, and an DisMax

 (eDisMax) query parser. The query parser's syntax allows for greaterExtended DisMax standard
precision in searches, but the DisMax query parser is much more tolerant of errors. The DisMax
query parser is designed to provide an experience similar to that of popular search engines such as
Google, which rarely display syntax errors to users. The Extended DisMax query parser is an
improved version of DisMax that handles the full Lucene query syntax while still tolerating syntax
errors. It also includes several additional features.

In addition, there are that are accepted by all query parsers.common query parameters

Input to a query parser can include:

search strings—that is, to search for in the indexterms
 by increasing the importance of particular strings orparameters for fine-tuning the query

fields, by applying Boolean logic among the search terms, or by excluding content from the
search results

, such as specifying theparameters for controlling the presentation of the query response
order in which results are to be presented or limiting the response to particular fields of the
search application's schema.

Search parameters may also specify a . As part of a search response, a query filterquery filter
runs a query against the entire index and caches the results. Because Solr allocates a separate
cache for filter queries, the strategic use of filter queries can improve search performance. (Despite
their similar names, query filters are not related to analysis filters. Query filters perform queries at
search time against data already in the index, while analysis filters, such as Tokenizers, parse
content for indexing, following specified rules).

Solr Reference Guide Jan 10, 2012

Page of 223 397

A search query can request that certain terms be highlighted in the search response; that is, the
selected terms will be displayed in colored boxes so that they "jump out" on the screen of search
results. can make it easier to find relevant passages in long documents returned in aHighlighting
search. Solr supports multi-term highlighting. Solr includes a rich set of search parameters for
controlling how terms are highlighted.

Search responses can also be configured to include (document excerpts) featuringsnippets
highlighted text. Popular search engines such as Google and Yahoo! return snippets in their search
results: 3-4 lines of text offering a description of a search result.

To help users zero in on the content they're looking for, Solr supports two special ways of grouping
search results to aid further exploration: faceting and clustering.

 is the arrangement of search results into categories (which are based on indexed terms).Faceting
Within each category, Solr reports on the number of hits for relevant term, which is called a facet
constraint. Faceting makes it easy for users to explore search results on sites such as movie sites
and product review sites, where there are many categories and many items within a category.

The image below shows an example of faceting from the CNET Web site, which was the first site to
use Solr.

Faceting makes use of fields defined when the search applications were indexed. In the example
above, these fields include categories of information that are useful for describing digital cameras:
manufacturer, resolution, and zoom range.

Solr Reference Guide Jan 10, 2012

Page of 224 397

 groups search results by similarities discovered when a search is executed, rather thanClustering
when content is indexed. The results of clustering often lack the neat hierarchical organization
found in faceted search results, but clustering can be useful nonetheless. It can reveal unexpected
commonalities among search results, and it can help users rule out content that isn't pertinent to
what they're really searching for.

Solr also supports a feature called , which enables users to submit new queries thatMoreLikeThis
focus on particular terms returned in an earlier query. MoreLikeThis queries can make use of
faceting or clustering to provide additional aid to users.

A Solr component called a manages the final presentation of the query response.response writer
Solr includes a variety of response writers, including an and a XML Response Writer JSON Response

.Writer

The diagram below summarizes some key elements of the search process.

The Velocity Search UI
Solr includes an example search UI based on the (also known as Solritas)VelocityResponseWriter
than demonstrates several useful features, such as searching, faceting, highlighting, autocomplete,
and geospatial searching.

You can access the Velocity Search UI here: http://localhost:8983/solr/browse

https://wiki.apache.org/solr/VelocityResponseWriter

Solr Reference Guide Jan 10, 2012

Page of 225 397

The Velocity Search UI

For more information about the Velocity Search UI, see
.https://wiki.apache.org/solr/VelocityResponseWriter

https://wiki.apache.org/solr/VelocityResponseWriter

Solr Reference Guide Jan 10, 2012

Page of 226 397

Relevance
 is the degree to which a query response satisfies a user who is searching forRelevance

information.

The relevance of a query response depends on the context in which the query was performed. A
single search application may be used in different contexts by users with different needs and
expectations. For example, a search engine of climate data might be used by a university
researcher studying long-term climate trends, a farmer interested in calculating the likely date of
the last frost of spring, a civil engineer interested in rainfall patterns and the frequency of floods,
and a college student planning a vacation to a region and wondering what to pack. Because the
motivations of these users vary, the relevance of any particular response to a query will vary as
well.

How comprehensive should query responses be? Like relevance in general, the answer to this
question depends on the context of a search. The cost of finding a particular document innot
response to a query is high in some contexts, such as a legal e-discovery search in response to a
subpoena, and quite low in others, such as a search for a cake recipe on a Web site with dozens or
hundreds of cake recipes. When configuring Solr, you should weigh comprehensiveness against
other factors such as timeliness and ease-of-use.

The e-discovery and recipe examples demonstrate the importance of two concepts related to
relevance:

 is the percentage of documents in the returned results that are relevant.Precision
 is the percentage of relevant results returned out of all relevant results in the system.Recall

Obtaining perfect recall is trivial: simply return every document in the collection for every
query.

Returning to the examples above, it's important for an e-discovery search application to have
100% recall returning all the documents that are relevant to a subpoena. It's far less important
that a recipe application offer this degree of precision, however. In some cases, returning too many
results in casual contexts could overwhelm users. In some contexts, returning fewer results that
have a higher likelihood of relevance may be the best approach.

Using the concepts of precision and recall, it's possible to quantify relevance across users and
queries for a collection of documents. A perfect system would have 100% precision and 100%
recall for every user and every query. In other words, it would retrieve all the relevant documents
and nothing else. In practical terms, when talking about precision and recall in real systems, it is
common to focus on precision and recall at a certain number of results, the most common (and
useful) being ten results.

Solr Reference Guide Jan 10, 2012

Page of 227 397

Through faceting, query filters, and other search components, a Solr application can be configured
with the flexibility to help users fine-tune their searches in order to return the most relevant results
for users. That is, Solr can be configured to balance precision and recall to meet the needs of a
particular user community.

The configuration of a Solr application should take into account:

the needs of the application's various users (which can include ease of use and speed of
response, in addition to strictly informational needs)
the categories that are meaningful to these users in their various contexts (e.g., dates,
product categories, or regions)
any inherent relevance of documents (e.g., it might make sense to ensure that an official
product description or FAQ is always returned near the top of the search results)
whether or not the age of documents matters significantly (in some contexts, the most
recent documents might always be the most important)

Keeping all these factors in mind, it's often helpful in the planning stages of a Solr deployment to
sketch out the types of responses you think the search application should return for sample
queries. Once the application is up and running, you can employ a series of testing methodologies,
such as focus groups, in-house testing, tests and A/B testing to fine tune the configuration ofTREC
the application to best meet the needs of its users.

For more information about relevance, see Grant Ingersoll's tech article Debugging Search
 which is available on the Lucid Imagination Web site.Application Relevance Issues

http://trec.nist.gov
http://www.lucidimagination.com/Community/Hear-from-the-Experts/Articles/Search-Application-Relevance-Issues
http://www.lucidimagination.com/Community/Hear-from-the-Experts/Articles/Search-Application-Relevance-Issues

Solr Reference Guide Jan 10, 2012

Page of 228 397

Query Syntax and Parsing
Solr supports several query parsers, offering search application designers great flexibility in
controlling how queries are parsed.

This section explains how to specify the query parser to be used. It also describes the syntax and
features supported by the main query parsers included with Solr: the Standard Query Parser, the
DisMax query parser, and the Extended DisMax (eDisMax) query parser.

For more detailed information about the many query parsers available in Solr, see
.https://wiki.apache.org/solr/SolrQuerySyntax

Common Query Parameters
The table below summarizes Solr's common query parameters, which are supported by the

, , and Request Handlers.Standard DisMax eDisMax

Lucid Imagination strongly recommends that any future SolrRequestHandlers support these
parameters, as well.

Parameter Description

defType Selects the query parser to be used to process the query.

sort Sorts the response to a query in either ascending or descending order based on the
response's score or another specified characteristic.

start Specifies an offset (by default, 0) into the responses at which Solr should begin
displaying content.

rows Controls how many rows of responses are displayed at a time (default value: 10)

fq Applies a filter query to the search results.

fl Limits the query's responses to a listed set of fields.

debugQuery Causes Solr to include additional debugging information in the response, including
"explain" information for each of the documents returned. Note that this parameter
takes effect if it is present, regardless of its setting.

explainOther Allows clients to specify a Lucene query to identify a set of documents. If
non-blank, the explain info of each document which matches this query, relative to
the main query (specified by the q parameter) will be returned along with the rest
of the debugging information.

https://wiki.apache.org/solr/SolrQuerySyntax

Solr Reference Guide Jan 10, 2012

Page of 229 397

timeAllowed Defines the time allowed for the query to be processed. If the time elapses before
the query response is complete, partial information may be returned.

omitHeader Excludes the header from the returned results, if set to true. The header contains
information about the request, such as the time the request took to complete. The
default is false.

wt Specifies the Response Writer to be used to format the query response.

cache=false By default, Solr caches the results of all queries and filter queries. Set
 to disable caching of the results of a query.cache=false

The following sections describe these parameters in detail.

The defType Parameter
The defType parameter selects the query parser that Solr should use to process the request. For
example:

defType=dismax

In Solr 1.3 and later, the query parser is set to dismax by default.

The sort Parameter
The parameter arranges search results in either ascending () or descending () order.sort asc desc

The parameter can be used with either numerical or alphabetical content.

Solr can sort query responses according to document scores or the value of any indexed field with
a single value (that is, any field whose attributes in include andschema.xml multiValued="false"

), provided that:indexed="true"

the field is non-tokenized (that is, the field has no analyzer and its contents have been been
parsed into tokens, which would make the sorting inconsistent), or

the field uses an analyzer (such as the KeywordTokenizer) that produces only a single term.

If you want to be able to sort on a field whose contents you want to tokenize to facilitate
searching, use the directive in the file to clone the field. Then search on<copyField> schema.xml

the field and sort on its clone.

The table explains how Solr responds to various settings of the parameter.sort

Example of a
sort
Parameter

Result

Solr Reference Guide Jan 10, 2012

Page of 230 397

 If the sort parameter is omitted, sorting is performed as though the parameter
were set to score .desc

score desc Sorts in descending order from the highest score to the lowest score.

price asc Sorts in ascending order of the price field

inStock desc,
price asc

Sorts by the contents of the field in descending order, then withininStock

those results sorts in ascending order by the contents of the price field.

Regarding the sort parameter's arguments:

A sort ordering must include a field name (or as a pseudo field), followed byscore

whitespace (escaped as or in URL strings), followed by a sort direction (or).+ %20 asc desc

Multiple sort orderings can be separated by a comma, using this syntax: sort=<field name>
<direction>[,<field name> <direction>]...

The start Parameter
When specified, the parameter specifies an offset into a query's result set and instructs Solrstart

to begin displaying results from this offset.

The default value is "0". In other words, by default, Solr returns results without an offset,
beginning where the results themselves begin.

Setting the parameter to some other number, such as 3, causes Solr to skip over thestart

preceding records and start at the document identified by the offset.

You can use the parameter this way for paging. For example, if the parameter is set tostart rows

10, you could display three successive pages of results by setting start to 0, then re-issuing the
same query and setting start to 10, then issuing the query again and setting start to 20.

The rows Parameter
You can use the rows parameter to paginate results from a query. The parameter specifies the
maximum number of documents from the complete result set that Solr should return to the client
at one time.

The default value is 10. That is, by default, Solr returns 10 documents at a time in response to a
query.

The fq (Filter Query) Parameter

Solr Reference Guide Jan 10, 2012

Page of 231 397

The parameter defines a query that can be used to restrict the superset of documents that canfq

be returned, without influencing score. It can be very useful for speeding up complex queries, since
the queries specified with are cached independently of the main query. When a later query usesfq

the same filter, there's a cache hit, and filter results are returned quickly from the cache.

When using the parameter, keep in mind the following:fq

The parameter can be specified multiple times in a query. Documents will only be includedfq

in the result if they are in the intersection of the document sets resulting from each instance
of the parameter. In the example below, only documents which have a popularity greater
then 10 and have a section of 0 will match.

fq=popularity:\[10 TO *\]

 & fq=section:0

Filter queries can involve complicated Boolean queries. The above example could also be
written as a single fq with two mandatory clauses like so:

fq=+popularity:\[10 TO *\] +section:0

The document sets from each filter query are cached independently. Thus, concerning the
previous examples: use a single containing two mandatory clauses if those clauses appearfq

together often, and use two separate parameters if they are relatively independent. (Tofq

learn about tuning cache sizes and making sure a filter cache actually exists, see The
.)Well-Configured Solr Instance

As with all parameters: special characters in an URL need to be properly escaped and
encoded as hex values. Online tools are available to help you with URL-encoding. For
example: .http://meyerweb.com/eric/tools/dencoder/

The fl (Field List) Parameter
The parameter limits the information included in a query response to a specified list of fields.fl

The fields need to have been indexed as stored for this parameter to work correctly.

The field list can be specified as a space-separated or comma-separated list of field names. The
string "score" can be used to indicate that the score of each document for the particular query
should be returned as a field. The wildcard character "*" selects all the stored fields in a document.

Field List Result

id name price Return only the id, name, and price fields.

http://meyerweb.com/eric/tools/dencoder/

Solr Reference Guide Jan 10, 2012

Page of 232 397

id,name,price Return only the id, name, and price fields.

id name,
price

Return only the id, name, and price fields.

id score Return the id field and the score.

* Return all the fields in each document. This is the default value of the fl
parameter.

* score Return all the fields in each document, along with each field's score.

As noted in the table above, the default value is "*".

The debugQuery Parameter
If the parameter is present (regardless of its value), then additional debuggingdebugQuery

information will be included in the response, including "explain" info for each of the documents
returned. (The "explain" info tells you why your query matched and indicates which parts of the
query contributed to the overall score.) This debugging info is meant for human consumption. Its
XML format could change in future Solr releases.

The default behavior is not to include debugging information.

The explainOther Parameter
The parameter specifies a Lucene query in order to identify a set of documents. IfexplainOther

this parameter is included and is set to a non-blank value, the query will return debugging
information, along with the "explain info" of each document that matches the Lucene query,
relative to the main query (which is specified by the q parameter). For example:

q=supervillians&debugQuery=on&explainOther=id:juggernaut

The query above allows you to examine the scoring explain info of the top matching documents,
compare it to the explain info for documents matching , and determine why theid:juggernaut

rankings are not as you expect.

The default value of this parameter is blank, which causes no extra "explain info" to be returned.

The timeAllowed Parameter
This parameter specifies the amount of time, in milliseconds, allowed for a search to complete. If
this time expires before the search is complete, any partial results will be returned.

The omitHeader Parameter
This parameter may be set to either true or false.

Solr Reference Guide Jan 10, 2012

Page of 233 397

If set to true, this parameter excludes the header from the returned results. The header contains
information about the request, such as the time it took to complete. The default value for this
parameter is false.

The wt Parameter
The parameter selects the Response Writer that Solr should use to format the query's response.wt

For detailed descriptions of Response Writers, see .Response Writers

The cache=false Parameter
Solr caches the results of all queries and filter queries by default. To disable result caching, set the

 parameter.cache=false

You can also use the option to control the order in which non-cached filter queries arecost

evaluated. This allows you to order less expensive non-cached filters before expensive non-cached
filters.

For very high cost filters, if and and the query implements the cache=false cost>=100

 interface, a Collector will be requested from that query and used to filter documentsPostFilter

after they have matched the main query and all other filter queries. There can be multiple post
filters; they are also ordered by cost.

For example:

// normal function range query used as a filter, all matching documents generated up

front and cached

fq={!frange l=10 u=100}mul(popularity,price)

// function range query run in parallel with the main query like a traditional lucene

filter

fq={!frange l=10 u=100 cache=false}mul(popularity,price)

// function range query checked after each document that already matches the query and

all other filters.

 Good for really expensive function queries.

fq={!frange l=10 u=100 cache=false cost=100}mul(popularity,price)

The Standard Query Parser
Before Solr 1.3, the Standard Request Handler called the standard query parser as the default
query parser. In versions since Solr 1.3, the Standard Request Handler calls the DisMax query
parser as the default query parser. You can configure Solr to call the standard query parser
instead, if you like.

Solr Reference Guide Jan 10, 2012

Page of 234 397

The advantage of the standard query parser is that it enables users to specify very precise queries.
The disadvantage is that it is less tolerant of syntax errors than the query parser. TheDisMax
DisMax query parser is designed to throw as few errors as possible.

Topics covered in this section:

Standard Query Parser Parameters
The Standard Query Parser's Response
Specifying Terms for the Standard Query Parser
Specifying Fields in a Query to the Standard Query Parser
Boolean Operators Supported by the Standard Query Parser
Grouping Terms to Form Subqueries
Differences between Lucene Query Parser and the Solr Standard Query Parser

Standard Query Parser Parameters
In addition to the , , , and Common Query Parameters Faceting Parameters Highlighting Parameters

, the standard query parser supports the parameters described in theMoreLikeThis Parameters
table below.

Parameter Description

q Defines a query using standard query syntax. This parameter is mandatory.

q.op Specifies the default operator for query expressions, overriding the default operator
specified in the file. Possible values are "AND" or "OR".schema.xml

df Specifies a default field, overriding the definition of a default field in the schema.xml
file.

Default parameter values are specified in , or overridden by query-time values insolrconfig.xml

the request.

The Standard Query Parser's Response
By default, the response from the standard query parser contains one block, which is<result>

unnamed. If the is used, then an additional block will be returned, parameterdebugQuery <lst>

using the name "debug". This will contain useful debugging info, including the original query string,
the parsed query string, and explain info for each document in the <result> block. If the

 is also used, then additional explain info will be provided for all the parameterexplainOther

documents matching that query.

Sample Responses

Solr Reference Guide Jan 10, 2012

Page of 235 397

This section presents examples of responses from the standard query parser.

The URL below submits a simple query and requests the XML Response Writer to use indentation to
make the XML response more readable.

http://yourhost.tld:9999/solr/select?q=id:SP2514N&version=2.1&indent=1

Results:

<?xml version="1.0" encoding="UTF-8"?>

<response>

<responseHeader><status>0</status><QTime>1</QTime></responseHeader>

<result numFound="1" start="0">

 <doc>

 <arr name="cat"><str>electronics</str><str>hard drive</str></arr>

 <arr name="features"><str>7200RPM, 8MB cache, IDE Ultra ATA-133</str>

 <str>NoiseGuard, SilentSeek technology, Fluid Dynamic Bearing (FDB)

motor</str></arr>

 <str name="id">SP2514N</str>

 <bool name="inStock">true</bool>

 <str name="manu">Samsung Electronics Co. Ltd.</str>

 <str name="name">Samsung SpinPoint P120 SP2514N - hard drive - 250 GB - ATA-133</str>

 <int name="popularity">6</int>

 <float name="price">92.0</float>

 <str name="sku">SP2514N</str>

 </doc>

</result>

</response>

Here's an example of a query with a limited field list.

http://yourhost.tld:9999/solr/select?q=id:SP2514N&version=2.1&indent=1&fl=id+name

Results:

Solr Reference Guide Jan 10, 2012

Page of 236 397

<?xml version="1.0" encoding="UTF-8"?>

<response>

<responseHeader><status>0</status><QTime>2</QTime></responseHeader>

<result numFound="1" start="0">

 <doc>

 <str name="id">SP2514N</str>

 <str name="name">Samsung SpinPoint P120 SP2514N - hard drive - 250 GB - ATA-133</str>

 </doc>

</result>

</response>

Specifying Terms for the Standard Query Parser
A query to the standard query parser is broken up into terms and operators. There are two types of
terms: single terms and phrases.

A single term is a single word such as "test" or "hello"
A phrase is a group of words surrounded by double quotes such as "hello dolly"

Multiple terms can be combined together with Boolean operators to form more complex queries (as
described below).

It is important that the analyzer used for queries parses terms and phrases in a way that is
consistent with the way the analyzer used for indexing parses terms and phrases;
otherwise, searches may produce unexpected results.

Term Modifiers

Solr supports a variety of term modifiers that add flexibility or precision, as needed, to searches.
These modifiers include wildcard characters, characters for making a search "fuzzy" or more
general, and so on. The sections below describe these modifiers in detail.

Wildcard Searches

Solr's standard query parser supports single and multiple character wildcard searches within single
terms. Wildcard characters can be applied to single terms, but not to search phrases.

Wildcard Search Type Special
Character

Example

Single character (matches a single
character)

? The search string would match bothte?t

test and text.

Solr Reference Guide Jan 10, 2012

Page of 237 397

Multiple characters (matches zero or
more sequential characters)

* The wildcard search:

tes*

would match test, testing, and tester.

You can also use wildcard characters in the
middle of a term. For example:

te*t

would match test and text.

*est

would match pest and test.

As of Solr 1.4, you can use a * or ? symbol as the first character of a search with the
standard query parser.

Fuzzy Searches

Solr's standard query parser supports fuzzy searches based on the Levenshtein Distance or Edit
Distance algorithm. Fuzzy searches discover terms that are similar to a specified term without
necessarily being an exact match. To perform a fuzzy search, use the tilde ~ symbol at the end of
a single-word term. For example, to search for a term similar in spelling to "roam," use the fuzzy
search:

roam~

This search will match terms like foam and roams. It will also match the word "roam" itself.

An optional, additional parameter specifies the degree of similarity required for a match in a fuzzy
search. The value must be between 0 and 1. When set closer to 1, the optional parameter causes
only terms with a higher similarity to be matched. For example, the search below requires a high
degree of similarity to the term "roam" in order for Solr to return a match:

roam~0.8

Solr Reference Guide Jan 10, 2012

Page of 238 397

If this numerical parameter is omitted, Lucene performs the search as though the parameter were
set to 0.5. The sample query above is not very scalable. Upon parsing this query will check the
quasi-edit distance for every term in the index. As a result, this query is practical for only very
small indexes.

In many cases, stemming (reducing terms to a common stem) can produce similar effects
to fuzzy searches and wildcard searches.

Proximity Searches

A proximity search looks for terms that are within a specific distance from one another.

To perform a proximity search, add the tilde character ~ and a numeric value to the end of a
search phrase. For example, to search for a "apache" and "jakarta" within 10 words of each other
in a document, use the search:

"jakarta apache"~10

The distance referred to here is the number of term movements needed to match the specified
phrase. In the example above, if "apache" and "jakarta" were 10 spaces apart in a field, but
"apache" appeared before "jakarta", more than 10 term movements would be required to move the
terms together and position "apache" to the right of "jakarta" with a space in between.

Range Searches

A range search specifies a range of values for a field (a range with an upper bound and a lower
bound). The query matches documents whose values for the specified field or fields fall within the
range. Range queries can be inclusive or exclusive of the upper and lower bounds. Sorting is done
lexicographically, except on numeric fields. For example, the range query below matches all
documents whose field has a value between 20020101 and 20030101, inclusive.mod_date

mod_date:[20020101 TO 20030101]

Range queries are not limited to date fields or even numerical fields. You could also use range
queries with non-date fields:

}title:{Aida TO Carmen

This will find all documents whose titles are between Aida and Carmen, but not including Aida and
Carmen.

The brackets around a query determine its inclusiveness.

Square brackets [] denote an inclusive range query that matches values including the upper
and lower bound.

Solr Reference Guide Jan 10, 2012

Page of 239 397

Curly brackets { } denote an exclusive range query that matches values between the upper
and lower bounds, but excluding the upper and lower bounds themselves.

Boosting a Term with ^

Lucene/Solr provides the relevance level of matching documents based on the terms found. To
boost a term use the caret symbol with a boost factor (a number) at the end of the term you are^

searching. The higher the boost factor, the more relevant the term will be.

Boosting allows you to control the relevance of a document by boosting its term. For example, if
you are searching for

"jakarta apache" and you want the term "jakarta" to be more relevant, you can boost it by adding
the ^ symbol along with the boost factor immediately after the term. For example, you could type:

jakarta^4 apache

This will make documents with the term jakarta appear more relevant. You can also boost Phrase
Terms as in the example:

"jakarta apache"^4 "Apache Lucene"

By default, the boost factor is 1. Although the boost factor must be positive, it can be less than 1
(for example, it could be 0.2).

Specifying Fields in a Query to the Standard Query Parser
Data indexed in Solr is organized in fields, which are defined in the Solr file. Searchesschema.xml

can take advantage of fields to add precision to queries. For example, you can search for a term
only in a specific field, such as a title field.

The file defines one field as a default field. If you do not specify a field in a query, Solrschema.xml

searches only the default field. Alternatively, you can specify a different field or a combination of
fields in a query.

To specify a field, type the field name followed by a colon ":" and then the term you are searching
for within the field.

For example, suppose an index contains two fields, title and text,and that text is the default field.
If you want to find a document called "The Right Way" which contains the text "don't go this way,"
you could include either of the following terms in your search query:

title:"The Right Way" AND text:go

title:"Do it right" AND go

Solr Reference Guide Jan 10, 2012

Page of 240 397

Since text is the default field, the field indicator is not required; hence the second query above
omits it.

The field is only valid for the term that it directly precedes, so the query willtitle:Do it right

find only "Do" in the title field. It will find "it" and "right" in the default field (in this case the text
field).

Boolean Operators Supported by the Standard Query Parser
Boolean operators allow you to apply Boolean logic to queries, requiring the presence or absence of
specific terms or conditions in fields in order to match documents. The table below summarizes the
Boolean operators supported by the standard query parser.

Boolean
Operator

Alternative
Symbol

Description

AND && Requires both terms on either side of the Boolean operator to be
present for a match.

NOT ! Requires that the following term not be present.

OR || Requires that either term (or both terms) be present for a match.

 + Requires that the following term be present.

 - Prohibits the following term (that is, matches on fields or documents
that do not include that term). The - operator is functional similar to the
Boolean operator !. Because it's used by popular search engines such as
Google, it may be more familiar to some user communities.

Boolean operators allow terms to be combined through logic operators. Lucene supports AND, "+",
OR, NOT and "-" as Boolean operators.

When specifying Boolean operators with keywords such as AND or NOT, the keywords
must appear in all uppercase.

The standard query parser supports all the Boolean operators listed in the table above. The
DisMax query parser supports only + and -.

The OR operator is the default conjunction operator. This means that if there is no Boolean
operator between two terms, the OR operator is used. The OR operator links two terms and finds a
matching document if either of the terms exist in a document. This is equivalent to a union using
sets. The symbol || can be used in place of the word OR.

Solr Reference Guide Jan 10, 2012

Page of 241 397

In the file, you can specify which symbols can take the place of Boolean operatorsschema.xml

such as OR. To search for documents that contain either "jakarta apache" or just "jakarta," use the
query:

"jakarta apache" jakarta

or

"jakarta apache" OR jakarta

The Boolean Operator +

The + symbol (also known as the "required" operator) requires that the term after the + symbol
exist somewhere in a field in at least one document in order for the query to return a match.

For example, to search for documents that must contain "jakarta" and that may or may not contain
"lucene," use the following query:

+jakarta lucene

This operator is supported by both the standard query parser and the DisMax query parser.

The Boolean Operator AND (&&)

The AND operator matches documents where both terms exist anywhere in the text of a single
document. This is equivalent to an intersection using sets. The symbol && can be used in place of
the word AND.

To search for documents that contain "jakarta apache" and "Apache Lucene," use either of the
following queries:

"jakarta apache" AND "Apache Lucene"

"jakarta apache" && "Apache Lucene"

The Boolean Operator NOT (!)

The NOT operator excludes documents that contain the term after NOT. This is equivalent to a
difference using sets. The symbol ! can be used in place of the word NOT.

The following queries search for documents that contain the phrase "jakarta apache" but do not
contain the phrase "Apache Lucene":

"jakarta apache" NOT "Apache Lucene"

"jakarta apache" ! "Apache Lucene"

Solr Reference Guide Jan 10, 2012

Page of 242 397

The Boolean Operator -

The - symbol or "prohibit" operator excludes documents that contain the term after the - symbol.

For example, to search for documents that contain "jakarta apache" but not "Apache Lucene," use
the following query:

"jakarta apache" -"Apache Lucene"

Escaping Special Characters

Solr gives the following characters special meaning when they appear in a query:

+ - && || ! () { } [] ^ " ~ * ? : \

To make Solr interpret any of these characters literally, rather as a special character, precede the
character with a backslash character \. For example, to search for (1+1):2 without having Solr
interpret the plus sign and parentheses as special characters for formulating a subquery with two
terms, escape the characters by preceding each one with a backslash:

\(1\+1\)\:2

Grouping Terms to Form Subqueries
Lucene/Solr supports using parentheses to group clauses to form subqueries. This can be very
useful if you want to control the Boolean logic for a query.

The query below searches for either "jakarta" or "apache" and "website":

(jakarta OR apache) AND website

This adds precision to the query, requiring that the term "website" exist, along with either term
"jakarta" and "apache."

Grouping Clauses within a Field

To apply two or more Boolean operators to a single field in a search, group the Boolean clauses
within parentheses. For example, the query below searches for a title field that contains both the
word "return" and the phrase "pink panther":

title:(+return +"pink panther")

Differences between Lucene Query Parser and the Solr Standard Query
Parser
Solr's standard query parser differs from the Lucene Query Parser in the following ways:

A * may be used for either or both endpoints to specify an open-ended range query

Solr Reference Guide Jan 10, 2012

Page of 243 397

 finds all field values less than or equal to 100field:[* TO 100]

 finds all field values greater than or equal to 100field:[100 TO *]

 matches all documents with the fieldfield:[* TO *]

Pure negative queries (all clauses prohibited) are allowed (only as a top-level clause)
 finds all field values where inStock is not false-inStock:false

 finds all documents without a value for field-field:[* TO *]

A hook into FunctionQuery syntax. You'll need to use quotes to encapsulate the function if it
includes parentheses, as shown in the second example below:

val :myfield

val :"recip(rord(myfield),1,2,3)"

Nested query support for any type of query parser. Quotes will often be necessary to
encapsulate the nested query if it contains reserved characters.

query :"{!dismax qf=myfield}how now brown cow"

The standard Solr query parser also differs from earlier (pre-2.9) versions of the Lucene query
parser in this way:

Range queries [a TO z], prefix queries a*, and wildcard queries a*b are constant-scoring (all
matching documents get an equal score). The scoring factors TF, IDF, index boost, and coord
are not used. There is no limitation on the number of terms that match (as there was in past
versions of Lucene).

Specifying Dates and Times

If you use the Solr "DateField" type, any queries on those fields (typically range queries) should
use the TrieDate Field. In previous releases, you would use the complete ISO 8601 date syntax
that "DateField" supports, or the Lucene/Solr DateMathParser's syntax to get relative dates.

Here are some examples of valid parameters using syntax appropriate for the DateField type:

timestamp:[*TO NOW]

createdate:[1976-03-06T23:59:59.999Z TO *]

createdate:[1995-12-31T23:59:59.999Z TO 2007-03-06T00:00:00Z]

pubdate:[NOW-1YEAR/DAY TO NOW/DAY+1DAY]

createdate:[1976-03-06T23:59:59.999Z TO 1976-03-06T23:59:59.999Z+1YEAR]

createdate:[1976-03-06T23:59:59.999Z/YEAR TO 1976-03-06T23:59:59.999Z]

The DisMax Query Parser
The DisMax query parser is designed to process simple phrases (without complex syntax) entered
by users and to search for individual terms across several fields using different weighting (boosts)
based on the significance of each field. Additional options enable users to influence the score based
on rules specific to each use case (independent of user input).

Solr Reference Guide Jan 10, 2012

Page of 244 397

In general, the DisMax query parser's interface is more like that of Google than the interface of the
"standard" Solr request handler. This similarity makes DisMax the appropriate query parser for
many consumer applications. It accepts a simple syntax, and it rarely produces error messages.

The DisMax query parser supports an extremely simplified subset of the Lucene QueryParser
syntax. As in Lucene, quotes can be used to group phrases, and +/- can be used to denote
mandatory and optional clauses. All other Lucene query parser special characters (except AND and
OR) are escaped to simplify the user experience. The DisMax query parser takes responsibility for
building a good query from the user's input using Boolean clauses containing DisMax queries across
fields and boosts specified by the user. It also lets the Solr administrator provide additional
boosting queries, boosting functions, and filtering queries to artificially affect the outcome of all
searches. These options can all be specified as default parameters for the handler in the

 file or overridden in the Solr query URL.solrconfig.xml

Interested in the technical concept behind the DisMax name? DisMax stands for Maximum
Disjunction. Here's a definition of a Maximum Disjunction or "DisMax" query:

. A query that generates the union of documents produced by its subqueries, and that scoresbq

each document with the maximum score for that document as produced by any subquery, plus a
tie breaking increment for any additional matching subqueries.

Whether or not you remember this explanation, do remember that the DisMax request handler was
primarily designed to be easy to use and to accept almost any input without returning an error.

DisMax Parameters
In addition to the common request parameter, highlighting parameters, and simple facet
parameters, the DisMax query parser supports the parameters described below. Like the standard
query parser, the DisMax query parser allows default parameter values to be specified in

, or overridden by query-time values in the request.solrconfig.xml

Parameter Description

q Defines the raw input strings for the query.

q.alt Calls the standard query parser and defines query input strings, when the q
parameter is not used.

qf Query Fields: specifies the fields in the index on which to perform the query.

mm Minimum "Should" Match: specifies a minimum number of fields that must match in
a query.

pf Phrase Fields: boosts the score of documents in cases where all of the terms in the
q parameter appear in close proximity.

Solr Reference Guide Jan 10, 2012

Page of 245 397

ps Phrase Slop: specifies the number of positions two terms can be apart in order to
match the specified phrase.

qs Query Phrase Slop: specifies the number of positions two terms can be apart in
order to match the specified phrase. Used specifically with the parameter.qf

tie Tie Breaker: specifies a float value (which should be something much less than 1) to
use as tiebreaker in DisMax queries.

bq Boost Query: specifies a factor by which a term or phrase should be "boosted" in
importance when considering a match.

bf Boost Functions: specifies functions to be applied to boosts. (See for details about
function queries.)

The sections below explain these parameters in detail.

The q Parameter

The parameter defines the main "query" constituting the essence of the search. The parameterq

supports raw input strings provided by users with no special escaping. The + and - characters are
treated as "mandatory" and "prohibited" modifiers for terms. Text wrapped in balanced quote
characters (for example, "San Jose") is treated as a phrase. Any query containing an odd number
of quote characters is evaluated as if there were no quote characters at all.

The parameter does not support wildcard characters such as *.q

The q.alt Parameter

If specified, the parameter defines a query (which by default will be parsed using standardq.alt

query parsing syntax) when the main q parameter is not specified or is blank. The q.alt
parameter comes in handy when you need something like a query to match all documents (don't
forget for that one!) in order to get collection-wise faceting counts.&rows=0

The qf (Query Fields) Parameter

The parameter introduces a list of fields, each of which is assigned a boost factor to increase orqf

decrease that particular field's importance in the query. For example, the query below:

qf="fieldOne^2.3 fieldTwo fieldThree^0.4"

assigns a boost of 2.3, leaves with the default boost (because no boost factorfieldOne fieldTwo

is specified), and a boost of 0.4. These boost factors make matches in muchfieldThree fieldOne

more significant than matches in , which in turn are much more significant than matchesfieldTwo

in .fieldThree

Solr Reference Guide Jan 10, 2012

Page of 246 397

The mm (Minimum Should Match) Parameter

When processing queries, Lucene/Solr recognizes three types of clauses: mandatory, prohibited,
and "optional" (also known as "should" clauses). By default, all words or phrases specified in the q
parameter are treated as "optional" clauses unless they are preceded by a "+" or a "-". When
dealing with these "optional" clauses, the parameter makes it possible to say that a certainmm

minimum number of those clauses must match. The DisMax query parser offers great flexibility in
how the minimum number can be specified.

The table below explains the various ways that mm values can be specified.

Syntax Example Description

Positive integer 3 Defines the minimum number of clauses that must match,
regardless of how many clauses there are in total.

Negative integer -2 Sets the minimum number of matching clauses to the total
number of optional clauses, minus this value.

Percentage 75% Sets the minimum number of matching clauses to this
percentage of the total number of optional clauses. The number
computed from the percentage is rounded down and used as the
minimum.

Negative
percentage

-25% Indicates that this percent of the total number of optional
clauses can be missing. The number computed from the
percentage is rounded down, before being subtracted from the
total to determine the minimum number.

An expression
beginning with a
positive integer
followed by a > or
< sign and another
value

3<90% Defines a conditional expression indicating that if the number of
optional clauses is equal to (or less than) the integer, they are
all required, but if it's greater than the integer, the specification
applies. In this example: if there are 1 to 3 clauses they are all
required, but for 4 or more clauses only 90% are required.

Multiple conditional
expressions
involving > or <
signs

2<-25%
9<-3

Defines multiple conditions, each one being valid only for
numbers greater than the one before it. In the example at left, if
there are 1 or 2 clauses, then both are required. If there are 3-9
clauses all but 25% are required. If there are more then 9
clauses, all but three are required.

When specifying values, keep in mind the following:mm

Solr Reference Guide Jan 10, 2012

Page of 247 397

When dealing with percentages, negative values can be used to get different behavior in
edge cases. 75% and -25% mean the same thing when dealing with 4 clauses, but when
dealing with 5 clauses 75% means 3 are required, but -25% means 4 are required.

If the calculations based on the parameter arguments determine that no optional clauses are
needed, the usual rules about Boolean queries still apply at search time. (That is, a Boolean
query containing no required clauses must still match at least one optional clause).

No matter what number the calculation arrives at, Solr will never use a value greater than
the number of optional clauses, or a value less then 1. (In other words, no matter how low or
how high the calculated result, the minimum number of required matches will never be less
then 1 or greater than the number of clauses.)

The default value of is 100% (meaning that all clauses must match).mm

The pf (Phrase Fields) Parameter

Once the list of matching documents has been identified using the and parameters, the fq qf pf

parameter can be used to "boost" the score of documents in cases where all of the terms in the q
parameter appear in close proximity.

The format is the same as that used by the parameter: a list of fields and "boosts" to associateqf

with each of them when making phrase queries out of the entire q parameter.

The ps (Phrase Slop) Parameter

The parameter specifies the amount of "phrase slop" to apply to queries specified with the pfps

parameter. Phrase slop is the number of positions one token needs to be moved in relation to
another token in order to match a phrase specified in a query.

The qs (Query Phrase Slop) Parameter

The parameter specifies the amount of slop permitted on phrase queries explicitly included inqs

the user's query string with the parameter. As explained above, slop refers to the number ofqf

positions one token needs to be moved in relation to another token in order to match a phrase
specified in a query.

The tie (Tie Breaker) Parameter

The parameter specifies a float value (which should be something much less than 1) to use astie

tiebreaker in DisMax queries.

When a term from the user's input is tested against multiple fields, more than one field may
match. If so, each field will generate a different score based on how common that word is in that
field (for each document relative to all other documents). The parameter lets you control howtie

much the final score of the query will be influenced by the scores of the lower scoring fields
compared to the highest scoring field.

Solr Reference Guide Jan 10, 2012

Page of 248 397

A value of "0.0" makes the query a pure "disjunction max query": that is, only the maximum
scoring subquery contributes to the final score. A value of "1.0" makes the query a pure
"disjunction sum query" where it doesn't matter what the maximum scoring sub query is, because
the final score will be the sum of the subquery scores. Typically a low value, such as 0.1, is useful.

The bq (Boost Query) Parameter

The parameter specifies a raw query string (expressed in Solr query syntax) that will bebq

included with the user's query to influence the score. For example, if you wanted to add a
relevancy boost for recent documents:

q=cheese bq=date\[NOW/DAY-1YEAR TO NOW/DAY\]

You can specify multiple parameters. If you want your query to be parsed as separate clausesbq

with separate boosts, use multiple parameters.bq

The bf (Boost Functions) Parameter

The parameter specifies functions (with optional boosts) that will be included in the user's querybf

to influence the score. Any function supported natively by Solr can be used, along with a boost
value. For example:

recip(rord(myfield),1,2,3)^1.5

Specifying functions with the parameter is just shorthand for using the bf val :"...function..."

syntax in a parameter.bq

For example, if you want to show the most recent documents first, use

recip(rord(creationDate),1,1000,1000)

Examples of Queries Submitted to the DisMax Query Parser
Normal results for the word "video" using the StandardRequestHandler with the default search
field:

http://localhost:8983/solr/select/?q=video&fl=name+score

The "dismax" handler is configured to search across the text, features, name, sku, id, manu, and
cat fields all with varying boosts designed to ensure that "better" matches appear first, specifically:
documents which match on the name and cat fields get higher scores.

http://localhost:8983/solr/select/?defType=dismax&q=video

Solr Reference Guide Jan 10, 2012

Page of 249 397

Note that this instance is also configured with a default field list, which can be overridden in the
URL.

http://localhost:8983/solr/select/?defType=dismax&q=video&fl=*,score

You can also override which fields are searched on and how much boost each field gets.

http://localhost:8983/solr/select/?defType=dismax&q=video&qf=features

^20.0+text^0.3

You can boost results that have a field that matches a specific value.

http://localhost:8983/solr/select/?defType=dismax&q=video&bq=cat:electronics ^5.0

Another instance of the handler is registered using the "instock" and has slightly differentqt

configuration options, notably: a filter for (you guessed it) .inStock:true)

http://localhost:8983/solr/select/?defType=dismax&q=video&fl=name,score,inStock

http://localhost:8983/solr/select/?defType=dismax&q=video&qt=instock&fl=name,score,inStock

One of the other really cool features in this handler is robust support for specifying the
"BooleanQuery.minimumNumberShouldMatch" you want to be used based on how many terms are
in your user's query. These allows flexibility for typos and partial matches. For the dismax handler,
one and two word queries require that all of the optional clauses match, but for three to five word
queries one missing word is allowed.

http://localhost:8983/solr/select/?defType=dismax&q=belkin+ipod

http://localhost:8983/solr/select/?defType=dismax&q=belkin+ipod+gibberish

http://localhost:8983/solr/select/?defType=dismax&q=belkin+ipod+apple

Just like the StandardRequestHandler, it supports the debugQuery option to viewing the parsed
query, and the score explanations for each document.

http://localhost:8983/solr/select/?defType=dismax&q=belkin+ipod+gibberish&debugQuery=true

http://localhost:8983/solr/select/?defType=dismax&q=video+card&debugQuery=true

The Extended DisMax Query Parser
The Extended DisMax (eDisMax) query parser is an improved version of the .DisMax query parser
In addition to supporting all the DisMax query parser parameters, Extended Dismax:

supports the full Lucene query parser syntax
supports queries such as AND, OR, NOT, -, and "

Solr Reference Guide Jan 10, 2012

Page of 250 397

treats and/or as AND/OR in Lucene syntax mode
includes improved smart partial escaping in the case of syntax errors; fielded queries, +/-,
and phrase queries are still supported in this mode
improves proximity boosting by using word shingles; you do not need the query to match all
words in the document before proximity boosting is applied
includes advanced stopword handling: stopwords are not required in the mandatory part of
the query but are still used in the proximity boosting part. If a query consists of all
stopwords, such as "to be or not to be", then all words are required
includes improved boost function: in Extended DisMax, the function is a multiplierboost

rather than an addend, improving your boost results; the additive boost functions of DisMax (
 and) are also supportedbf bq

Supports pure negative nested queries: queries such as will match all+foo (-foo)

documents

The Extended DisMax query parser is still under active development, so it may change in
the future. However, many organizations are already using it in production with great
success.

Extended DisMax Parameters
In addition to all the , Extended DisMax includes these query parameters:DisMax parameters

Parameter Description

boost A multivalued list of strings parsed as queries with scores multipled by the
score from the main query for all matching documents.

lowercaseOperators A Boolean parameter indicating if lowercase "and" and "or" should be
treated the same as operators "AND" and "OR".

pf2 A multivalued list of fields with optional weights, based on pairs of word
shingles.

pf3 A multivalued list of fields with optional weights, based on triplets of word
shingles.

stopwords A Boolean parameter indicating if the configured in theStopFilterFactory

query analyzer should be respected when parsing the query: if it is false,
then the in the query analyzer is ignored.StopFilterFactory

The sections below explain these parameters in detail.

The boost Parameter

Solr Reference Guide Jan 10, 2012

Page of 251 397

A multivalued list of strings that will be parsed as queries and whose scores will be multipled by the
score from the main query for all matching documents. This parameter is shorthand for wrapping
the query produced by eDisMax using the .BoostQParserPlugin

The lowercaseOperators Parameter

A Boolean parameter indicating if lowercase "and" and "or" should be treated the same as
operators "AND" and "OR".

The pf2 Parameter

A multivalued list of fields with optional weights. Similar to , except that instead of building apf

phrase per field out of all the words in the input, it builds a set of phrases for each field out of each
pair of word shingles (or word-based bigrams).

The pf3 Parameter

A multivalued list of fields with optional weights. Similar to , except that instead of building apf

phrase per field out of all the words in the input, it builds a set of phrases for each field out of each
triplet of word shingles (or word-based trigrams).

The stopwords Parameter

A Boolean parameter indicating if the configured in the query analyzer shouldStopFilterFactory

be respected when parsing the query: if it is false, then the in the queryStopFilterFactory

analyzer is ignored.

Examples of Queries Submitted to the Extended DisMax Query Parser
Boost the result of the query term "hello" based on the document's popularity:

http://localhost:8983/solr/select/?defType=edismax&q=hello&pf=text&qf=text&boost=popularity

Search for iPods OR video:

http://localhost:8983/solr/select/?defType=edismax&q=ipod OR video

Local Parameters in Queries
Local parameters are arguments in a Solr request that are specific to a query parameter. Local
parameters provide a way to add meta-data to certain argument types such as query strings. (In
Solr documentation, local parameters are sometimes referred to as LocalParams.)

Local parameters are specified as prefixes to arguments. Take the following query argument, for
example:

q=solr rocks

Solr Reference Guide Jan 10, 2012

Page of 252 397

We can prefix this query string with local parameters to provide more information to the Standard
Query Parser. For example, we can change the default operator type to "AND" and the default field
to "title":

q={!q.op=AND df=title}solr rocks

These local parameters would change the query to require a match on both "solr" and "rocks" while
searching the "title" field by default.

Basic Syntax of Local Parameters
To specify a local parameter, insert the following before the argument to be modified:

Begin with {!

Insert any number of key=value pairs separated by white space

End with } and immediately follow with the query argument

You may specify only one local parameters prefix per argument. Values in the key-value pairs may
be quoted via single or double quotes, and backslash escaping works within quoted strings.

Query Type Short Form
If a local parameter value appears without a name, it is given the implicit name of "type". This
allows short-form representation for the type of query parser to use when parsing a query string.
Thus

q={!dismax qf=myfield}solr rocks

is equivalent to:

q={!type=dismax qf=myfield}solr rocks

Specifying the Parameter Value with the ' v ' Key
A special key of within local parameters is an alternate way to specify the value of thatv

parameter.

q={!dismax qf=myfield}solr rocks

is equivalent to

}q={!type=dismax qf=myfield v='solr rocks'

Parameter Dereferencing

Solr Reference Guide Jan 10, 2012

Page of 253 397

Parameter dereferencing or indirection lets you use the value of another argument rather than
specifying it directly. This can be used to simplify queries, decouple user input from query
parameters, or decouple front-end GUI parameters from defaults set in .solrconfig.xml

q={!dismax qf=myfield}solr rocks

is equivalent to:

q={!type=dismax qf=myfield v=$qq}&qq=solr rocks

Solr Reference Guide Jan 10, 2012

Page of 254 397

Function Queries
Function Query parameters enable you to generate a relevancy score using the actual value of one
or more numeric fields. Function queries are supported by the , , and DisMax Extended DisMax

 query parsers.standard

The table below summarizes the functions available for function queries. For more details on these
function queries, see .https://wiki.apache.org/solr/FunctionQuery

Function Description Syntax Examples

abs Returns the absolute value of the
specified value or function.

abs(x)

abs(-5)

constant Specifies a floating point constant. 1.5

val:1.5

div Divides one value or function by
another. div(x,y) divides x by y.

div(1,y)

div(sum(x,100),max(y,1))

dist Return the distance between two
vectors (points) in an
n-dimensional space. Takes in the
power, plus two or more
ValueSource instances and
calculates the distances between
the two vectors. Each ValueSource
must be a number. There must be
an even number of ValueSource
instances passed in and the
method assumes that the first half
represent the first vector and the
second half represent the second
vector.

 - calculates the Euclideandist(2, x, y, 0, 0)

distance between (0,0) and (x,y) for each
document

 - calculates the Manhattandist(1, x, y, 0, 0)

(taxicab) distance between (0,0) and (x,y) for
each document

 - Euclidean distancedist(2, x,y,z,0,0,0)

between (0,0,0) and (x,y,z) for each document.

 - Euclidean distancedist(1,x,y,z,e,f,g)

between (x,y,z) and (e,f,g) where each letter is a
field name

fieldvalue Returns the numeric field value of
an indexed (not multi-valued) field
with a maximum of one value per
document. The syntax is simply
the field name by itself. 0 is
returned for documents without a
value in the field.

myFloatField
val:myFloatField

https://wiki.apache.org/solr/FunctionQuery

Solr Reference Guide Jan 10, 2012

Page of 255 397

hsin The Haversine distance calculates
the distance between two points
on a sphere when traveling along
the sphere. The values must be in
radians. also take a Booleanhsin

argument to specify whether the
function should convert its output
to radians.

hsin(2, true, x, y, 0, 0)

linear Implements m*x+c where m and c
are constants and x is an arbitrary
function. This is equivalent to
sum(product(m,x),c), but slightly
more efficient as it is implemented
as a single function.

linear(x,m,c)

linear(x,2,4) returns 2*x+4

log Returns the log base 10 of the
specified function.

log(x)log(sum(x,100))

map Maps any values of the function x
that fall within min and max
inclusive to the specified target.
The arguments min,max,target are
constants. The function outputs
the field's value if it does not fall
between min and max.

map(x,min,max,target)

 - changes any values of 0 to 1.map(x,0,0,1)

This can be useful in handling default 0 values.
map(x,min,max,target,altarg)

 - changes any values of 0 to 1map(x,0,0,1,0)

and if the value is not zero it can be set to the
value of the 5th argument instead of defaulting
to the field's value.

max Returns the max of another
function and a constant, which are
specified as arguments: max(x,c)
The max function is useful for
"bottoming out" another function
at some constant.

max(myfield,0)

Solr Reference Guide Jan 10, 2012

Page of 256 397

ms Returns milliseconds of difference
between its arguments. Dates are
relative to the Unix or POSIX time
epoch, midnight, January 1, 1970
UTC.
Arguments may be numerically
indexed date fields such as
TrieDate (the default in 1.4), or
date math based on a constant
date or NOW.

ms()

Equivalent to , number of millisecondsms(NOW)

since the epoch.
ms(a)

Returns the number of milliseconds since the
epoch that the argument represents. Examples:
ms(NOW/DAY)

ms(2000-01-01T00:00:00Z)

ms(mydatefield)

ms(a,b)

Returns the number of milliseconds that b occurs
before a (that is, a - b). Note that this offers
higher precision than because thesub(a,b)

arguments are not converted to floating point
numbers before subtraction. Examples:
ms(NOW,mydatefield)

ms(mydatefield,2000-01-01T00:00:00Z)

ms(datefield1,datefield2)

Solr Reference Guide Jan 10, 2012

Page of 257 397

ord Returns the ordinal of the indexed
field value within the indexed list
of terms for that field in Lucene
index order (lexicographically
ordered by unicode value), starting
at 1. In other words, for a given
field, all values are ordered
lexicographically; this function
then returns the offset of a
particular value in that ordering.
The field must have a maximum of
one value per document (not
multi-valued). 0 is returned for
documents without a value in the
field.

 depends on theord()

position in an index and
can thus change when
other documents are
inserted or deleted.

See also below.rord

)ord(myIndexedField

val:"ord(myIndexedField)"

Example: If there were only three values
("apple","banana","pear") for a particular field,
then:
ord("apple")=1ord("banana")=2ord("pear")=3

pow Raises the specified base to the
specified power. raises xpow(x,y)

to the power of y.

 is the samepow(x,y)pow(x,log(y)) pow(x,0.5)

as sqrt

product Returns the product of multiple
values or functions, which are
specified in a comma-separated
list.

 product(x,y,...) product(x,2)

product(x,y)

Solr Reference Guide Jan 10, 2012

Page of 258 397

query Returns the score for the given
subquery, or the default value for
documents not matching the
query.
Any type of subquery is supported
through either parameter
dereferencing or$otherparam

direct specification of the query
string in the Local Parameters
through the key.v

query(subquery, default)

q=product(popularity, query({!dismax

 returns the product of thev='solr rocks'})

popularity and the score of the DisMax query.
q=product(popularity,

 isquery($qq))&qq={!dismax}solr rocks

equivalent to the previous query, using
parameter dereferencing.
q=product(popularity,

query($qq,0.1))&qq={!dismax}solr rocks

specifies a default score of 0.1 for documents
that don't match the DisMax query.

recip Performs a reciprocal function with
recip(myfield,m,a,b)

implementing a/(m*x+b). m,a,b
are constants, and x is any
arbitrarily complex function.
When a and b are equal, and
x>=0, this function has a
maximum value of 1 that drops as
x increases. Increasing the value
of a and b together results in a
movement of the entire function to
a flatter part of the curve. These
properties can make this an ideal
function for boosting more recent
documents when x is

.rord(datefield)

recip(myfield,m,a,b)

recip(rord(creationDate),1,1000,1000)

rord Returns the reverse ordering of
that returned by .ord

rord(myDateField)

val_:"rord(myDateField)"

Example: is a metric for howrord(myDateField)

old a document is. The youngest document will
return 1. The oldest document will return the
total number of documents.

Solr Reference Guide Jan 10, 2012

Page of 259 397

scale Scales values of the function x
such that they fall between the
specified and minTarget

 inclusive.maxTarget

The current implementation
traverses all of the function values
to obtain the min and max, so it
can pick the correct scale.
The current implementation cannot
distinguish when documents have
been deleted or documents that
have no value. It uses 0.0 values
for these cases. This means that if
values are normally all greater
than 0.0, one can still end up with
0.0 as the min value to map from.
In these cases, an appropriate
map() function could be used as a
workaround to change 0.0 to a
value in the real range, as shown
here:
scale(map(x,0,0,5),1,2)

scale(x,minTarget,maxTarget)

 scales the values of x such that allscale(x,1,2)

values will be between 1 and 2 inclusive.

sqedist The Square Euclidean distance
calculates the 2-norm (Euclidean
distance) but does not take the
square root, thus saving a fairly
expensive operation. It is often the
case that applications that care
about Euclidean distance do not
need the actual distance, but
instead can use the square of the
distance. There must be an even
number of ValueSource instances
passed in and the method
assumes that the first half
represent the first vector and the
second half represent the second
vector.

sqedist(x_td, y_td, 0, 0)

sqrt Returns the square root of the
specified value or function.

sqrt(x)sqrt(100)sqrt(sum(x,100))

Solr Reference Guide Jan 10, 2012

Page of 260 397

strdist Calculate the distance between
two strings. Uses the Lucene spell
checker interfaceStringDistance

and supports all of the
implementations available in that
package, plus allows applications
to plug in their own via Solr's
resource loading capabilities.
strdist takes (string1, string2,
distance measure). Possible values
for distance measure are:

jw: Jaro-Winkler

edit: Levenstein or Edit distance

ngram: The NGramDistance, if
specified, can optionally pass in
the ngram size too. Default is 2.

FQN: Fully Qualified class Name
for an implementation of the
StringDistance interface. Must
have a no-arg constructor.

strdist("SOLR",id,edit)

sub Returns x-y from sub(x,y). sub(myfield,myfield2)

sub(100,sqrt(myfield))

sum Returns the sum of multiple values
or functions, which are specified in
a comma-separated list.

sum(x,y,...) sum(x,1)

sum(x,y)

sum(sqrt(x),log(y),z,0.5)

Solr Reference Guide Jan 10, 2012

Page of 261 397

top Causes the function query
argument to derive its values from
the top-level IndexReader
containing all parts of an index.
For example, the ordinal of a value
in a single segment will be
different from the ordinal of that
same value in the complete index.
The and functionsord() rord()

implicitly use , and hence top()

 is equivalent to ord(foo)

.top(ord(foo))

Using FunctionQuery
There are two principal ways of including function queries in a Solr query:

Introduce a function query with the keyword. For example:val

val:mynumericfield _val_:"recip(rord(myfield),1,2,3)"

Use a parameter that has an explicit type of FunctionQuery, such as the DisMax query
parser's . Note that the parameter actually takes a list of (boost function) parameterbf bf

function queries separated by white space and each with an optional boost. Make sure you
eliminate any internal white space in single function queries when using . For example:bf

q=dismax&bf="ord(popularity)^0.5 recip(rord(price),1,1000,1000)^0.3"

Functions must be expressed as function calls (for example, instead of simply).sum(a,b) a+b

Example of Function Queries Using the top Function
To give you a better understanding of how function queries can be used in Solr, suppose an index
stores the dimensions in meters x,y,z of some hypothetical boxes with arbitrary names stored in
field boxname. Suppose we want to search for box matching name findbox but ranked according to
volumes of boxes. The query parameters would be:

q=boxname:findbox_val_:"product(product(x,y),z)

This query will rank the results based on volumes. In order to get the computed volume, you
will need to add the parameter:

&fl=*, score

Solr Reference Guide Jan 10, 2012

Page of 262 397

where score will contain the resultant volume.

Suppose that you also have a field storing the weight of the box as 'weight'. To sort by the
density of the box and return the value of the density in score, you would submit the
following query:

http://localhost:8983/solr/select/?q=boxname:findbox_val_div(weight,product(product(x,y),z))"&fl=boxname

x y z weight score

Sort By Function
You can sort your query results by the output of a function. For example, to sort results by
distance, you could enter:

http://localhost:8983/solr/select?q=*:*&sort=dist(2, point1, point2) desc

Sort By Function also supports pseudo-fields: fields can be generated dynamically and return
results as though it was normal field in the index. For example, would&fl=id,sum(x, y),score

return:

<str name="id">foo</str>

<float name="sum(x,y)">40</float>

<float name="score">0.343</float>

Solr Reference Guide Jan 10, 2012

Page of 263 397

Highlighting
Solr provides a collection of highlighting utilities which can be called by various Request Handlers
to include "highlighted" matches in field values. These highlighting utilities may be used with either
the , , or query parser.DisMax Extended DisMax standard

Only text that has been both indexed and stored may be highlighted.

Some parameters may be overridden on a per-field basis with the following syntax:
. For example: f.<fieldName>.<originalParam>=<value> f.contents.hl.snippets=2

The table below describes Solr's parameters for highlighting.

Parameter Description

hl When set to "true", enables highlighted snippets to be generated in
the query response. If set to "false" or to a blank or missing value,
disables highlighting.

The default value is blank, which disables highlighting.

hl.fl Specifies a list of fields to highlight. Accepts a comma- or
space-delimited list of fields for which Solr should generate
highlighted snippets. If left blank, highlights the defaultSearchField
(or the field specified the parameter if used) for thedf

StandardRequestHandler. For the DisMaxRequestHandler, the qf
fields are used as defaults.

A '*' can be used to match field globs, such as 'text_*' or even '*' to
highlight on all fields where highlighting is possible. When using '*',
consider adding .hl.requireFieldMatch=true

The default value is blank.

hl.snippets Specifies maximum number of highlighted snippets to generate per
field. Note: it is possible for any number of snippets from zero to
this value to be generated. This parameter accepts per-field
overrides.

The default value is "1".

Solr Reference Guide Jan 10, 2012

Page of 264 397

hl.fragsize Specifies the size, in characters, of fragments to consider for
highlighting. "0" indicates that the whole field value should be used
(no fragmenting). This parameter accepts per-field overrides.

The default value is "100".

hl.mergeContinuous Instructs Solr to collapse contiguous fragments into a single
fragment. "true" indicates contiguous fragments will be collapsed
into single fragment. This parameter accepts per-field overrides.

The default value is "false", which is also the backward-compatible
setting.

hl.requireFieldMatch If set to true, highlights terms only if they appear in the specified
field. Normally, terms are highlighted in all requested fields
regardless of which field matched the query.

The default value is "false".

hl.maxAnalyzedChars Specifies the number of characters into a document that Solr should
look for suitable snippets.

The default value is "51200".

hl.alternateField Specifies a field to be used as a backup default summary if Solr
cannot generate a snippet (because no terms match). This
parameter accepts per-field overrides.

By default, Solr does not select a field for a backup summary.

hl.maxAlternateFieldLength Specifies the maximum number of characters of the field to return.
Any value less than or equal to 0 means the field's length is
unlimited.

The default value is unlimited.

Requires the use of the parameter.hl.alternateField

hl.formatter Selects a formatter for the highlighted output. Currently the only
legal value is "simple", which surrounds a highlighted term with a
customizable pre- and post-text snippet. This parameter accepts
per-field overrides.

The default value is "simple".

Solr Reference Guide Jan 10, 2012

Page of 265 397

hl.simple.pre hl.simple.post Specifies the text that should appear before and after a highlighted
term when using the simple formatter. This parameter accepts
per-field overrides.

The default values are "" and "".

hl.fragmenter Specifies a text snippet generator for highlighted text. The standard
fragmenter is (which is so called because it creates fixed-sizedgap

fragments with gaps for multi-valued fields). Another option is
, which tries to create fragments that resemble a specifiedregex

regular expression.

The hl.fragmenter parameter accepts per-field overrides.

The default value is gap.

hl.useFastVectorHighlighter The FastVectorHighlighter is a TermVector-based highlighter that
offers higher performance than the standard highlighter in many
cases. To use the FastVectorHighlighter, set this parameter to .true

You must also turn on , , and termVectors termPositions

. Lastly, you should use a boundary scanner to preventtermOffsets

the FastVectorHighlighter from truncating your terms. In most
cases, using the boundary scanner will give youbreakIterator

excellent results. See the for more details aboutfollowing topic
boundary scanners.

hl.phraseLimit To improve the performance of the FastVectorHighlighter, you can
set a limit on the number (int) of phrases to be analyzed for
highlighting. The default value for this parameter is

.integer.MAX_VALUE

hl.boundaryScanner Specifies one of two boundary scanners to use with the
FastVectorHighlighter: or . See the simple breakIterator following

 for more information about the boundary scanners.topic

hl.usePhraseHighlighter If set to "true," instructs Solr to use the Lucene SpanScorer class to
highlight phrase terms only when they appear within the query
phrase in the document. The default is "true."

hl.highlightMultiTerm If set to "true," instructs Solr to highlight phrase terms that appear
in multi-term queries. The default is "true."

Solr Reference Guide Jan 10, 2012

Page of 266 397

hl.regex.slop Specifies the factor by which the fragmenter can stray fromregex

the ideal fragment size (given by) to accommodate ahl.fragsize

regular expression. For instance, a slop of 0.2 with of 100fragsize

should yield fragments between 80 and 120 characters in length. It
is usually good to provide a slightly smaller when usingfragsize

the fragmenter.regex

The default value is 0.6.

hl.regex.pattern Specifies the regular expression for fragmenting. This could be used
to extract sentences.

hl.regex.maxAnalyzedChars Instructs Solr to analyze only this many characters from a field
when using the fragmenter (after which, the fragmenterregex

produces fixed-sized fragments). Applying a complicated to aregex

huge field is computationally expensive.

The default value is "10000".

hl.q Specifies an overriding query term for highlighting. If ishl.q

specified, the highlighter will use that term rather than the main
query term.

Using Boundary Scanners with the Fast Vector Highlighter
The Fast Vector Highlighter will occasionally truncate highlighted words. To prevent this, implement
a boundary scanner in , then use the parameter to specifysolrconfig.xml hl.boundaryScanner

the boundary scanner for highlighting.

Solr supports two boundary scanners: and .breakIterator simple

The breakIterator Boundary Scanner
The boundary scanner offers excellent performance right out of the box by takingbreakIterator

locale and boundary type into account. In most cases you will want to use the breakIterator
boundary scanner. To implement the boundary scanner, add this code to the breakIterator

 section of your file, adjusting the type, language, and countryhighlighting solrconfig.xml

values as appropriate to your application:

Solr Reference Guide Jan 10, 2012

Page of 267 397

<boundaryScanner name="breakIterator"

class="solr.highlight.BreakIteratorBoundaryScanner">

 <lst name="defaults">

 <str name="hl.bs.type">WORD</str>

 <str name="hl.bs.language">en</str>

 <str name="hl.bs.country">US</str>

 </lst>

</boundaryScanner>

Possible values for the parameter are WORD, LINE, SENTENCE, and CHARACTER.hl.bs.type

The simple Boundary Scanner
The boundary scanner scans term boundaries for a specified maximum character value andsimple

for common delimiters such as punctuation marks. The boundary scanner may be useful forsimple

some custom To implement the boundary scanner, add this code to the simple highlighting

section of your file, adjusting the values as appropriate to your application:solrconfig.xml

<boundaryScanner name="simple" class="solr.highlight.SimpleBoundaryScanner"

default="true">

<lst name="defaults">

 <str name="hl.bs.maxScan">10</str>

 <str name="hl.bs.chars">.,!?\t\n</str>

 </lst>

</boundaryScanner>

Solr Reference Guide Jan 10, 2012

Page of 268 397

MoreLikeThis
The component enables users to query for results similar to the specified terms.MoreLikeThis

 constructs a Lucene query based on terms in a document. For best results, useMoreLikeThis

stored term vectors in the for fields specified for similarity. For example:schema.xml

<field name="cat" ... termVectors="true" />

If term vectors are not stored, will generate terms from stored fields.MoreLikeThis

Common Parameters for MoreLikeThis
The table below summarizes the parameters supported by Lucene/Solr.MoreLikeThis

Parameter Description

mlt.fl Specifies the fields to use for similarity. If possible, these should have a stored
TermVector.

mlt.mintf Specifies the Minimum Term Frequency—the frequency below which terms will be
ignored in the source doc.

mlt.mindf Specifies the Minimum Document Frequency—the frequency at which words will be
ignored which do not occur in at least this many docs.

mlt.minwl Sets the minimum word length below which words will be ignored.

mlt.maxwl Sets the maximum word length above which words will be ignored.

mlt.maxqt Sets the maximum number of query terms that will be included in any generated
query.

mlt.maxntp Sets the maximum number of tokens to parse in each example document field that
is not stored with TermVector support.

mlt.boost [true/false] set if the query will be boosted by the interesting term relevance.

mlt.qf Query fields and their boosts using the same format as that used by the
DisMaxRequestHandler. These fields must also be specified in mlt.fl.

Parameters for the StandardRequestHandler
This method returns similar documents for each document in the response set.

Solr Reference Guide Jan 10, 2012

Page of 269 397

Parameter Description

mlt If set to true, activates the component and enables Solr to return MoreLikeThis

 results.MoreLikeThis

mlt.count Specifies the number of similar documents to be returned for each result. The
default value is 5.

Parameters for the MoreLikeThis Request Handler
The table below summarizes parameters accessible through the . It supportsMoreLikeThisHandler

faceting, paging, and filtering using common query parameters.

Parameter Description

mlt.match.include Specifies whether or not the response should include the matched
document. If set to false, the response will look like a normal select
response.

mlt.match.offset Specifies an offset into the main query search results to locate the
document on which the query should operate. By default,MoreLikeThis

the query operates on the first result for the q parameter.

mlt.interestingTerms Controls how the component presents the "interesting"MoreLikeThis

terms (the top TF/IDF terms) for the query. Supports three settings. The
setting list lists the terms. The setting none lists no terms. The setting
details lists the terms along with the boost value used for each term.
Unless , all terms will have .mlt.boost=true boost=1.0

Solr Reference Guide Jan 10, 2012

Page of 270 397

Faceting
As described in , faceting is the arrangement of search results intoOverview of Searching in Solr
categories based on indexed terms. Searchers are presented with the indexed terms, along with
numerical counts of how many matching documents were found were each term. Faceting makes it
easy for users to explore search results, narrowing in on exactly the results they are looking for.

Topics covered on this page:

General Parameters
Field-Value Faceting Parameters
Range Faceting
Date Faceting Parameters
LocalParams for Faceting

General Parameters
The table below summarizes the general parameters for controlling faceting.

Parameter Description

facet If set to true, enables faceting.

facet.query Specifies a Lucene query to generate a facet count.

These parameters are described in the sections below.

The facet Parameter
If set to "true," this parameter enables facet counts in the query response. If set to "false" to a
blank or missing value, this parameter disables faceting. None of the other parameters listed below
will have any effect unless this parameter is set to "true." The default value is blank.

The facet.query Parameter
This parameter allows you to specify an arbitrary query in the Lucene default syntax to generate a
facet count. By default, Solr's faceting feature automatically determines the unique terms for a
field and returns a count for each of those terms. Using , you can override this defaultfacet.query

behavior and select exactly which terms or expressions you would like to see counted. In a typical
implementation of faceting, you will specify a number of parameters. This parameterfacet.query

can be particularly useful for numeric-range-based facets or prefix-based facets.

Solr Reference Guide Jan 10, 2012

Page of 271 397

You can set the parameter multiple times to indicate that multiple queries should befacet.query

used as separate facet constraints.

To use facet queries in a syntax other than the default syntax, prefix the facet query with the name
of the query notation. For example, to use the hypothetical query parser, you could set the myfunc

 parameter like so:facet.query

facet.query={!myfunc}name~fred

Field-Value Faceting Parameters
Several parameters can be used to trigger faceting based on the indexed terms in a field.

When using this parameter, it is important to remember that "term" is a very specific concept in
Lucene: it relates to the literal field/value pairs that are indexed after any analysis occurs. For text
fields that include stemming, lowercasing, or word splitting, the resulting terms may not be what
you expect. If you want Solr to perform both analysis (for searching) and faceting on the full literal
strings, use the directive in the file to create two versions of the field: onecopyField schema.xml

Text and one String. Make sure both are . (For more information about the indexed="true"

 directive, see .)copyField Documents, Fields, and Schema Design

The table below summarizes Solr's field value faceting parameters.

Parameter Description

facet.field Identifies a field to be treated as a facet.

facet.prefix Limits the terms used for faceting to those that begin with the specified
prefix.

facet.sort Controls how faceted results are sorted.

facet.limit Controls how many constraints should be returned for each facet.

facet.offset Specifies an offset into the facet results at which to begin displaying
facets.

facet.mincount Specifies the minimum counts required for a facet field to be included
in the response.

facet.missing Controls whether Solr should compute a count of all matching results
which have no value for the field, in addition to the Term-based
constraints of a facet field.

facet.method Selects the algorithm or method Solr should use when faceting a field.

Solr Reference Guide Jan 10, 2012

Page of 272 397

facet.enum.cache.minDF Specifies the minimum document frequency (the number of documents
matching a term) for which the should be used whenfilterCache

determining the constraint count for that term.

These parameters are described in the sections below.

The facet.field Parameter
The parameter identifies a field that should be treated as a facet. It iterates overfacet.field

each Term in the field and generate a facet count using that Term as the constraint. This
parameter can be specified multiple times in a query to select multiple facet fields.

If you do not set this parameter to at least one field in the schema, none of the other
parameters described in this section will have any effect.

The facet.prefix Parameter
The parameter limits the terms on which to facet to those starting with the givenfacet.prefix

string prefix. This does not limit the query in any way, only the facets that would be returned in
response to the query.

This parameter can be specified on a per-field basis with the syntax of
.f.<fieldname>.facet.prefix

The facet.sort Parameter
This parameter determines the ordering of the facet field constraints.

The true/false values for this parameter were deprecated in Solr 1.4.

facet.sort

Setting
Results

count Sort the constraints by count (highest count first).

index Return the constraints sorted in their index order (lexicographic by indexed term).
For terms in the ASCII range, this will be alphabetically sorted.

The default is if is greater than 0, otherwise, the default is .count facet.limit index

This parameter can be specified on a per-field basis with the syntax of f.<fieldname>.facet.sort
.

Solr Reference Guide Jan 10, 2012

Page of 273 397

The facet.limit Parameter
This parameter specifies the maximum number of constraint counts (essentially, the number of
facets for a field that are returned) that should be returned for the facet fields. A negative value
means that Solr will return unlimited number of constraint counts.

The default value is 100.

This parameter can be specified on a per-field basis to apply a distinct limit to each field with the
syntax of .f.<fieldname>.facet.limit

The facet.offset Parameter
The parameter indicates an offset into the list of constraints to allow paging.facet.offset

The default value is 0.

This parameter can be specified on a per-field basis with the syntax of
.f.<fieldname>.facet.offset

The facet.mincount Parameter
The parameter specifies the minimum counts required for a facet field to befacet.mincount

included in the response. If a field's counts are below the minimum, the field's facet is not
returned.

The default value is 0.

This parameter can be specified on a per-field basis with the syntax of
.f.<fieldname>.facet.mincount

The facet.missing Parameter
If set to true, this parameter indicates that, in addition to the Term-based constraints of a facet
field, a count of all results that match the query but which have no facet value for the field should
be computed and returned in the response.

The default value is false.

This parameter can be specified on a per-field basis with the syntax of
.f.<fieldname>.facet.missing

The facet.method Parameter
The facet.method parameter selects the type of algorithm or method Solr should use when faceting
a field.

Solr Reference Guide Jan 10, 2012

Page of 274 397

Setting Results

enum Enumerates all terms in a field, calculating the set intersection of documents that match
the term with documents that match the query. This method is recommended for
faceting multi-valued fields that have only a few distinct values. The average number of
values per document does not matter. For example, faceting on a field with U.S. States
such as would lead to fifty cached filters which wouldAlabama, Alaska, ... Wyoming

be used over and over again. The should be large enough to hold all thefilterCache

cached filters.

fc Calculates facet counts by iterating over documents that match the query and summing
the terms that appear in each document. This is currently implemented using an

 cache if the field either is multi-valued or is tokenized (according to UnInvertedField

). Each document is looked up in the cache to see whatFieldType.isTokened()

terms/values it contains, and a tally is incremented for each value. This method is
excellent for situations where the number of indexed values for the field is high, but the
number of values per document is low. For multi-valued fields, a hybrid approach is
used that uses term filters from the for terms that match manyfilterCache

documents. The letters stand for field cache.fc

The default value is (except for fields using the field type) since it tends to use lessfc BoolField

memory and is faster when a field has many unique terms in the index.

This parameter can be specified on a per-field basis with the syntax of
.f.<fieldname>.facet.method

The facet.enum.cache.minDf Parameter
This parameter indicates the minimum document frequency (the number of documents matching a
term) for which the filterCache should be used when determining the constraint count for that
term. This is only used with the method of faceting.facet.method=enum

A value greater than zero decreases the filterCache's memory usage, but increases the time
required for the query to be processed. If you are faceting on a field with a very large number of
terms, and you wish to decrease memory usage, try setting this parameter to a value between 25
and 50, and run a few tests. Then, optimize the parameter setting as necessary.

The default value is 0, causing the filterCache to be used for all terms in the field.

This parameter can be specified on a per-field basis with the syntax of
.f.<fieldname>.facet.enum.cache.minDF

Range Faceting

Solr Reference Guide Jan 10, 2012

Page of 275 397

You can use Range Faceting on any date field or any numeric field that supports range queries.
This is particularly useful for stitching together a series of range queries (as facet by query) for
things like prices. As of Solr 3.1, Range Faceting is preferred over (described below).Date Faceting

Parameter Description

facet.range Specifies the field to facet by range.

facet.range.start Specifies the start of the facet range.

facet.range.end Specifies the end of the facet range.

facet.range.gap Specifies the span of the range as a value to be added to the lower bound.

facet.range.hardend A boolean parameter that specifies how Solr handles a range gap that
cannot be evenly divided between the range start and end values. If true,
the last range constraint will have the value an upperfacet.range.end

bound. If false, the last range will have the smallest possible upper bound
greater then such that the range is the exact width of thefacet.range.end

specified range gap. The default value for this parameter is false.

facet.range.include Specifies inclusion and exclusion preferences for the upper and lower
bounds of the range. See the topic for more detailedfacet.range.include

information.

facet.range.other Specifies counts for Solr to compute in addition to the counts for each facet
range constraint.

The facet.range Parameter
The parameter defines the field for which Solr should create range facets. Forfacet.range

example:

facet.range=price&facet.range=age

The facet.range.start Parameter
The parameter specifies the lower bound of the ranges. You can specify thisfacet.range.start

parameter on a per field basis with the syntax of . Forf.<fieldname>.facet.range.start

example:

f.price.facet.range.start=0.0&f.age.facet.range.start=10

The facet.range.end Parameter
The facet.range.end specifies the upper bound of the ranges. You can specify this parameter on a
per field basis with the syntax of . For example:f.<fieldname>.facet.range.end

Solr Reference Guide Jan 10, 2012

Page of 276 397

f.price.facet.range.end=1000.0&f.age.facet.range.start=99

The facet.range.gap Parameter
The span of each range expressed as a value to be added to the lower bound. For date fields, this
should be expressed using the syntax (such as DateMathParser facet.range.gap=%2B1DAY ...

). You can specify this parameter on a per field basis with the syntax of '+1DAY'

. For example:f.<fieldname>.facet.range.gap

f.price.facet.range.gap=100&f.age.facet.range.gap=10

 creates 4+ buckets of size, 1, 2, 3 and then 0 or more buckets of 10facet.date.gap=1,2,3,10

days each, depending on the start and end values.

The facet.range.hardend Parameter
The parameter is a Boolean parameter that specifies how Solr should handlefacet.range.hardend

cases where the does not divide evenly between and facet.range.gap facet.range.start

. If , the last range constraint will have the value as anfacet.range.end true facet.range.end

upper bound. If , the last range will have the smallest possible upper bound greater then false
 such that the range is the exact width of the specified range gap. The defaultfacet.range.end

value for this parameter is false. This parameter can be specified on a per field basis with the
syntax .f.<fieldname>.facet.range.hardend

The facet.range.include Parameter
By default, the ranges used to compute range faceting between and facet.range.start

 are inclusive of their lower bounds and exclusive of the upper bounds. Thefacet.range.end

"before" range defined with the parameter is exclusive and the "after" range isfacet.range.other

inclusive. This default, equivalent to "lower" below, will not result in double counting at the
boundaries. You can use the parameter to modify this behavior using thefacet.range.include

following options:

Option Description

lower All gap-based ranges include their lower bound.

upper All gap-based ranges include their upper bound.

edge The first and last gap ranges include their edge bounds (lower for the first one, upper for
the last one) even if the corresponding upper/lower option is not specified.

outer The "before" and "after" ranges will be inclusive of their bounds, even if the first or last
ranges already include those boundaries.

all Includes all options: lower, upper, edge, outer.

http://lucene.apache.org/solr/api/org/apache/solr/util/DateMathParser.html

Solr Reference Guide Jan 10, 2012

Page of 277 397

You can specify this parameter on a per field basis with the syntax of
, and you can specify it multiple times to indicate multiplef.<fieldname>.facet.range.include

choices.

To ensure you avoid double-counting, do not choose both and , do not choose lower upper

, and do not choose .outer all

The facet.range.other Parameter
The parameter specifies that in addition to the counts for each rangefacet.range.other

constraint between and , counts should also be computedfacet.range.start facet.range.end

for these options:

Option Description

before All records with field values lower then lower bound of the first range.

after All records with field values greater then the upper bound of the last range.

between All records with field values between the start and end bounds of all ranges.

none Do not compute any counts.

all Compute counts for before, between, and after.

This parameter can be specified on a per field basis with the syntax of
. In addition to the option, this parameter can be specifiedf.<fieldname>.facet.range.other all

multiple times to indicate multiple choices, but will override all other options.none

Date Faceting Parameters
As of Solr 3.1, date faceting has been deprecated in favor of , which provides moreRange Faceting
flexibility with dates and numeric fields. Date Faceting can be used, but are not covered in this
guide. For more information on those parameters, which are equivalent to the parameters for

, see on the Solr Wiki.Range Faceting Date Faceting Parameters

LocalParams for Faceting
The LocalParams syntax provides a method of adding metadata to other parameter values, much
like XML attributes.

Tagging and Excluding Filters

http://wiki.apache.org/solr/SimpleFacetParameters#Date_Faceting_Parameters

Solr Reference Guide Jan 10, 2012

Page of 278 397

You can tag specific filters and exclude those filters when faceting. This is useful when doing
multi-select faceting.

Consider the following example query with faceting:

q=mainquery&fq=status:public&fq=doctype:pdf&facet=on&facet.field=doctype

Because everything is already constrained by the filter , the doctype:pdf facet.field=doctype

facet command is currently redundant and will return 0 counts for everything except .doctype:pdf

To implement a multi-select facet for doctype, a GUI may want to still display the other doctype
values and their associated counts, as if the constraint had not yet been applied. Fordoctype:pdf

example:

=== Document Type ===

 [] Word (42)

 [x] PDF (96)

 [] Excel(11)

 [] HTML (63)

To return counts for doctype values that are currently not selected, tag filters that directly
constrain doctype, and exclude those filters when faceting on doctype.

q=mainquery&fq=status:public&fq={!tag=dt}doctype:pdf&facet=on&facet.field={!ex=dt}doctype

Filter exclusion is supported for all types of facets. Both the and local parameters maytag ex

specify multiple values by separating them with commas.

Changing the Output Key
To change the output key for a faceting command, specify a new name with the localkey

parameter. For example:

facet.field={!ex=dt key=mylabel}doctype

The parameter setting above causes the results to be returned under the key "mylabel" rather than
"doctype" in the response. This can be helpful when faceting on the same field multiple times with
different exclusions.

Solr Reference Guide Jan 10, 2012

Page of 279 397

Result Grouping
Result Grouping groups documents with a common field value into groups and returns the top
documents for each group. For example, if you searched for "DVD" on an electronic retailer's
e-commerce site, you might be returned three categories such as "TV and Video," "Movies," and
"Computers," with three results per category. In this case, the query term "DVD" appeared in all
three categories, so Solr groups them together in order to increase relevancy for the user.

Result Grouping is not to be confused with . Though it is conceptually similar, facetingFaceting
returns all relevant results and allows the user to refine the results based on the facet category.
For example, if you searched for "shoes" on a footwear retailer's e-commerce site, you would be
returned all results for that query term, along with selectable facets such as "size," "color,"
"brand," and so on.

Request Parameters
Result Grouping takes the following request parameters. Any number of these request parameters
can be included in a single request:

Parameter Type Description

group Boolean If true, query results will be grouped.

group.field string The name of the field by which to group results. The field
be single-valued, and either be indexed or a field type that
has a value source and works in a function query, such as

. It must also be a string-based field,ExternalFileField

such as or StrField TextField

group.query query Return a single group of documents that match the given
query.

rows integer The number of groups to return. The default value is 10.

start integer Specifies an initial offset for the list of groups.

group.limit integer Specifies the number of results to return for each group.
The default value is 1.

group.offset integer Specifies an initial offset for the document list of each
group.

Solr Reference Guide Jan 10, 2012

Page of 280 397

sort sortspec Specifies how Solr sorts the groups relative to each other.
For example, will cause thesort=popularity desc

groups to be sorted according to the highest popularity
document in each group. The default value is .score desc

group.sort sortspec Specifies how Solr sorts documents within a single group.
The default value is .score desc

group.format grouped/simple If this parameter is set to , the grouped documentssimple

are presented in a single flat list, and the and start rows

parameters affect the numbers of documents instead of
groups.

group.main Boolean If true, the result of the first field grouping command is
used as the main result list in the response, using

.group.format=simple

group.ngroups Boolean If true, Solr includes the number of groups that have
matched the query in the results. The default value is
false.

group.truncate Boolean If true, facet counts are based on the most relevant
document of each group matching the query. The default
value is false.

group.cache.percent integer
between 0 and
100

Setting this parameter to a number greater than 0 enables
caching for result grouping. Result Grouping executes two
searches; this option caches the second search. The
default value is 0. Testing has shown that group caching
only improves search time with Boolean, wildcard, and
fuzzy queries. For simple queries like term or "match all"
queries, group caching degrades performance.

Examples
All of the following examples work with the data provided in the Solr Example directory.

Grouping Results by Field
In this example, we will group results based on the field, which specifies themanu_exact

manufacturer of the items in the sample dataset.

http://localhost:8983/solr/select?wt=json&indent=true&fl=id,name&q=solr+memory&group=true&group.field=manu_exact

{

Solr Reference Guide Jan 10, 2012

Page of 281 397

"responseHeader":{

 "status":0,

 "QTime":56,

 "params":{

 "fl":"id,name",

 "indent":"true",

 "q":"solr memory",

 "group.field":"manu_exact",

 "group":"true",

 "wt":"json"}},

"grouped":{

 "manu_exact":{

 "matches":6,

 "groups":[{

 "groupValue":"Apache Software Foundation",

 "doclist":{"numFound":1,"start":0,"docs":[

 {

 "id":"SOLR1000",

 "name":"Solr, the Enterprise Search Server"}]

 }},

 {

 "groupValue":"Corsair Microsystems Inc.",

 "doclist":{"numFound":2,"start":0,"docs":[

 {

 "id":"VS1GB400C3",

 "name":"CORSAIR ValueSelect 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC

3200) System Memory - Retail"}]

 }},

 {

 "groupValue":"A-DATA Technology Inc.",

 "doclist":{"numFound":1,"start":0,"docs":[

 {

 "id":"VDBDB1A16",

 "name":"A-DATA V-Series 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC

3200) System Memory - OEM"}]

 }},

 {

 "groupValue":"Canon Inc.",

 "doclist":{"numFound":1,"start":0,"docs":[

 {

 "id":"0579B002",

 "name":"Canon PIXMA MP500 All-In-One Photo Printer"}]

 }},

 {

 "groupValue":"ASUS Computer Inc.",

 "doclist":{"numFound":1,"start":0,"docs":[

 {

Solr Reference Guide Jan 10, 2012

Page of 282 397

 "id":"EN7800GTX/2DHTV/256M",

 "name":"ASUS Extreme N7800GTX/2DHTV (256 MB)"}]

 }

 }

]

 }

 }

}

The response indicates that there are six total matches for our query. For each unique value of
, Solr returns a with the top scoring document. The also includesgroup.field docList docList

the total number of matches in that group as the value. The groups are sorted by thenumFound

score of the top document within each group.

We can run the same query with the request parameter . This will format thegroup.main=true

results as a single flat document list. This flat format does not include as much information as the
normal result grouping query results, but it may be easier for existing Solr clients to parse.

http://localhost:8983/solr/select?wt=json&indent=true&fl=id,name,manufacturer&q=solr+memory&group=true&group.field=manu_exact&group.main=true

Solr Reference Guide Jan 10, 2012

Page of 283 397

{

 "responseHeader":{

 "status":0,

 "QTime":1,

 "params":{

 "fl":"id,name,manufacturer",

 "indent":"true",

 "q":"solr memory",

 "group.field":"manu_exact",

 "group.main":"true",

 "group":"true",

 "wt":"json"}},

 "grouped":{},

 "response":{"numFound":6,"start":0,"docs":[

 {

 "id":"SOLR1000",

 "name":"Solr, the Enterprise Search Server"},

 {

 "id":"VS1GB400C3",

 "name":"CORSAIR ValueSelect 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC 3200)

System Memory - Retail"},

 {

 "id":"VDBDB1A16",

 "name":"A-DATA V-Series 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC 3200)

System Memory - OEM"},

 {

 "id":"0579B002",

 "name":"Canon PIXMA MP500 All-In-One Photo Printer"},

 {

 "id":"EN7800GTX/2DHTV/256M",

 "name":"ASUS Extreme N7800GTX/2DHTV (256 MB)"}]

 }

}

Grouping by Query
In this example, we will use the parameter to find the top three results for "memory"group.query

in two different price ranges: 0.00 to 99.99, and over 100.

http://localhost:8983/solr/select?wt=json&indent=true&fl=id,name,manufacturer&q=solr+memory&group=true&group.field=manu_exact&group.main=true

Solr Reference Guide Jan 10, 2012

Page of 284 397

{

 "responseHeader":{

 "status":0,

 "QTime":42,

 "params":{

 "fl":"name,price",

 "indent":"true",

 "q":"memory",

 "group.limit":"3",

 "group.query":["price:[0 TO 99.99]",

 "price:[100 TO *]"],

 "group":"true",

 "wt":"json"}},

 "grouped":{

 "price:[0 TO 99.99]":{

 "matches":5,

 "doclist":{"numFound":1,"start":0,"docs":[

 {

 "name":"CORSAIR ValueSelect 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC

3200) System Memory - Retail",

 "price":74.99}]

 }},

 "price:[100 TO *]":{

 "matches":5,

 "doclist":{"numFound":3,"start":0,"docs":[

 {

 "name":"CORSAIR XMS 2GB (2 x 1GB) 184-Pin DDR SDRAM Unbuffered DDR 400 (PC

3200) Dual Channel Kit System Memory - Retail",

 "price":185.0},

 {

 "name":"Canon PIXMA MP500 All-In-One Photo Printer",

 "price":179.99},

 {

 "name":"ASUS Extreme N7800GTX/2DHTV (256 MB)",

 "price":479.95}]

 }

 }

 }

 }

In this case, Solr found five matches for "memory," but only returns four results grouped by price.
This is because one result for "memory" did not have a price assigned to it.

Distributed Result Grouping

Solr Reference Guide Jan 10, 2012

Page of 285 397

Solr also supports result grouping on distributed indexes. If you are using result grouping on the
"/select" request handler, you must provide the parameter described here. If you are usingshards

result grouping on a request handler other than "/select", you must also provide the shards.qt
parameter:

Parameter Description

shards Specifies the shards in your distributed indexing configuration. For more information
about distributed indexing, see Distributed Search with Index Sharding

shards.qt Specifies the request handler Solr uses for requests to shards. This parameter is not
required for the request handler./select

For example:
http://localhost:8983/solr/select?wt=json&indent=true&fl=id,name,manufacturer&q=solr+memory&group=true&group.field=manu_exact&group.main=true&shards=solr-shard1:8983/solr,solr-shard2:8983/solr

Solr Reference Guide Jan 10, 2012

Page of 286 397

Spell Checking
The SpellCheck component is designed to provide inline query suggestions based on other, similar,
terms. The basis for these suggestions can be terms in a field in Solr, externally created text files,
or fields in other Lucene indexes.

Topics covered in this section:

Configuring the SpellCheckComponent
Spell Check Parameters
Distributed SpellCheck

Configuring the SpellCheckComponent

Define Spell Check in solrconfig.xml
The first step is to specify the source of terms in . Below is a simple example ofsolrconfig.xml

how this would be done with the IndexBasedSpellChecker, which uses a field in Solr the basis of
the spell check index:

<searchComponent name="spellcheck" class="solr.SpellCheckComponent">

 <lst name="spellchecker">

 <str name="classname">solr.IndexBasedSpellChecker</str>

 <str name="spellcheckIndexDir">./spellchecker</str>

 <str name="field">content</str>

 <str name="buildOnCommit">true</str>

 </lst>

</searchComponent>

The first element defines the to use the . The searchComponent solr.SpellCheckComponent

 is the specific implementation of the SpellCheckComponent. There are 2 options: classname
, which uses a field as the basis of the spell check terms; or IndexBasedSpellChecker

, which uses an external file as the basis of the terms. Defining the FileBasedSpellChecker

 is optional; if not defined, it will default to .classname IndexBasedSpellChecker

Solr Reference Guide Jan 10, 2012

Page of 287 397

The defines the location of the directory that holds the spellcheck index, whilespellcheckIndexDir
the defines the source field (defined in) for spell check terms. When choosing afield schema.xml

field for the spellcheck index, it's best to avoid a heavily processed field to get more accurate
results. If the field has many word variations from processing synonyms and/or stemming, the
dictionary will be created with those variations in addition to more valid spelling data.

Finally, defines whether to build the spell check index at every commit (that is,buildOnCommit
every time new documents are added to the index). It is optional, and can be omitted if you would
rather set it to .false

If you are using the , you would define the searchComponent as so:FileBasedSpellChecker

<searchComponent name="spellcheck" class="solr.SpellCheckComponent">

 <lst name="spellchecker">

 <str name="classname">solr.FileBasedSpellChecker</str>

 <str name="name">file</str>

 <str name="sourceLocation">spellings.txt</str>

 <str name="characterEncoding">UTF-8</str>

 <str name="spellcheckIndexDir">./spellcheckerFile</str>

 </lst>

</searchComponent>

The differences here are the use of the to define the location of the file of termssourceLocation
and the use of to define the encoding of the terms file.characterEncoding

In the previous example, is used to name this specific definition of the spellchecker.name
Multiple defintions can co-exist in a single , and the helps tosolrconfig.xml name
differentiate them when they are defined in the . If only defining oneschema.xml

spellchecker, no name is required.

Add It to a Request Handler
Queries will be sent to a . If every request should generate a suggestion, then youRequestHandler
would add the following to the that you are using:requestHandler

<str name="spellcheck">true</str>

Solr Reference Guide Jan 10, 2012

Page of 288 397

This section covers some of the basic implementation options for Spell Checking. For more
advanced options, including how to buildOnOptimize, modify how terms are sorted, or
customize how suggestions are made, see the page on the
SpellCheckComponent|http://wiki.apache.org/solr/SpellCheckComponent] on the Solr
Wiki.

Spell Check Parameters
The SpellCheck component accepts the parameters described in the table below.

Parameter Description

spellcheck Turns on or off SpellCheck suggestions for the request. If
, then spelling suggestions will be generated.true

spellcheck.q or q Selects the query to be spellchecked.

spellcheck.build Instructs Solr to build a dictionary for use in spellchecking.

spellcheck.collate Causes Solr to build a new query based on the best
suggestion for each term in the submitted query.

spellcheck.maxCollations This parameter specifies the maximum number of collations
to return.

spellcheck.maxCollationTries This parameter specifies the number of collation possibilities
for Solr to try before giving up.

spellcheck.maxCollationEvaluations This parameter specifies the maximum number of word
correction combinations to rank and evaluate prior to
deciding which collation candidates to test against the index.

spellcheck.collateExtendedResult

spellcheck.count Specifies the maximum number of spelling suggestions to be
returned.

spellcheck.dictionary Specifies the dictionary that should be used for
spellchecking.

Solr Reference Guide Jan 10, 2012

Page of 289 397

spellcheck.extendedResults Causes Solr to return additional information about spellcheck
results, such as the frequency of each original term in the
index (origFreq) as well as the frequency of each suggestion
in the index (frequency).

Note that this result format differs from the non-extended
one as the returned suggestion for a word is actually an
array of lists, where each list holds the suggested term and
its frequency.

spellcheck.onlyMorePopular Limits spellcheck responses to queries that are more popular
than the original query.

spellcheck.reload Reloads the spellchecker.

spellcheck.accuracy Specifies an accuracy value to help decide whether a result
is worthwhile.

spellcheck.<DICT_NAME>.key Specifies a key/value pair for the implementation handling a
given dictionary.

The spellcheck Parameter
This parameter turns on SpellCheck suggestions for the request. If , then spelling suggestionstrue
will be generated.

The spellcheck.q or q Parameter
This parameter specifies the query to spellcheck. If is defined, then it is used;spellcheck.q

otherwise the original input query is used. The parameter is intended to be thespellcheck.q

original query, minus any extra markup like field names, boosts, and so on. If the parameter isq

specified, then the class is used to parse it into tokens; otherwise the SpellingQueryConverter

 is used. The choice of which one to use is up to the application. Essentially,WhitespaceTokenizer

if you have a spelling "ready" version in your application, then it is probably better to use
. Otherwise, if you just want Solr to do the job, use the parameter.spellcheck.q q

The SpellingQueryConverter class does not deal properly with non-ASCII characters. In this
case, you have either to use , or implement your own QueryConverter.spellcheck.q

The spellcheck.build Parameter

Solr Reference Guide Jan 10, 2012

Page of 290 397

If set to , this parameter creates the dictionary that the SolrSpellChecker will use fortrue
spell-checking. In a typical search application, you will need to build the dictionary before using the
SolrSpellChecker. However, it's not always necessary to build a dictionary first. For example, you
can configure the spellchecker to use a dictionary that already exists.

The dictionary will take some time to build, so this parameter should not be sent with every
request.

The spellcheck.reload Parameter
If set to true, this parameter reloads the spellchecker. The results depend on the implementation
of . In a typical implementation, reloading the spellchecker meansSolrSpellChecker.reload()

reloading the dictionary.

The spellcheck.count Parameter
This parameter specifies the maximum number of suggestions that the spellchecker should return
for a term. If this parameter isn't set, the value defaults to 1. If the parameter is set but not
assigned a number, the value defaults to 5. If the parameter is set to a positive integer, that
number becomes the maximum number of suggestions returned by the spellchecker.

The spellcheck.onlyMorePopular Parameter
If , Solr will to return suggestions that result in more hits for the query than the existingtrue
query. Note that this will return more popular suggestions even when the given query term is
present in the index and considered "correct".

The spellcheck.extendedResults Parameter
This parameter causes to Solr to include additional information about the suggestion, such as the
frequency in the index.

The spellcheck.collate Parameter
If , this parameter directs Solr to take the best suggestion for each token (if one exists) andtrue
construct a new query from the suggestions. For example, if the input query was "jawa class
lording" and the best suggestion for "jawa" was "java" and "lording" was "loading", then the
resulting collation would be "java class loading".

The spellcheck.collate parameter only returns collations that are guaranteed to result in hits if
re-queried, even when applying original parameters. This is especially helpful when there isfq

more than one correction per query.

This only returns a query to be used. It does not actually run the suggested query.

Solr Reference Guide Jan 10, 2012

Page of 291 397

The spellcheck.maxCollations Parameter
The maximum number of collations to return. The default is . This parameter is ignored if 1

 is false.spellcheck.collate

The spellcheck.maxCollationTries Parameter
This parameter specifies the number of collation possibilities for Solr to try before giving up. Lower
values ensure better performance. Higher values may be necessary to find a collation that can
return results. The default value is , which maintains backwards-compatible (Solr 1.4) behavior0

(do not check collations). This parameter is ignored if is false.spellcheck.collate

The spellcheck.maxCollationEvaluations Parameter
This parameter specifies the maximum number of word correction combinations to rank and
evaluate prior to deciding which collation candidates to test against the index. This is a
performance safety-net in case a user enters a query with many misspelled words. The default is

 combinations, which should work well in most situations.10,000

The spellcheck.collateExtendedResult Parameter
If , this parameter returns an expanded response format detailing the collations Solr found.true
The default value is . Ignored if is false. Following is an example of thefalse spellcheck.collate

extended output for the misspelled query :Title:(hopq AND faill)

<lst name="collation">

 <str name="collationQuery">Title:(hope AND faith)</str>

 <int name="hits">2</int>

 <lst name="misspellingsAndCorrections">

 <str name="hopq">hope</str>

 <str name="faill">faith</str>

 </lst>

</lst>

<lst name="collation">

 <str name="collationQuery">Title:(chops AND all)</str>

 <int name="hits">1</int>

 <lst name="misspellingsAndCorrections">

 <str name="hopq">chops</str>

 <str name="faill">all</str>

 </lst>

</lst>

The spellcheck.dictionary Parameter

Solr Reference Guide Jan 10, 2012

Page of 292 397

This parameter causes Solr to use the dictionary named in the parameter's argument. The default
setting is "default". This parameter can be used to invoke a specific spellchecker on a per request
basis.

The spellcheck.accuracy Parameter
Specifies an accuracy value to be used by the spell checking implementation to decide whether a
result is worthwhile or not. The value is a float between 0 and 1. Defaults to .Float.MIN_VALUE

The spellcheck.<DICT_NAME>.key Parameter
Specifies a key/value pair for the implementation handling a given dictionary. This key/value pair is
passed through to the implementation in a . The value that is passed through isSolrParams class

just (is stripped off).key=value spellcheck.<DICT_NAME>.

For example, given a dictionary called , would result in foo spellcheck.foo.myKey=myValue

 being passed through to the implementation handling the dictionary .myKey=myValue foo

Example
This example shows the results of a simple query that defines a query using the spellcheck.q
parameter. The query also includes a parameter, which is needs to bespellcheck.build=true

called only once in order to build the index. should not be specified with forspellcheck.build

each request.

http://localhost:8983/solr/spellCheckCompRH?q=*:*&spellcheck.q=hell%20ultrashar&spellcheck=true&spellcheck.build=true

Results:

Solr Reference Guide Jan 10, 2012

Page of 293 397

<lst name="spellcheck">

 <lst name="suggestions">

 <lst name="hell">

 <int name="numFound">1</int>

 <int name="startOffset">0</int>

 <int name="endOffset">4</int>

 <arr name="suggestion">

 <str>dell</str>

 </arr>

 </lst>

 <lst name="ultrashar">

 <int name="numFound">1</int>

 <int name="startOffset">5</int>

 <int name="endOffset">14</int>

 <arr name="suggestion">

 <str>ultrasharp</str>

 </arr>

 </lst>

 </lst>

</lst>

Distributed SpellCheck
The also supports spellchecking on distributed indexes. If you are using theSpellCheckComponent

SpellCheckComponent on a request handler other than "/select", you must provide the following
two parameters:

Parameter Description

shards Specifies the shards in your distributed indexing configuration. For more information
about distributed indexing, see
https://dev.lcimg.com/wiki/display/solr/Distributed+Search+with+Index+Sharding

shards.qt Specifies the request handler Solr uses for requests to shards. This parameter is not
required for the request handler./select

For example:
http://solr:8983/solr/select?q=*:*&spellcheck=true&spellcheck.build=true&spellcheck.q=toyata&qt=spell&shards.qt=spell&shards=solr-shard1:8983/solr,solr-shard2:8983/solr

In case of a distributed request to the SpellCheckComponent, the shards are requested for at least
five suggestions even if the parameter value is less than five. Once thespellcheck.count

suggestions are collected, they are ranked by the configured distance measure (Levenstein
Distance by default) and then by aggregate frequency.

Solr Reference Guide Jan 10, 2012

Page of 294 397

Suggester
Solr includes an autosuggest component called Suggester, which is built on the SpellCheck search

. The autocompletion suggestions that Suggester provides come from a dictionary thatcomponent
is based on the main index or on a dictionary file that you provide. It is common to provide only
the top-N suggestions, either ranked alphabetically or according to their usefulness for an average
user (such as popularity or the number of returned results).

Configuring Suggester
Because it is based on the , configuring Suggester is very similar toSpellCheck search component
configuring spell checking. In , add something like the following:solrconfig.xml

Solr Reference Guide Jan 10, 2012

Page of 295 397

<searchComponent class="solr.SpellCheckComponent" name="suggest">

 <lst name="spellchecker">

 <str name="name">suggest</str>

 <str name="classname">org.apache.solr.spelling.suggest.Suggester</str>

 <str name="lookupImpl">org.apache.solr.spelling.suggest.tst.FSTLookup</str>

 <!-- Alternatives to lookupImpl:

 org.apache.solr.spelling.suggest.fst.FSTLookup [finite state automaton]

 org.apache.solr.spelling.suggest.jaspell.JaspellLookup [default,

jaspell-based]

 org.apache.solr.spelling.suggest.tst.TSTLookup [ternary trees]

 -->

 <str name="field">name</str> <!-- the indexed field to derive suggestions from

-->

 <float name="threshold">0.005</float>

 <str name="buildOnCommit">true</str>

<!--

 <str name="sourceLocation">american-english</str>

-->

 </lst>

 </searchComponent>

 <requestHandler class="org.apache.solr.handler.component.SearchHandler"

name="/suggest">

 <lst name="defaults">

 <str name="spellcheck">true</str>

 <str name="spellcheck.dictionary">suggest</str>

 <str name="spellcheck.onlyMorePopular">true</str>

 <str name="spellcheck.count">5</str>

 <str name="spellcheck.collate">true</str>

 </lst>

 <arr name="components">

 <str>suggest</str>

 </arr>

 </requestHandler>

The look-up of matching suggestions in a dictionary is implemented by subclasses of the lookup
class. Solr includes three class implementations:lookup

FSTLookup: automaton based representation; slower to build, but consumes far less memory
at runtime.
JaspellLookup: tree-based representation based on Jaspell.
TSTLookup: ternary tree based representation, capable of immediate data structure updates.

Solr Reference Guide Jan 10, 2012

Page of 296 397

All three implementations will most likely run at similar speed when requests are made through
HTTP. Direct benchmarks of these classes indicate that FSTLookup provides better performance
compared to the other two methods, and at a much lower memory cost. We recommend using the
FSTLookup implementation unless you need more sophisticated matching, in which case you should
use the JaspellLookup implementation.

Suggester Parameters

Suggester Search Component Parameters
The Suggester search component takes the following configuration parameters:

Parameter Description

searchComponent
name

Arbitrary name for the search component.

name A symbolic name for this spellchecker. You can refer to this name in the URL
parameters and in the SearchHandler configuration.

classname Suggester

lookupImpl Lookup implementation. Choose one of these three:

: automaton-based lookup. Thisorg.apache.solr.suggest.fst.FSTLookup

implementation provides the best performance and the lowest memory cost.
We recommend using this implementation unless you need more
sophisticated matching results, in which case you should use the Jaspell
implementation.

: a more complex lookuporg.apache.solr.suggest.jaspell.JaspellLookup

based on a ternary trie from the project. Use this implementation ifJaSpell
you need more sophisticated matching results.

: a simple compact ternary trieorg.apache.solr.suggest.tst.TSTLookup

based lookup.

http://jaspell.sourceforge.net/

Solr Reference Guide Jan 10, 2012

Page of 297 397

buildOnCommit by default. If then the Lookup data structure will be rebuilt afterFalse true
commit. If , then the Lookup data will be built only when requested byfalse
URL parameter .spellcheck.build=true

Currently implemented Lookups keep their data in memory, so unlike
spellchecker data, this data is discarded on core reload and not
available until you invoke the build command, either explicitly or
implicitly during a commit.

sourceLocation The path to the dictionary file. If this value is empty then the main index will
be used as a source of terms and weights.

field If is empty then terms from this field in the index will besourceLocation

used when building the trie.

threshold A value between zero and one representing the minimum fraction of the total
documents where a term should appear in order to be added to the lookup
dictionary.

Dictionary files should be plain text files in UTF-8 encoding. Blank lines and lines that start with a
'#' are ignored. The remaining lines must consist of either a string without literal TAB (\u0007)
characters, or a string and a TAB separated floating-point weight. You can use both single terms
and phrases in a dictionary file.

This is a sample dictionary file.

acquire

accidentally\t2.0

accommodate\t3.0

If weight is missing it's assumed to be 1.0. Weights affect the sorting of matching suggestions
when is selected: weights are treated as "popularity" score,spellcheck.onlyMorePopular=true

with higher weights preferred over suggestions with lower weights.

When you use the index as the dictionary, you may encounter many invalid or uncommon terms.
The parameter addresses this issue. By setting the parameter to a valuethreshhold threshold

just above zero, you can greatly reduce the number of unusable terms in your dictionary while
maintaining most of the common terms. The example above sets the value to 0.5%.threshold

The parameter does not affect file-based dictionaries.threshold

Suggester Request Handler Parameters

Solr Reference Guide Jan 10, 2012

Page of 298 397

The Suggester request handler takes the following configuration parameters:

Parameter Description

spellcheck=true This parameter should always be true, because we always want to
run the Suggester for queries submitted to this handler.

spellcheck.dictionary The name of the dictionary component configured in the search
component.

spellcheck.onlyMorePopular If true, then suggestions will be sorted by weight ("popularity"). The
 parameter will effectively limit this to a top-N list of bestcount

suggestions. If false, suggestions are sorted alphabetically.

spellcheck.count Specifies the number of suggestions for Solr to return.

spellcheck.collate If true, Solr provides a query collated with the first matching
suggestion.

Solr Reference Guide Jan 10, 2012

Page of 299 397

Spatial Search
Solr supports location data for use in spatial or geospatial searches. Using spatial search, you can:

Represent spatial data in the index
Filter by location based on a bounding box or circle
Sort by distance
Score and boost by distance

There are three new function queries that support spatial search: , to determine the distancedist

between two points; , to calculate the distance between two points on a sphere; and ,hsin sqedist

to calculate the square Euclidean distance between two points. For more information about these
function queries, see and .Function Queries http://wiki.apache.org/solr/FunctionQuery

For more information on Solr spatial search, see .http://wiki.apache.org/solr/SpatialSearch

Spatial Search Features
Solr includes three useful tools for working with spatial queries: , a geospatial filter; ,geofilt bbox

a geospatial bounding-box filter; and , a geospatial distance function.geodist

Spatial Search Parameters
The following parameters are used for spatial search:

Parameter Description

d distance, in kilometers

pt a lat/lon coordinate point

sfield a spatial field, by default a (lat/lon) field type.location

geofilt
The filter allows you to retrieve results based on the distance from a given point. Forgeofilt

example, to find all results for a product search within five kilometers of the lat/lon point, you
could enter . This filter returns...&q= : &fq={!geofilt sfield=store}&pt=45.15,-93.85&d=5

all results within a circle of the given radius around the initial point:

http://wiki.apache.org/solr/FunctionQuery#dist
http://wiki.apache.org/solr/FunctionQuery#hsin.2C_ghhsin_-_Haversine_Formula
https://wiki.apache.org/solr/FunctionQuery#sqedist_-_Squared_Euclidean_Distance
http://wiki.apache.org/solr/FunctionQuery
http://wiki.apache.org/solr/SpatialSearch

Solr Reference Guide Jan 10, 2012

Page of 300 397

bbox
 allows you to filter results based on a specified area around a given point. takes thebbox bbox

same parameters as , but rather than calculating all points in a circle within the givengeofilt

radius from the initial point, it only calculates the lower left and upper right corners of a square
that would enclose a circle with the given radius. To return all results within five kilometers of a
give point, you could enter . The...&q= : &fq={!bbox sfield=store}&pt=45.15,-93.85&d=5

resulting bounding box would encompass all points within a five kilometer circle around the initial
point, but it would also include some extra points in the corners of the bounding box that fall
outside the five kilometer radius. Bounding box filters therefore can return results that fall outside
your desired parameters, but they are much less "expensive" to implement.

When a bounding box includes a pole, the field type produces a "bounding bowl"location

(a spherical cap) that includes all values that are north or south of the latitude of the
bounding box corner (the lower left and the upper right) that is closer to the equator. In
other words, Solr still calculates what the coordinates of the upper right corner and the
lower left corner of the box would be just as in all other filtering cases, but it then take the
corner that is closest to the equator (since it goes over the pole it may not be the lower
left, despite the name) and filters by latitude only. This returns more matches than a pure
bounding box match, but the query is both faster and easier to construct.

geodist

Solr Reference Guide Jan 10, 2012

Page of 301 397

 is a distance function that takes three optional parameters: geodist

. You can use the function to sort results by distance or(sfield,latitude,longitude) geodist

score return results.

For example, to sort your results by ascending distance, you could enter {...&q= : &fq= !geofilt

} .&sfield=store&pt=45.15,-93.85&d=50&sort=geodist asc

To return the distance as the document score, you could enter { }...&q= !func

.geodist%28%29&sfield=store&pt=45.15,-93.85&sort=score+asc

More Examples
Here are a few more useful examples of what you can do with spatial search in Solr.

Use as a Sub-Query to Expand Search Results
Here we will query for results in Jacksonville, Florida, or withing 50 kilometers of 45.15,-93.85
(near Buffalo, Minnesota):

{ }...&q= : &fq=(state:"FL" AND city:"Jacksonville") OR query :" !geofilt

"&sfield=store&pt=45.15,-93.85&d=50&sort=geodist() asc

Facet by Distance
To facet by distance, use the Frange query parser:

{ }...&q= : &sfield=store&pt=45.15,-93.85&facet.query= !frange l=0 u=5

{ }geodist()&facet.query= !frange l=5.001 u=3000 geodist()

Boost Nearest Results
Using the or , you can combine spatial search with the boost function toDisMax Extended DisMax
boost the nearest results:

{ }...&q.alt= : &fq= !geofilt

&sfield=store&pt=45.15,-93.85&d=50&bf=recip(geodist(),2,200,20)&sort=score desc

Solr Reference Guide Jan 10, 2012

Page of 302 397

The Terms Component
The Terms Component provides access to the indexed terms in a field and the number of
documents that match each term. This can be useful for building an auto-suggest feature or any
other feature that operates at the term level instead of the search or document level. Retrieving
terms in index order is very fast since the implementation directly uses Lucene's TermEnum to
iterate over the term dictionary.

In a sense, this component provides fast field-faceting over the whole index, not restricted by the
base query or any filters. The document frequencies returned are the number of documents that
match the term, including any documents that have been marked for deletion but not yet removed
from the index.

To use the Terms Component, users can pass in a variety of options to control what terms are
returned. The supported parameters are available in the class:
http://lucene.apache.org/solr/api/org/apache/solr/common/params/TermsParams.html

These parameters are:

Parameter Description Syntax

terms If set to true, terms on the Terms
Component. By default, the Terms
Component is turned off.

}terms={true|false

terms.fl Specifies the field from which to retrieve
terms.

terms.fl= field

terms.lower Specifies the term at which to start. If not
specified, the empty string is used, causing
Solr to start at the beginning of the field.

terms.lower= term

terms.lower.incl If set to true, includes the lower-bound term
in the result set. By default, this parameter
is set to true.

terms.lower.incl={true|false

}

terms.mincount Specifies the minimum document frequency
to return in order for a term to be included
in a query response. Results are inclusive of
the mincount (that is, >= mincount). This
parameter is optional.

terms.mincount= integer

http://lucene.apache.org/solr/api/org/apache/solr/common/params/TermsParams.html

Solr Reference Guide Jan 10, 2012

Page of 303 397

terms.maxcount Specifies the maximum document frequency
a term must have in order to be included in
a query response. The default setting is -1,
which sets no upper bound. Results are
inclusive of the maxcount (that is, <=
maxcount). This parameter is optional.

terms.maxcount= integer

terms.prefix Restricts matches to terms that begin with
the specified string.

}terms.prefix={string

terms.limit Specifies the maximum number of terms to
return. The default is 10. If the limit is set to
a number less than 0, then no maximum
limit is enforced.

terms.limit= integer

terms.upper Specifies the term to stop at. Any application
using the Terms component must set either

 or .terms.limit terms.upper

terms.upper= upper_term

terms.upper.incl If set to true, includes the upper bound term
in the result set. The default is false.

terms.upper.incl={true|false

}

terms.raw If set to true, returns the raw characters of
the indexed term, regardless of whether it is
human-readable. For instance, the indexed
form of numeric numbers is not
human-readable. The default is false.

}terms.raw={true|false

The output is a list of the terms and their document frequency values.

Examples
The following examples use the sample Solr configuration located in the directory.<Solr>/example

The query below requests the first ten terms in the name field.

http://localhost:8983/solr/terms?terms.fl=name

Results:

Solr Reference Guide Jan 10, 2012

Page of 304 397

<?xml version="1.0" encoding="UTF-8"?>

<response>

<lst name="responseHeader">

 <int name="status">0</int>

 <int name="QTime">1</int>

</lst>

<lst name="terms">

 <lst name="name">

 <int name="0">5</int>

 <int name="1">15</int>

 <int name="11">5</int>

 <int name="120">5</int>

 <int name="133">5</int>

 <int name="184">15</int>

 <int name="19">5</int>

 <int name="1900">5</int>

 <int name="2">15</int>

 <int name="20">5</int>

 </lst>

</lst>

</response>

The query below requests the first ten terms in the name field, beginning with the first term that
begins with the letter a.

http://localhost:8983/solr/terms?terms.fl=name&terms.lower=a

Results:

Solr Reference Guide Jan 10, 2012

Page of 305 397

<?xml version="1.0" encoding="UTF-8"?>

<response>

<lst name="responseHeader">

 <int name="status">0</int>

 <int name="QTime">2</int>

</lst>

<lst name="terms">

 <lst name="name">

 <int name="a">8</int>

 <int name="adata">5</int>

 <int name="all">5</int>

 <int name="allinon">5</int>

 <int name="amber">1</int>

 <int name="appl">5</int>

 <int name="asus">5</int>

 <int name="ata">5</int>

 <int name="ati">5</int>

 <int name="b">5</int>

 </lst>

</lst>

</response>

Using the Terms Component for an Auto-Suggest Feature
If the doesn't suit your needs, you can use the Terms component in Solr to build aSuggester
similar feature for your own search application. Simply submit a query specifying whatever
characters the user has typed so far as a prefix. For example, if the user has typed "at", the search
engine's interface would submit the following query:

http://localhost:8983/solr/terms?terms.fl=name&terms.prefix=at

Result:

Solr Reference Guide Jan 10, 2012

Page of 306 397

<?xml version="1.0" encoding="UTF-8"?>

<response>

<lst name="responseHeader">

 <int name="status">0</int>

 <int name="QTime">120</int>

</lst>

<lst name="terms">

 <lst name="name">

 <int name="ata">5</int> <int name="ati">5</int>

 </lst>

</lst>

</response>

You can use the parameter to omit the response header from the queryomitHeader=true

response, like so:

http://localhost:8983/solr/terms?terms.fl=name&terms.prefix=at&indent=true&wt=json&omitHeader=true

Result:

{

 "terms":[

 "name",[

 "ata",1,

 "ati",1]]}

Distributed Search Support
The TermsComponent also supports distributed indexes. For the request handler, you must/terms

provide the following two parameters:

Parameter Description

shards Specifies the shards in your distributed indexing configuration. For more information
about distributed indexing, see
https://dev.lcimg.com/wiki/display/solr/Distributed+Search+with+Index+Sharding

shards.qt Specifies the request handler Solr uses for requests to shards.

Solr Reference Guide Jan 10, 2012

Page of 307 397

The Term Vector Component
The Term Vector Component (TVC) is a search component designed to return information about
documents. For each document, the TVC can return the term vector, the term frequency, inverse
document frequency, position, and offset information. The TVC is stored when setting the

 attribute on a field:termVector

<field name="features"

 type="text"

 indexed="true"

 stored="true"

 multiValued="true"

 termVectors="true"

 termPositions="true"

 termOffsets="true"/>

As with most components, there are a number of options that are outlined in the samples below.
All examples are based on the Solr example.

Enabling the the TermVectorComponent

Changes for solrconfig.xml
To enable the Term VectorComponent, you need to configure a element in your searchComponent

 file, like so:solrconfig.xml

<searchComponent name="tvComponent"
class="org.apache.solr.handler.component.TermVectorComponent"/>

A request handler configuration using this component could look like this:

<requestHandler name="tvrh" class="org.apache.solr.handler.component.SearchHandler">

 <lst name="defaults">

 <bool name="tv">true</bool>

 </lst>

 <arr name="last-components">

 <str>tvComponent</str>

 </arr>

</requestHandler>

Invoking the Term Vector Component
The example below shows an invocation of this component:

Solr Reference Guide Jan 10, 2012

Page of 308 397

http://localhost:8983/solr/select/?q=*%3A*&version=2.2&start=0&rows=10&indent=on&qt=tvrh&tv=true

In the example, the component is associated with a request handler named , but you cantvrh

associate it with any request handler. To turn on the component for a request, add the tv=true
parameter (or add it to your RequestHandler defaults configuration).

Example output: See http://wiki.apache.org/solr/TermVectorComponentExampleEnabled

Optional Parameters
The example below shows optional parameters for this component:

http://localhost:8983/solr/select/?q=*%3A*&version=2.2&start=0&rows=10&indent=on&qt=tvrh&tv=true&tv.tf=true&tv.df=true&tv.positions&tv.offsets=true

Boolean
Parameters

Description

tv.all A shortcut that invokes all the parameters listed below.

tv.df Returns the Document Frequency (DF) of the term in the collection. This can be
computationally expensive.

tv.offsets Returns offset information for each term in the document.

tv.positions Returns position information.

tv.tf Returns document term frequency info per term in the document.

tv.tf_idf Calculates TF*IDF for each term. Requires the parameters and to betv.tf tv.df

"true". This can be computationally expensive. (The results are not shown in
example output)

To learn more about TermVector component output, see the Wiki page:
http://wiki.apache.org/solr/TermVectorComponentExampleOptions

For schema requirements, see the Wiki page: http://wiki.apache.org/solr/FieldOptionsByUseCase

The Term Vector component also accepts these optional parameters:

Parameters Description

tv.docIds Returns term vectors for the specified list of Lucene document IDs (not the Solr
Unique Key).

tv.fl Returns term vectors for the specified list of fields. If not specified, the fl
parameter is used.

http://wiki.apache.org/solr/TermVectorComponentExampleEnabled
http://wiki.apache.org/solr/TermVectorComponentExampleOptions
http://wiki.apache.org/solr/FieldOptionsByUseCase

Solr Reference Guide Jan 10, 2012

Page of 309 397

SolrJ and the Term Vector Component
Neither the SolrQuery class nor the QueryResponse class offer specific method calls to set Term
Vector Component parameters or get the "termVectors" output. However, there is a patch for it:

.SOLR-949

https://issues.apache.org/jira/browse/SOLR-949

Solr Reference Guide Jan 10, 2012

Page of 310 397

The Stats Component
The Stats component returns simple statistics for numeric, string, and date fields within the
document set.

Stats Component Parameters
The Stats Component accepts the following parameters:

Parameter Description

stats If , then invokes the Stats component.true

stats.field Specifies a field for which statistics should be generated. This parameter may be
invoked multiple times in a query in order to request statistics on multiple fields.
(See the example below.)

stats.facet Returns sub-results for values within the specified facet.

Statistics Returned
The table below describes the statistics returned by the Stats component.

Name Description

min The minimum value in the field.

max The maximum value in the field.

sum The sum of all values in the field.

count The number of non-null values in the field.

missing The number of null values in the field.

sumOfSquares Sum of all values squared (useful for).stddev

mean The average (v1 + v2 + vN)/N

stddev Standard deviation, measuring how widely spread the values in the data set are.

Example
The query below:

http://localhost:8983/solr/select?q=*:*&stats=true&stats.field=price&stats.field=popularity&rows=0&indent=true

Solr Reference Guide Jan 10, 2012

Page of 311 397

Would produce the following results:

<lst name="stats">

 <lst name="stats_fields">

 <lst name="price">

 <double name="min">0.0</double>

 <double name="max">2199.0</double>

 <double name="sum">5251.2699999999995</double>

 <long name="count">15</long>

 <long name="missing">11</long>

 <double name="sumOfSquares">6038619.160300001</double>

 <double name="mean">350.08466666666664</double>

 <double name="stddev">547.737557906113</double>

 </lst>

 <lst name="popularity">

 <double name="min">0.0</double>

 <double name="max">10.0</double>

 <double name="sum">90.0</double>

 <long name="count">26</long>

 <long name="missing">0</long>

 <double name="sumOfSquares">628.0</double>

 <double name="mean">3.4615384615384617</double>

 <double name="stddev">3.5578731762756157</double>

 </lst>

 </lst>

</lst>

Here are the same results with faceting requested for the field , using the parameter inStock

.&stats.facet=inStock

Solr Reference Guide Jan 10, 2012

Page of 312 397

<lst name="{*}stats{*}">

 <lst name="{*}stats{*}_fields">

 <lst name="price">

 <double name="min">0.0</double>

 <double name="max">2199.0</double>

 <double name="sum">5251.2699999999995</double>

 <long name="count">15</long>

 <long name="missing">11</long>

 <double name="sumOfSquares">6038619.160300001</double>

 <double name="mean">350.08466666666664</double>

 <double name="stddev">547.737557906113</double>

 <lst name="facets">

 <lst name="inStock">

 <lst name="false">

 <double name="min">11.5</double>

 <double name="max">649.99</double>

 <double name="sum">1161.39</double>

 <long name="count">4</long>

 <long name="missing">0</long>

 <double name="sumOfSquares">653369.2551</double>

 <double name="mean">290.3475</double>

 <double name="stddev">324.63444676281654</double>

 </lst>

 <lst name="true">

 <double name="min">0.0</double>

 <double name="max">2199.0</double>

 <double name="sum">4089.879999999999</double>

 <long name="count">11</long>

 <long name="missing">0</long>

 <double name="sumOfSquares">5385249.905200001</double>

 <double name="mean">371.8072727272727</double>

 <double name="stddev">621.6592938755265</double>

 </lst>

 </lst>

 </lst>

 </lst>

</lst>

The Stats Component and Faceting
The facet field can be selectively applied. That is if you want stats on field "A" and "B", you can
facet a on "X" and B on "Y" using the parameters:

&stats.field=A&f.A.stats.facet=X&stats.field=B&f.B.stats.facet=Y

Solr Reference Guide Jan 10, 2012

Page of 313 397

All facet results are returned, so be careful what fields you ask for.

Multi-valued fields and facets may be slow.

Multi-value fields rely on for implementation. This is like a FieldCache, soUnInvertedField.java

be aware of your memory footprint.

Solr Reference Guide Jan 10, 2012

Page of 314 397

The Query Elevation Component
The enables you to configure the top results for a given queryQuery Elevation Component
regardless of the normal Lucene scoring. This is sometimes called "sponsored search," "editorial
boosting," or "best bets." This component matches the user query text to a configured map of top
results. Although this component will work with any QueryParser, it makes the most sense to use
with or .DisMax eDisMax

Configuring the Query Elevation Component
You can configure the Query Elevation Component in the file. The defaultsolrconfig.xml

configuration looks like this:

<searchComponent name="elevator" class="solr.QueryElevationComponent" >

 <!-- pick a fieldType to analyze queries -->

 <str name="queryFieldType">string</str>

 <str name="config-file">elevate.xml</str>

</searchComponent>

<requestHandler name="/elevate" class="solr.SearchHandler" startup="lazy">

 <lst name="defaults">

 <str name="echoParams">explicit</str>

 </lst>

 <arr name="last-components">

 <str>elevator</str>

 </arr>

</requestHandler>

The Query Elevation Search Component takes the following arguments:

Argument Description

queryFieldType Specifes which fieldType should be used to analyze the incoming text. For
example, it may be appropriate to use a fieldType with a LowerCaseFilter.

config-file Path to the file that defines query elevation. This file must exist in
} { } or } }.${instanceDir /conf/$ config-file ${dataDir /${config-file

If the file exists in the /conf/ directory it will be loaded once at startup. If it
exists in the data directory, it will be reloaded for each IndexReader.

https://wiki.apache.org/solr/QueryElevationComponent

Solr Reference Guide Jan 10, 2012

Page of 315 397

forceElevation By default, this component respects the requested parameter: if thesort

request asks to sort by date, it will order the results by date. If
, results will first return the boosted docs, then order byforceElevation=true

date.

elevate.xml
Elevated query results are configured in an external XML file specified in the config-file
argument. An file might look like this:elevate.xml

<elevate>

 <query text="AAA">

 <doc id="A" />

 <doc id="B" />

 </query>

 <query text="ipod">

 <doc id="A" />

 <!-- you can optionally exclude documents from a query result -->

 <doc id="B" exclude="true" />

 </query>

</elevate>

In this example, the query "AAA" would first return documents A and B, then whatever normally
appears for the same query. For the query "ipod", it would first return A, and would make sure that
B is not in the result set.

The field must currently be of type for the QueryElevationComponent touniqueKey string

operate properly.

Using the Query Elevation Component

The enableElevation Parameter
For debugging it may be useful to see results with and without the elevated docs. To hide results,
use :enableElevation=false

http://localhost:8983/solr/elevate?q=YYYY&debugQuery=true&enableElevation=true

http://localhost:8983/solr/elevate?q=YYYY&debugQuery=true&enableElevation=false

Solr Reference Guide Jan 10, 2012

Page of 316 397

The forceElevation Parameter
You can force elevation during runtime by adding to the query URL:forceElevation=true

http://localhost:8983/solr/elevate?q=YYYY&debugQuery=true&enableElevation=true&forceElevation=true

The exclusive Parameter
You can force Solr to return only the results specified in the elevation file by adding

 to the URL:exclusive=true

http://localhost:8983/solr/elevate?q=YYYY&debugQuery=true&exclusive=true

The fq Parameter
Query elevation respects the standard filter query () parameter. That is, if the query contains thefq

 parameter, all results will be within that filter even if adds other documents to thefq elevate.xml

result set.

Solr Reference Guide Jan 10, 2012

Page of 317 397

Response Writers
A Response Writer generates the formatted response of a search. Solr supports a variety of
Response Writers to ensure that query responses can be parsed by the appropriate language or
application.

The parameter selects the Response Writer to be used. The table below lists the most commonwt

settings for the parameter.wt

 Parameter Settingwt Response Writer Selected

csv CSVResponseWriter

json JSONResponseWriter

php PHPResponseWriter

phps PHPSerializedResponseWriter

python PythonResponseWriter

ruby RubyResponseWriter

xml XMLResponseWriter

xslt XSLTResponseWriter

The Standard XML Response Writer
The XML Response Writer is the most general purpose and reusable Response Writer currently
included with Solr. It is the format used in most discussions and documentation about the response
of Solr queries.

Note that the XSLT Response Writer can be used to convert the XML produced by this writer to
other vocabularies or text-based formats.

The behavior of the XML Response Writer can be driven by the following query parameters.

The version Parameter
The parameter determines the XML protocol used in the response. Clients are stronglyversion

encouraged to specify the protocol version, so as to ensure that the format of the responsealways
they receive does not change unexpectedly when the Solr server is upgraded.

XML
Version

Notes

Solr Reference Guide Jan 10, 2012

Page of 318 397

2.0 An tag was used for multiValued fields only if there was more then one value.<arr>

2.1 An tag is used for multiValued fields even if there is only one value.<arr>

2.2 The format of the responseHeader changed to use the same structure as the<lst>

rest of the response.

The default value is the latest supported.

The stylesheet Parameter
The parameter can be used to direct Solr to include a stylesheet <?xml-stylesheet

 declaration in the XML response it returns.type="text/xsl" href="..."?>

The default behavior is not to return any stylesheet declaration at all.

Use of the parameter is discouraged, as there is currently no way to specifystylesheet

external stylesheets, and no stylesheets are provided in the Solr distributions. This is a
legacy parameter, which may be developed further in a future release.

The indent Parameter
If the parameter is used, and has a non-blank value, then Solr will make some attempts atindent

indenting its XML response to make it more readable by humans.

The default behavior is not to indent.

The XSLT Response Writer
The XSLT Response Writer applies an XML stylesheet to output. It can be used for tasks such as
formatting results for an RSS feed.

tr Parameter
The XSLT Response Writer accepts one parameter: the parameter, which identifies the XMLtr

transformation to use. The transformation must be found in the Solr directory.conf/xslt

The Content-Type of the response is set according to the statement in the XSLT<xsl:output>

transform, for example: <xsl:output media-type="text/html"/>

Configuration
The example below, from the default file, shows how the XSLT Response Writer issolrconfig.xml

configured.

Solr Reference Guide Jan 10, 2012

Page of 319 397

<!--

 Changes to XSLT transforms are taken into account

 every xsltCacheLifetimeSeconds at most.

-->

<queryResponseWriter

 name="xslt"

 class="org.apache.solr.request.XSLTResponseWriter"

>

 <int name="xsltCacheLifetimeSeconds">5</int>

</queryResponseWriter>

A value of 5 for is good for development, to see XSLT changesxsltCacheLifetimeSeconds

quickly. For production you probably want a much higher value.

JSON Response Writer
A very commonly used Response Writer is the , which formats output inJsonResponseWriter

JavaScript Object Notation (JSON), a lightweight data interchange format specified in specified in
RFC 4627. Setting the parameter to invokes this Response Writer.wt json

Python Response Writer
Solr has an optional Python response format that extends its JSON output in the following ways to
allow the response to be safely evaluated by the python interpreter:

true and false changed to True and False
Python unicode strings are used where needed
ASCII output (with unicode escapes) is used for less error-prone interoperability
newlines are escaped
null changed to None

PHP Response Writer and PHP Serialized Response Writer
Solr has a PHP response format that outputs an array (as PHP code) which can be evaluated.
Setting the parameter to invokes the PHP Response Writer.wt php

Example usage:

$code = file_get_contents('http://localhost:8983/solr/select?q=iPod&wt={*}php{*}');

eval("$result = " . $code . ";");

print_r($result);

Solr also includes a PHP Serialized Response Writer that formats output in a serialized array.
Setting the parameter to invokes the PHP Serialized Response Writer.wt phps

Solr Reference Guide Jan 10, 2012

Page of 320 397

Example usage:

$serializedResult =

file_get_contents('http://localhost:8983/solr/select?q=iPod&wt={*}php{*}s');

$result = unserialize($serializedResult);

print_r($result);

Before you use either the PHP or Serialized PHP Response Writer, you may first need to
un-comment these two lines in :solrconfig.xml

<queryResponseWriter name="php" class="org.apache.solr.request.PHPResponseWriter"/>

<queryResponseWriter name="phps"

class="org.apache.solr.request.PHPSerializedResponseWriter"/>

Ruby Response Writer
Solr has an optional Ruby response format that extends its JSON output in the following ways to
allow the response to be safely evaluated by Ruby's interpreter:

Ruby's single quoted strings are used to prevent possible string exploits.
\ and ' are the only two characters escaped.
Unicode escapes are not used. Data is written as raw UTF-8.
nil used for null.
=> is used as the key/value separator in maps.

Here is a simple example of how one may query Solr using the Ruby response format:

require 'net/http'

h = Net::HTTP.new('localhost', 8983)

hresp, data = h.get('/solr/select?q=iPod&wt=ruby', nil)

rsp = eval(data)

puts 'number of matches = ' + rsp['response']['numFound'].to_s

#print out the name field for each returned document

rsp['response']['docs'].each { |doc| puts 'name field = ' + doc['name'\] }

CSV Response Writer
The CSV response writer returns a list of documents in comma-separated values (CSV) format.
Other information that would normally be included in a response, such as facet information, is
excluded.

The CSV response writer supports multi-valued fields, and the output of this CSV format is
compatible with Solr's .CSV update format

https://wiki.apache.org/solr/UpdateCSV

Solr Reference Guide Jan 10, 2012

Page of 321 397

CSV Parameters
These parameters specify the CSV format that will be returned. You can accept the default values
or specify your own.

Parameter Default Value

csv.encapsulator "

csv.escape None

csv.separator ,

csv.header Defaults to true. If false, Solr does not print the column headers

csv.newline \n

csv.null Defaults to a zero length string. Use this parameter when a document has no
value for a particular field.

Multi-Valued Field CSV Parameters
These parameters specify how multi-valued fields are encoded. Per-field overrides for these values
can be done using .f.<fieldname>.csv.separator=|

Parameter Default Value

csv.mv.encapsulator None

csv.mv.escape \

csv.mv.separator Defaults to the valuecsv.separator

Example
http://localhost:8983/solr/select?q=ipod&fl=id,cat,name,popularity,price,score&wt=csv

returns:

id,cat,name,popularity,price,score

IW-02,"electronics,connector",iPod & iPod Mini USB 2.0 Cable,1,11.5,0.98867977

F8V7067-APL-KIT,"electronics,connector",Belkin Mobile Power Cord for iPod w/

Dock,1,19.95,0.6523595

MA147LL/A,"electronics,music",Apple 60 GB iPod with Video Playback

Black,10,399.0,0.2446348

Binary Response Writer

Solr Reference Guide Jan 10, 2012

Page of 322 397

Solr also includes a Response Writer that outputs binary format for use with a Java client. See
 for more details.Client APIs

Solr Reference Guide Jan 10, 2012

Page of 323 397

The Well-Configured Solr Instance
This section tells you how to fine-tune your Solr instance for optimum performance. This section
covers the following topics:

: Describes how to work with the main configuration file for Solr.Configuring solrconfig.xml

: Describes how to configure your Solr core, or multiple Solr cores within aConfiguring solr.xml
single instance.

: Describes how to configure the index writers in the underlying LuceneLucene IndexWriters
engine.

: Describes how to configure Solr's response to HTTP requestsHTTP Request Dispatcher

: Gives some guidance on best practices for working with Java Virtual Machines.JVM Settings

The focus of this section is on configuring a single Solr instance. To scale a Solr
implementation, either through sharding or replication, please see .Scaling and Distribution

For more information about factors affecting Solr performance, see
.http://wiki.apache.org/solr/SolrPerformanceFactors

http://wiki.apache.org/solr/SolrPerformanceFactors

Solr Reference Guide Jan 10, 2012

Page of 324 397

Configuring solrconfig.xml
The file is the configuration file with the most parameters affecting Solr itself. Thesolrconfig.xml

file comprises a series of XML statements that set configuration values. In , yousolrconfig.xml

configure important features such as:

request handlers

listeners (processes that "listen" for particular query-related events; listeners can be used to
trigger the execution of special code, such as invoking some common queries to warm-up
caches)

the Request Dispatcher for managing HTTP communications

the Admin Web interface

parameters related to replication and duplication (these parameters are covered in detail in
)Scaling and Distribution

The file is found in the directory.solrconfig.xml solr/conf/

For more information about , see .solrconfig.xml http://wiki.apache.org/solr/SolrConfigXml

Topics covered in this section:

Specifying a Location for Index Data with the ParameterdataDir

Specifying the DirectoryFactory For Your Index
Configuring the Lucene IndexWriters
Controlling the Behavior of the Update Handler
Query Settings in solrconfig.xml
HTTP RequestDispatcher Settings

Specifying a Location for Index Data with the dataDir Parameter
By default, Solr stores its index data in a directory called under the Solr home. If you would/data

like to specify a different directory for storing index data, use the parameter in the <dataDir>

 file. You can specify another directory either with a full pathname or a pathnamesolrconfig.xml

relative to the current working directory of the servlet container. For example:

<dataDir>/var/data/solr/</dataDir>

http://wiki.apache.org/solr/SolrConfigXml

Solr Reference Guide Jan 10, 2012

Page of 325 397

If you are using replication to replicate the Solr index (as described in),Scaling and Distribution
then the directory should correspond to the index directory used in the replication<dataDir>

configuration.

Specifying the DirectoryFactory For Your Index
The default is filesystem based, and tries to pick the bestsolr.StandardDirectoryFactory

implementation for the current JVM and platform. You can force a particular implementation by
specifying , , or solr.MMapDirectoryFactory solr.NIOFSDirectoryFactory

.solr.SimpleFSDirectoryFactory

<directoryFactory name="DirectoryFactory"

 class="${solr.directoryFactory:solr.StandardDirectoryFactory}"/>

The is memory based, not persistent, and does not work withsolr.RAMDirectoryFactory

replication. Use this DirectoryFactory to store your index in RAM.

<directoryFactory class="org.apache.solr.core.RAMDirectoryFactory"/>

Configuring the Lucene IndexWriters
The settings in this section are specified in the element in and<indexDefaults> solrconfig.xml

control the behavior of Lucene index writers.

<indexDefaults>

 ...

</indexDefaults>

UseCompoundFile
Setting to combines the various files on disk that make up an index into<useCompoundFile> true
a single file. On systems where the number of open files allowed per process is limited, setting this
to true may avoid hitting that limit (the open files limit might also be tunable for your OS with the
Linux/Unix command, or something similar for other operating systems).ulimit

Updating a compound index may incur a minor performance hit for various reasons, depending on
the runtime environment. For example, filesystem buffers are typically associated with open file
descriptors, which may limit the total cache space available to each index.

This setting may also affect how much data needs to be transferred during index replication
operations.

Solr Reference Guide Jan 10, 2012

Page of 326 397

This setting is in the file for the example application. Since Lucene 1.4, thefalse solrconfig.xml

default in the code is , if not explicitly specified.true

<useCompoundFile>

false

</useCompoundFile>

mergeFactor
The controls how many segments a Lucene index is allowed to have before it ismergeFactor

coalesced into one segment. When an update is made to an index, it is added to the most recently
opened segment. When that segment fills up (see in the and maxBufferedDocs ramBufferSizeMB

next section), a new segment is created and subsequent updates are placed there.

If creating a new segment would cause the number of lowest-level segments to exceed the
 value, then all those segments are merged together to form a single large segment.mergeFactor

Thus, if the merge factor is ten, each merge results in the creation of a single segment that is
roughly ten times larger than each of its ten constituents. When there are settings formergeFactor

these larger segments, then they in turn are merged into an even larger single segment. This
process can continue indefinitely.

Choosing the best merge factor is generally a trade-off of indexing speed vs. searching speed.
Having fewer segments in the index generally accelerates searches, because there are fewer places
to look. It also can also result in fewer physical files on disk. But to keep the number of segments
low, merges will occur more often, which can add load to the system and slow down updates to the
index.

Conversely, keeping more segments can accelerate indexing, because merges happen less often -
making an update is less likely to trigger a merge. But searches become more computationally
expensive and will likely be slower, because search terms must be looked up in more index
segments. Faster index updates also means shorter commit turnaround times, which means more
timely search results.

The default value in the example is 10, which is a reasonable starting point.solrconfig.xml

<mergeFactor>

10

</mergeFactor>

Other Indexing Settings
There are a few other parameters that may be important to configure for your implementation.
These settings affect how or when updates are made to an index.

Solr Reference Guide Jan 10, 2012

Page of 327 397

Setting Description

maxBufferedDocs Sets the number of document updates to buffer in memory before flushed to
disk and added to the current index segment. If the segment fills up, a new
one may be created, or a merge may be started. The default Solr
configuration leaves this value undefined.

ramBufferSizeMB Once accumulated document updates exceed this much memory space
(specified in megabytes), then the pending updates are flushed. This can also
create new segments or trigger a merge. Using this setting is generally
preferable to . If both and maxBufferedDocs maxBufferedDocs

 are set in , then a flush will occur whenramBufferSizeMB solrconfig.xml

either limit is reached.

maxMergeDocs This sets the maximum number of documents for a single segment. If this
limit is reached, the segment is closed and a new segment is created. A
merge, as governed by may also occur.mergeFactor

maxFieldLength This determines the maximum number of terms that will be stored for a field.
If field analysis generates more than the number of indexable tokens specified
by this parameter, the excess tokens are discarded. Raising this limit too high
can degrade performance because long term lists require more resources and
take longer to traverse. Choose this value according to the needs of your
application.

<maxBufferedDocs>1000</maxBufferedDocs>

<ramBufferSizeMB>32</ramBufferSizeMB>

<maxMergeDocs>2147483647</maxMergeDocs>

<maxFieldLength>10000</maxFieldLength>

Controlling the Behavior of the Update Handler
The settings in this section are configured in the element in and<updateHandler> solrconfig.xml

may affect the performance of index updates. These settings affect how updates are done
internally. configurations do not affect the higher level configuration of<updateHandler>

RequestHandlers that process client update requests.

<updateHandler class="solr.DirectUpdateHandler2">

 ...

</updateHandler>

autoCommit

Solr Reference Guide Jan 10, 2012

Page of 328 397

These settings control how often pending updates will be automatically pushed to the index.

Setting Description

maxDocs The number of updates that have occurred since the last commit.

maxTime The number of milliseconds since the oldest uncommitted update.

If either of these limits are reached, then Solr automatically performs a commit operation. If the
 tag is missing, then only explicit commits will update the index. The decision whetherautoCommit

to use auto-commit or not depends on the needs of your application.

Determining the best auto-commit settings is a tradeoff between performance and accuracy.
Settings that cause frequent updates will improve the accuracy of searches because new content
will be searchable more quickly, but performance may suffer because of the frequent updates. Less
frequent updates may improve performance but it will take longer for updates to show up in
queries.

<autoCommit>

 <maxDocs>10000</maxDocs>

 <maxTime>1000</maxTime>

</autoCommit>

maxPendingDeletes
This value sets a limit on the number of deletions that Solr will buffer during document deletion.
This can affect how much memory is used during indexing.

<maxPendingDeletes>

100000

</maxPendingDeletes>

Query Settings in solrconfig.xml
The settings in this section affect the way that Solr will process and respond to queries. These
settings are all configured in child elements of the element in .<query> solrconfig.xml

<query>

 ...

</query>

Caching

Solr Reference Guide Jan 10, 2012

Page of 329 397

Solr caches are associated with a specific instance of an Index Searcher—a specific view of an
index that doesn't change during the lifetime of that searcher. As long as that Index Searcher is
being used, any items in its cache will be valid and available for reuse. Caching in Solr differs from
caching in many other applications in that cached Solr objects do not expire after a time interval;
instead, they remain valid for the lifetime of the Index Searcher.

When a new searcher is opened, the current searcher continues servicing requests while the new
one auto-warms its cache. The new searcher uses the current searcher's cache to pre-populate its
own. When the new searcher is ready, it is registered as the current searcher and begins handling
all new search requests. The old searcher will be closed once it has finished servicing all its
requests.

In Solr, there are two cache implementations: and solr.search.LRUCache

.solr.search.FastLRUCache

The acronym LRU stands for Least Recently Used. When an LRU cache fills up, the entry with the
oldest last-accessed timestamp is evicted to make room for the new entry. The net effect is that
entries that are accessed frequently tend to stay in the cache, while those that are not accessed
frequently tend to drop out and will be re-fetched from the index if needed again.

The , which was introduced in Solr 1.4, is designed to be lock-free, so it is well suitedFastLRUCache

for caches which are hit several times in a request.

The Statistics page in the Solr Admin Web interface will display information about the performance
of all the active caches. This information can help you fine-tune the sizes of the various caches
appropriately for your particular application. When a Searcher terminates, a summary of its cache
usage is also written to the log.

There are three predefined types of caches you can configure.

filterCache

This cache is used by for filters (DocSets) for unordered sets of all documentsSolrIndexSearcher

that match a query. The numeric attributes control the number of entries in the cache.

Solr uses the to cache results of queries that use the search parameter.filterCache fq

Subsequent queries using the same parameter setting result in cache hits and rapid returns of
results. See for a detailed discussion of the parameter.Searching fq

Solr also makes this cache for faceting when the configuration parameter is set to facet.method

. For a discussion of faceting, see .fc Searching

Solr Reference Guide Jan 10, 2012

Page of 330 397

<filterCache

 class="solr.LRUCache"

 size="512"

 initialSize="512"

 autowarmCount="128"/>

queryResultCache

This cache holds the results of previous searches: ordered lists of document IDs (DocList) based on
a query, a sort, and the range of documents requested.

<queryResultCache

 class="solr.LRUCache"

 size="512"

 initialSize="512"

 autowarmCount="128"/>

documentCache

This cache holds Lucene Document objects (the stored fields for each document). Since Lucene
internal document IDs are transient, this cache is not auto-warmed.

<documentCache class="solr.LRUCache"

 size="512"

 initialSize="512"

 autowarmCount="0"/>

User Defined Caches

You can also define named caches for your own application code to use. You can locate and use
your cache object by name by calling the methods , SolrIndexSearcher getCache()

 and . If you want auto-warming of your cache, include a cacheLookup() cacheInsert()

 attribute with the fully qualified name of a class that implements regenerator

.solr.search.CacheRegenerator

<cache name="myUserCache"

 class="solr.LRUCache"

 size="4096"

 initialSize="1024"

 autowarmCount="1024"

 regenerator="org.mycompany.mypackage.MyRegenerator" />

Solr Reference Guide Jan 10, 2012

Page of 331 397

maxBooleanClauses
This sets the maximum number of clauses allowed in a boolean query. This can affect range or
prefix queries that expand to a query with a large number of boolean terms. If this limit is
exceeded, an exception is thrown.

<maxBooleanClauses>

1024

</maxBooleanClauses>

enableLazyFieldLoading
If this parameter is set to true, then fields that are not directly requested will be loaded lazily as
needed. This can boost performance if the most common queries only need a small subset of fields,
especially if infrequently accessed fields are large in size.

<enableLazyFieldLoading>

true

</enableLazyFieldLoading>

useColdSearcher
This setting controls whether search requests for which there is not a currently registered searcher
should wait for a new searcher to warm up (false) or proceed immediately (true). When set to
"false", requests will block until the searcher has warmed its caches.

<useColdSearcher>

false

</useColdSearcher>

maxWarmingSearchers
This parameter sets the maximum number of searchers that may be warming up in the background
at any given time. Exceeding this limit will raise an error. For read-only slaves, a value of two is
reasonable. Masters should probably be set a little higher.

<maxWarmingSearchers>

2

</maxWarmingSearchers>

HTTP RequestDispatcher Settings

Solr Reference Guide Jan 10, 2012

Page of 332 397

The element of controls the way the Solr servlet's requestDispatcher solrconfig.xml

 implementation responds to HTTP requests.RequestDispatcher

handleSelect Attribute
The first configurable item is the attribute on the elementhandleSelect <requestDispatcher>

itself. This attribute can be set to one of two values, either "true" or "false". A value of "true" (the
default) indicates that error handling should consistent for and URLs. The value/select /update

"false" indicates that error formatting should be compatible with Solr 1.1.

<requestDispatcher handleSelect="true" >

 ...

</requestDispatcher>

requestParsers Element

The sub-element controls values related to parsing requests. This is an empty<requestParsers>

XML element that doesn't have have any content, only attributes. The attribute
 controls whether remote streaming of content is allowed. If set to enableRemoteStreaming false

(the default), streaming will not be allowed. Setting it to lets you specify the location oftrue

content to be streamed using or parameters.stream.file stream.url

If you enable remote streaming, be sure that you have authentication enabled. Otherwise,
someone could potentially gain access to your content by accessing arbitrary URLs. It's also a good
idea to place Solr behind a firewall to prevent it being accessed from untrusted clients.

The attribute sets an upper limit on the size of a document that maymultipartUploadLimitInKB

be submitted in a multi-part HTTP POST request. The value specified is multiplied by 1024 to
determine the size in bytes.

<requestDispatcher handleSelect="true">

 <requestParsers

 enableRemoteStreaming="false"

 multipartUploadLimitInKB="2048"/>

</requestDispatcher>

httpCaching Element

The element controls HTTP cache control headers. Do not confuse these settings<httpCaching>

with Solr's internal cache configuration. This element controls caching of HTTP responses as
defined by the W3C HTTP specifications.

Solr Reference Guide Jan 10, 2012

Page of 333 397

This element allows for three attributes and one sub-element. The attributes of the <httpCaching>
element control whether a 304 response to a GET request is allowed, and if so, what sort of
response it should be. When an HTTP client application issues a GET, it may optionally specify that
a 304 response is acceptable if the resource has not been modified since the last time it was
fetched.

Parameter Description

never304 If present with the value , then a GET request will never respond with a 304true

code, even if the requested resource has not been modified. When this attribute is
set to true, the following two attributes are ignored. Setting this to true is handy
for development, as the 304 response can be confusing when tinkering with Solr
responses through a web browser or other client that supports cache headers.

lastModFrom This attribute may be set to either (the default) or . TheopenTime dirLastMod

value indicates that last modification times, as compared to theopenTime

If-Modified-Since header sent by the client, should be calculated relative to the
time the Searcher started. Use if you want times to exactly corresponddirLastMod

to when the index was last updated on disk.

etagSeed This value of this attribute is sent as the value of the header. Changing thisETag

value can be helpful to force clients to re-fetch content even when the indexes
have not changed—for example, when you've made some changes to the
configuration.

<httpCaching never304="false"

 lastModFrom="openTime"

 etagSeed="Solr">

 <cacheControl>max-age=30, public

</cacheControl>

</httpCaching>

The cacheControl Element

In addition to these attributes, accepts one child element: . The<httpCaching> <cacheControl>

content of this element will be sent as the value of the Cache-Control header on HTTP responses.
This header is used to modify the default caching behavior of the requesting client. The possible
values for the Cache-Control header are defined by the HTTP 1.1 specification in .Section 14.9

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9

Solr Reference Guide Jan 10, 2012

Page of 334 397

Setting the max-age field controls how long a client may re-use a cached response before
requesting it again from the server. This time interval should be set according to how often you
update your index and whether or not it is acceptable for your application to use content that is
somewhat out of date. Setting must-revalidate will tell the client to validate with the server that its
cached copy is still good before re-using it. This will ensure that the most timely result is used,
while avoiding a second fetch of the content if it isn't needed, at the cost of a request to the server
to do the check.

Solr Reference Guide Jan 10, 2012

Page of 335 397

Configuring solr.xml
Use the to configure your Solr core, or to configure multiple cores. You can find solr.xml

 in your Solr Home directory. The default file looks like this:solr.xml solr.xml

<solr persistent="false">

 <cores adminPath="/admin/cores" defaultCoreName="collection1">

 <core name="collection1" instanceDir="." />

 </cores>

</solr>

For more information about core configuration and , see solr.xml

.http://wiki.apache.org/solr/CoreAdmin

Using Multiple SolrCores
It is possible to segment Solr into multiple cores, each with its own configuration and indices.
Cores may be dedicated to a single application or to very different ones, but all are administered
through a common administration interface. You can create new Solr cores on the fly, shutdown
cores, even replace one running core with another, all without ever stopping or restarting your
servlet container.

Solr cores are configured by placing a file named in your directory. A typical solr.xml solr.home

 looks like this:solr.xml

<solr persistent="true" sharedLib="lib">

 <cores adminPath="/admin/cores">

 <core name="core0" instanceDir="core0dir"/>

 <core name="core1" instanceDir="core1dir"/>

 </cores>

</solr>

This sets up two Solr cores, named "core0" and "core1" and names the directories (relative to the
Solr installation path) which will store the configuration and data subdirectories.

You can run Solr without configuring any cores.

The <solr> Element
There are two attributes that you can specify on , which is the root element of .<solr> solr.xml

http://wiki.apache.org/solr/CoreAdmin

Solr Reference Guide Jan 10, 2012

Page of 336 397

Attribute Description

persistent Indicates that changes made through the API or admin UI should be saved back to
this . If not , any runtime changes will be lost on the next Solr restart.solr.xml true

The servlet container running Solr must have sufficient permissions to replace
 (file delete and create), or errors will result. Any comments in aresolr.xml solr.xml

not preserved when the file is updated.

sharedLib Specifies the path to a common library directory that will be shared across all cores.
Any JAR files in this directory will be added to the search path for Solr plugins. This
path is relative to the top-level container's Solr Home.

If you set the persistent attribute to true, be sure that the Web server has permission to
replace the file. If the permissions are set incorrectly, the server will generate 500 errors
and throw IOExceptions. Also, note that any comments in the file will be lostsolr.xml

when the file is overwritten.

The <cores> Element
The element, which contains definitions for each Solr core, is a child of and<cores> <solr>

accepts three attributes of its own.

Attribute Description

adminPath This is the relative URL path to access the SolrCore administration pages. For
example, a value of means that you can access the/admin/cores

CoreAdminHandler with a URL that looks like this:
http://localhost:8983/solr/admin/cores

If this attribute is not present, then SolrCore administration will not be possible.

shareSchema This attribute, when set to , ensures that the multiple cores pointing to thetrue

same will be referring to the same IndexSchema Object. Sharing theschema.xml

IndexSchema Object makes loading the core faster. If you use this feature, make
sure that no core-specific property is used in your .schema.xml

adminHandler If used, this attribute should be set to the (Fully qualified name) of a classFQN

that inherits from . For example, CoreAdminHandler

 would configure the custom adminadminHandler="com.myorg.MyAdminHandler"

handler () to handle admin requests. If this attribute isn't set,MyAdminHandler

Solr uses the default admin handler,
.org.apache.solr.handler.admin.CoreAdminHandler

http://localhost:8983/solr/admin/cores

Solr Reference Guide Jan 10, 2012

Page of 337 397

For a use case of the attribute, suppose we wanted to get statistics from differentadminHandler

cores in a Solr instance. First, we could define a new action called that could be accessedmystat

from the client as below.

http://localhost:8983/solr/admin/cores?action=MYSTAT

Then, we would define the implementation of the MYSTAT action like so:

import org.apache.solr.handler.admin.CoreAdminHandler ;

class MyAdminHandler extends CoreAdminHandler {

 /**

 * @return true, if the changes need to be persisted by the CoreContainer. (Use only

if solr.xml would be changed because of this action.)

 * false, otherwise. (Use this if unsure or having a read-only access to the

CoreContainer like collecting statistics)

 *

 */

 protected boolean handleCustomAction(SolrQueryRequest req, SolrQueryResponse rsp) {

 CoreContainer container = super.getCoreContainer();

 SolrCore mycore1 = container.getCore("core1");

 SolrCore mycore2 = container.getCore("core2");

 SolrParams params = req.getParams();

 String a = params.get(CoreAdminParams.ACTION);

 if (a.toLowerCase().equals("mystat")) {

 // TODO: populate 'rsp' as necessary.

 }

 }

}

There are other methods in that could be used to override default actions, butCoreAdminHandler
for most of the common cases they would not be necessary.

The <core> Element
There is one element for each SolrCore you define. They are children of the <core> <cores>

element and each one accepts six attributes.

Attribute Description

name The name of the SolrCore. You'll use this name to reference the SolrCore when
running commands with the CoreAdminHandler.

instanceDir This relative path defines the Solr Home for the core.

config The configuration file name for a given core. The default is .solrconfig.xml

http://lucene.apache.org/solr/api/org/apache/solr/handler/admin/CoreAdminHandler.html

Solr Reference Guide Jan 10, 2012

Page of 338 397

schema The schema file name for a given core. The default is schema.xml

dataDir This relative path defines the Solr Home for the core.

properties The name of the properties file for this core. The value can be an absolute pathname
or a path relative to the value of .instanceDir

Properties in solr.xml
You can define properties in that you may then reference in and solr.xml solrconfig.xml

. Properties are name/value pairs. The scope of a property depends on which element itschema.xml

occurs within.

<solr persistent="true" sharedLib="lib">

 <property name="productname" value="Acme Online"/>

 <cores adminPath="/admin/cores">

 <core name="core0" instanceDir="core0">

 <property name="dataDir" value="/data/core0"/></core>

 <core name="core1" instanceDir="core1"/>

 </cores>

</solr>

If a property is declared under but outside a element, then it will have container<solr> <core>

scope and will be visible to all cores. In the example above, is such a property.productname

If a property declaration occurs within a element, then its scope is limited to that core and<core>

it will not be visible to other cores. A property at core scope will override one of the same name
declared at container scope.

In addition to any properties you declare at core scope, there are several properties that Solr
defines automatically for each core. These properties are described in the table below:

Property Description

solr.core.name The core's name, as defined by the "name" attribute.

solr.core.instanceDir The core's instance directory under which that its and conf/ data/

directories are located, derived from the core's attribute.instanceDir

solr.core.dataDir The core's data directory, by default.${solr.core.instanceDir}/data

solr.core.configName The name of the core's configuration file, by default.solrconfig.xml

solr.core.schemaName The name of the core's schema file, by default.schema.xml

Any of the above properties can be referenced by name in or .schema.xml solrconfig.xml

Solr Reference Guide Jan 10, 2012

Page of 339 397

When defining properties, you can assign a property a default value that will be used if another
value isn't specified. For example:

Without a default value, result will be empty if property not defined

}${productname

With a default value

}${productname:SearchCo MegaIndex

CoreAdminHandler
The CoreAdminHandler is a special SolrRequestHandler that is used to manage Solr cores. Unlike
normal SolrRequestHandlers, the CoreAdminHandler is not attached to a single core. Instead, it
manages all the cores running in a single Solr instance. Only one CoreAdminHandler exists for each
top-level Solr instance.

To use the CoreAdminHandler, make sure that the attribute is defined on the adminPath <cores>

element; otherwise you will not be able to make HTTP requests to perform Solr core
administration.

The CoreAdminHandler supports seven different actions that may be invoked on the adminPath
URL. The action to perform is named by the HTTP request parameter "action", with arguments for a
specific action being provided as additional parameters.

All action names are uppercase. The actions names are:

STATUS
CREATE
RELOAD
RENAME
ALIAS
SWAP
UNLOAD

These actions are described in detail in the sections below.

STATUS
The action returns the status of all running Solr cores, or status for only the named core.STATUS

http://localhost:8983/solr/admin/cores?action=STATUS

http://localhost:8983/solr/admin/cores?action=STATUS&core=core0

The STATUS action accepts one optional parameter:

Solr Reference Guide Jan 10, 2012

Page of 340 397

Parameter Description

core (Optional) The name of a core, as listed in the "name" attribute of a element<core>

in .solr.xml

CREATE
The action creates a new core and registers it. If persistence is enabled (CREATE

 on the element), the updated configuration for this new core will bepersistent="true" <solr>

saved in . If a Solr core with the given name already exists, it will continue to handlesolr.xml

requests while the new core is initializing. When the new core is ready, it will take new requests
and the old core will be unloaded.

http://localhost:8983/solr/admin/cores?action=CREATE

 &name=coreX&instanceDir=path/to/dir

 &config=config_file_name.xml&schema=schem_file_name.xml&dataDir=data

The accepts the two mandatory parameters, as well as three optional parameters.CREATE

Parameter Description

name The name of the new core. Same as "name" on the element.<core>

instanceDir The directory where files for this SolrCore should be stored. Same as instanceDir
on the element.<core>

config (Optional) Name of the config file (solrconfig.xml) relative to .instanceDir

schema (Optional) Name of the schema file (schema.xml) relative to .instanceDir

datadir (Optional) Name of the data directory relative to .instanceDir

RELOAD
The action loads a new core from the configuration of an existing, registered Solr core.RELOAD

While the new core is initializing, the existing one will continue to handle requests. When the new
Solr core is ready, it takes over and the old core is unloaded.

This is useful when you've made changes to a Solr core's configuration on disk, such as adding new
field definitions. Calling the RELOAD action lets you apply the new configuration without having to
restart the Web container.

http://localhost:8983/solr/admin/cores?action=RELOAD&core=core0

The RELOAD action accepts a single parameter

Solr Reference Guide Jan 10, 2012

Page of 341 397

Parameter Description

core The name of the core to be reloaded.

RENAME
The action changes the name of a Solr core.RENAME

http://localhost:8983/solr/admin/cores?action=RENAME

 &core=core0&other=core5

The action requires the following two parameter:RENAME

Parameter Description

core The name of the Solr core to be renamed.

other The new name for the Solr core. If the persistent attribute of is , the<solr> true

new name will be written to as the attribute of the attribute.solr.xml name <core>

ALIAS
The action establishes an additional name by which a SolrCore may be referenced.ALIAS

Subsequent actions may use the Solr core's original name or any of its aliases.

This action is still considered experimental.

http://localhost:8983/solr/admin/cores?action=ALIAS&core=coreX&other=coreY

The ALIAS action requires two parameters:

Parameter Description

core The name or alias of an existing core.

other The additional name by which this core should be known.

SWAP
 atomically swaps the names used to access two existing Solr cores. This can be used to swapSWAP

new content into production. The prior core remains available and can be swapped back, if
necessary. Each core will be known by the name of the other, after the swap.

http://localhost:8983/solr/admin/cores?action=SWAP&core=core1&other=core0

Solr Reference Guide Jan 10, 2012

Page of 342 397

The action requires two parameters, which are described in the table below.SWAP

Parameter Description

core The name of one of the cores to be swapped.

other The name of one of the cores to be swapped.

UNLOAD
The action removes a core from Solr. Active requests will continue to be processed, but noUNLOAD

new requests will be sent to the named core. If a core is registered under more than one name,
only the given name is removed.

http://localhost:8983/solr/admin/cores?action=UNLOAD&core=core0

The action requires a parameter identifying the core to be removed.UNLOAD

Parameter Description

core The name of the core to be to be removed. If the persistent attribute of is<solr>

set to , the element with this attribute will be removed from true <core> name

.solr.xml

Solr Reference Guide Jan 10, 2012

Page of 343 397

Solr Plugins
Solr allows you to load custom code to perform a variety of tasks within Solr, from custom Request
Handlers to process your searches, to custom Analyzers and Token Filters for your text field. You
can even load custom Field Types. These pieces of custom code are called plugins.

Not everyone will need to create plugins for their Solr instances - what's provided is usually enough
for most applications. However, if there's something that you need, you may want to review the
Solr Wiki documentation on plugins at .SolrPlugins

http://wiki.apache.org/solr/SolrPlugins

Solr Reference Guide Jan 10, 2012

Page of 344 397

JVM Settings
Configuring your JVM can be a complex topic. A full discussion is beyond the scope of this
document. Luckily, most modern JVMs are quite good at making the best use of available resources
with default settings. The following sections contain a few tips that may be helpful when the
defaults are not optimal for your situation.

For more general information about improving Solr performance, see
.https://wiki.apache.org/solr/SolrPerformanceFactors

Choosing Memory Heap Settings
The most important JVM configuration settings are those that determine the amount of memory it
is allowed to allocate. There are two primary command-line options that set memory limits for the
JVM. These are , which sets the initial size of the JVM's memory heap, and , which sets-Xms -Xmx

the maximum size to which the heap is allowed to grow.

If your Solr application requires more heap space than you specify with the option, the heap-Xms

will grow automatically. It's quite reasonable to not specify an initial size and let the heap grow as
needed. The only downside is a somewhat slower startup time since the application will take longer
to initialize. Setting the initial heap size higher than the default may avoid a series of heap
expansions, which often results in objects being shuffled around within the heap, as the application
spins up.

The maximum heap size, set with , is more critical. If the memory heap grows to this size,-Xmx

object creation may begin to fail and throw . Setting this limit too low canOutOfMemoryException

cause spurious errors in your application, but setting it too high can be detrimental as well.

It doesn't always cause an error when the heap reaches the maximum size. Before an error is
raised, the JVM will first try to reclaim any available space that already exists in the heap. Only if
all garbage collection attempts fail will your application see an exception. As long as the maximum
is big enough, your app will run without error, but it may run more slowly if forced garbage
collection kicks in frequently.

The larger the heap the longer it takes to do garbage collection. This can mean minor, random
pauses or, in extreme cases, "freeze the world" pauses of a minute or more. As a practical matter,
this can become a serious problem for heap sizes that exceed about two gigabytes, even if far
more physical memory is available. On robust hardware, you may get better results running
multiple JVMs, rather than just one with a large memory heap. Some specialized JVM
implementations may have customized garbage collection algorithms that do better with large
heaps. Also, Java 7 is expected to have a redesigned GC that should handle very large heaps
efficiently. Consult your JVM vendor's documentation.

https://wiki.apache.org/solr/SolrPerformanceFactors

Solr Reference Guide Jan 10, 2012

Page of 345 397

When setting the maximum heap size, be careful not to let the JVM consume all available physical
memory. If the JVM process space grows too large, the operating system will start swapping it,
which will severely impact performance. In addition, the operating system uses memory space not
allocated to processes for file system cache and other purposes. This is especially important for
I/O-intensive applications, like Lucene/Solr. The larger your indexes, the more you will benefit from
filesystem caching by the OS. It may require some experimentation to determine the optimal
tradeoff between heap space for the JVM and memory space for the OS to use.

On systems with many CPUs/cores, it can also be beneficial to tune the layout of the heap and/or
the behavior of the garbage collector. Adjusting the relative sizes of the generational pools in the
heap can affect how often GC sweeps occur and whether they run concurrently. Configuring the
various settings of how the garbage collector should behave can greatly reduce the overall
performance impact when it does run. There is a lot of good information on this topic available on
Sun's website. A good place to start is here: .http://java.sun.com/javase/technologies/hotspot/gc/

Use the Server HotSpot VM
If you are using Sun's JVM, add the command-line option when you start Solr. This tells-server

the JVM that it should optimize for a long running, server process. If the Java runtime on your
system is a JRE, rather than a full JDK distribution (including and other development tools),javac

then it is possible that it may not support the JVM option. Test this by running -server java

 and look for as an available option in the displayed usage message.-help -server

Checking JVM Settings
A great way to see what JVM settings your server is using, along with other useful information, is
to use the admin RequestHandler, . This request handler will display a wealthsolr/admin/system

of server statistics and settings.

You can also use any of the tools that are compatible with the Java Management Extensions (JMX).
See the section in for more information.Using JMX with Solr Managing Solr

http://java.sun.com/javase/technologies/hotspot/gc/

Solr Reference Guide Jan 10, 2012

Page of 346 397

Managing Solr
This section describes how to run Solr and how to look at Solr when it is running. It contains the
following sections:

: Describes how to run Solr in the Jetty web application container. The SolrRunning Solr on Jetty
example included in this distribution runs in a Jetty web application container.

: Describes how to run Solr in the Tomcat web application container.Running Solr on Tomcat

: Describes how to configure logging for Solr.Configuring Logging

: Describes backup strategies for your Solr indexes.Backing Up

: Describes how to use Java Management Extensions with Solr.Using JMX with Solr

For information on running Solr in a variety of Java application containers, see the basic installation
 on the Solr wiki.instructions

http://wiki.apache.org/solr/SolrInstall
http://wiki.apache.org/solr/SolrInstall

Solr Reference Guide Jan 10, 2012

Page of 347 397

1.

2.

Running Solr on Tomcat
Solr comes with an example schema and scripts for running on . The next section describesJetty
some of the details of how things work "under the hood," and covers running multiple Solr
instances and deploying Solr using the Tomcat application manager.

For more information about running Solr on Tomcat, see the and the basic installation instructions
 page on the Solr wiki.Solr Tomcat

How Solr Works with Tomcat
The two basic steps for running Solr in any Web application container are as follows:

Make the Solr classes available to the container. In many cases, the Solr Web application
archive (WAR) file can be placed into a special directory of the application container. In the
case of Tomcat, you need to place the Solr WAR file in Tomcat's directory. If youwebapps

installed Tomcat with Solr, take a look in :you'll see the file istomcat/webapps solr.war

already there.
Point Solr to the Solr home directory that contains and conf/solrconfig.xml

. There are a few ways to get this done. One of the best is to define the conf/schema.xml

 Java system property. With Tomcat, the best way to do this is via a shellsolr.solr.home

environment variable, . Tomcat puts the value of this variable on the commandJAVA_OPTS

line upon startup. Here is an example:

export JAVA_OPTS="-Dsolr.solr.home=/Users/jonathan/Desktop/solr"

Port 8983 is the default Solr listening port. If you are using Tomcat and wish to change this port,
edit the file in the Solr distribution. You'll find the port in this part of thetomcat/conf/server.xml

file:

<Connector port="8983" protocol="HTTP/1.1" connectionTimeout="20000"

redirectPort="8443" />

Modify the port number as desired and restart Tomcat if it is already running.

Modifying the port number will leave some of the samples and help file links pointing to the
default port. It is out of the scope of this reference guide to provide full details of how to
change all of the examples and other resources to the new port.

Running Multiple Solr Instances

http://wiki.apache.org/solr/SolrInstall
http://wiki.apache.org/solr/SolrTomcat

Solr Reference Guide Jan 10, 2012

Page of 348 397

The standard way to deploy multiple Solr index instances in a single Web application is to use the
multicore API described in .Using Multiple SolrCores

An alternative approach, which provides more code isolation, uses Tomcat context fragments. A
context fragment is a file that contains a single element and any subelements required<context>

for your application. The file omits all other XML elements.

Each context fragment specifies where to find the Solr WAR and the path to the solr home
directory. The name of the context fragment file determines the URL used to access that instance
of Solr. For example, a context fragment named would deploy Solr to be accessed at harvey.xml

.http://localhost:8983/harvey

In Tomcat's directory, store one context fragment per instance of Solr.conf/Catalina/localhost

If the directory doesn't exist, go ahead and create it.conf/Catalina/localhost

Using Tomcat context fragments, you could run multiple instances of Solr on the same server, each
with its own schema and configuration. For full details and examples of context fragments, take a
look at the Solr Wiki: .http://wiki.apache.org/solr/SolrTomcat

Here are examples of context fragments which would set up two Solr instances, each with its own
:solr.home

<Context docBase="/some/path/solr.war" debug="0" crossContext="true" >

 <Environment name="solr/home" type="java.lang.String" value="/some/path/solr1home"

override="true" />

</Context>

<Context docBase="/some/path/solr.war" debug="0" crossContext="true" >

 <Environment name="solr/home" type="java.lang.String"

 value="/some/path/solr2home" override="true" />

</Context>

Deploying Solr with the Tomcat Manager
If your instance of Tomcat is running the Tomcat Web Application Manager, you can use its
browser interface to deploy Solr.

Just as before, you have to tell Solr where to find the solr home directory. You can do this by
setting JAVA_OPTS before starting Tomcat.

Once Tomcat is running, navigate to the Web application manager, probably available at a URL like
this:

http://localhost:8983/manager/html

You will see the main screen of the manager.

http://wiki.apache.org/solr/SolrTomcat

Solr Reference Guide Jan 10, 2012

Page of 349 397

To add Solr, scroll down to the section, specifically . Click Deploy WAR file to deploy Browse...
and find the Solr WAR file, usually something like within your Solrdist/apache-solr-3.x.0.war

installation. Click . Tomcat will load the WAR file and start running it. Click the link in theDeploy
application path column of the manager to see Solr. You won't see much, just a welcome screen,
but it contains a link for the Admin Console.

Tomcat's manager screen, in its application list, has links so you can stop, start, reload, or
undeploy the Solr application.

Solr Reference Guide Jan 10, 2012

Page of 350 397

Running Solr on Jetty
Solr comes with an example schema and scripts for running on , along with a workingJetty
installation, in the directory. The included version of Jetty works well for small/example

installations, but may not be appropriate for more heavy-duty use. For more robust Solr
applications, we recommend that you download the , which includes additionalfull Jetty package
modules ("JettyPlus").

For more information about the Jetty example installation, see the and the Solr Tutorial basic
 on the Solr wiki.installation instructions

For detailed information about running Solr on Jetty or JettyPlus, see
.http://wiki.apache.org/solr/SolrJetty

Changing the Solr Listening Port
Port 8983 is the default port for Solr. If you are using Jetty and wish to change the port number,
edit the file in the Solr distribution. You'll find the port in this part of thejetty/etc/jetty.xml

file:

<New class="org.mortbay.jetty.bio.SocketConnector">

 <Set name="port"><SystemProperty name="jetty.port"

 default="8983"/></Set>

 <Set name="maxIdleTime">50000</Set>

 <Set name="lowResourceMaxIdleTime">1500</Set>

 </New>

Modify the port number as desired and restart Jetty if it is already running.

Modifying the port number will leave some of the samples and help file links pointing to the
default port. It is out of the scope of this reference guide to provide full details of how to
change all of the examples and other resources to the new port.

http://jetty.mortbay.org/jetty/
http://docs.codehaus.org/display/JETTY/Downloading+Jetty
http://lucene.apache.org/solr/tutorial.html
http://wiki.apache.org/solr/SolrInstall
http://wiki.apache.org/solr/SolrInstall
http://wiki.apache.org/solr/SolrJetty

Solr Reference Guide Jan 10, 2012

Page of 351 397

Configuring Logging
Logging is the practice of writing informative messages somewhere. System administrators or
developers can read logs to learn information about a system. If an application dies unexpectedly,
the key to its demise might be written in a log somewhere. A canny developer can examine a log
to understand what went wrong, much like a detective can examine the scene of a crime to find
out what happened.

Solr uses the SLF4J Logging API (). If you want to see the log output inhttp://www.slf4j.org
Tomcat, look in . You will find a file named something like solr/tomcat/logs

, except with the current date.catalina.2011-05-01.log

Temporary Logging Settings
You can control the amount of logging output in Solr by using the Admin Web interface. Select the

 link. Note that this page only lets you change settings in the running system and is notLOGGING
saved for the next run. (For more information about the Admin Web interface, see Using the Solr

.)Administration User Interface

http://www.slf4j.org

Solr Reference Guide Jan 10, 2012

Page of 352 397

The JDK Log Level Selector screen.

This part of the Admin Web interface allows you to set the logging level for many different log
categories. Fortunately, any categories that are will have the logging level of its parent. Thisunset
makes it possible to change many categories at once by adjusting the logging level of their parent.

Permanent Logging Settings
Making permanent changes to the JDK Logging API configuration is a matter of creating or editing
a properties file.

Tomcat Logging Settings

Solr Reference Guide Jan 10, 2012

Page of 353 397

Tomcat offers a choice between settings for all applications or settings specifically for the Solr
application.

To change logging settings for Solr only, edit
. You will need to create thetomcat/webapps/solr/WEB-INF/classes/logging.properties

classes directory and the logging.properties file. You can set levels from FINEST to SEVERE for a
class or an entire package. Here are a couple of examples:

org.apache.commons.digester.Digester.level = FINEST

org.apache.solr.level = WARNING

Alternately, if you wish to change Tomcat's JDK Logging API settings for every application in this
instance of Tomcat, edit .tomcat/conf/logging.properties

See the documentation for the SLF4J Logging API for more information:

http://slf4j.org/docs.html

http://java.sun.com/javase/6/docs/technotes/guides/logging/index.html

Jetty Logging Settings
To change settings for the SLF4J Logging API in Jetty, you need to create a settings file and tell
Jetty where to find it.

Begin by creating a file . Use the example lines above as a guide.jetty/logging.properties

To tell Jetty how to find the file, edit start.sh. Find the line which launches Jetty, which looks
something like this, except it will have an absolute path to :start.jar

java -DSTOP.PORT=8079 -DSTOP.KEY=secret -jar start.jar

#Add the location of the logging properties file like this:

java -Djava.util.logging.config.file=logging.properties

 -DSTOP.PORT=8079 -DSTOP.KEY=secret -jar start.jar

The next time you launch Jetty, it will use the settings in the file.

http://slf4j.org/docs.html
http://java.sun.com/javase/6/docs/technotes/guides/logging/index.html

Solr Reference Guide Jan 10, 2012

Page of 354 397

Backing Up
If you are worried about data loss, and of course you be, you need a way to back up yourshould
Solr indexes so that you can recover quickly in case of catastrophic failure.

Making Backups with the Solr Replication Handler
The easiest way to make back-ups in Solr is to take advantage of the Replication Handler, which is
described in detail in . The Replication Handler's primary purpose is to replicate anIndex Replication
index on slave servers for load-balancing, but the Replication Handler can be used to make a
back-up copy of a server's index, even if no slave servers are in operation.

Once you have configured the Replication Handler in , you can trigger a back-upsolrconfig.xml

with an HTTP command like this:

http:// master_host /solr/replication?command=backup

For details on configuring the Replication Handler, see .Scaling and Distribution

Backup Scripts from Earlier Solr Releases
Solr also provides shell scripts in the bin directory that make copies of the indexes. However, these
scripts only work with a Linux-style shell, and not everybody in the world runs Linux.

The scripts themselves are relatively simple. Look in the bin directory of your Solr home directory,
for example . In particular, backup.sh makes a copy of Solr's index directoryexample/solr/bin

and gives it a name based on the current date.

This scripts include the following:

Script Name Description

abc Atomic Backup post-Commit tells the Solr server to perform a commit. A
snapshot of the index directory is made after the commit if the Solr server is
configured to do so (by enabling the event listener in postCommit

). A backup of the most recent snapshot directory issolr/conf/solrconfig.xml

then made if the commit is successful. Backup directories are named backup.
 where is the timestamp of when the snaphotyyyymmddHHMMSS yyyymmddHHMMSS

was taken.

Solr Reference Guide Jan 10, 2012

Page of 355 397

abo Atomic Backup post-Optimize tells the Solr server to perform an optimize. A
snapshot of the index directory is made after the optimize if the Solr server is
configured to do so (by enabling the or eventpostCommit postOptimize
listener in). A backup of the most recent snapshotsolr/conf/solrconfig.xml

directory is then made if the optimize is successful. Backup directories are named
backup. where is the timestamp of when theyyyymmddHHMMSS yyyymmddHHMMSS

snaphot was taken.

backup Backs up the index directory using hard links. Backup directories are named
backup. where is the timestamp of when theyyyymmddHHMMSS yyyymmddHHMMSS

backup was taken.

backupcleaner Runs as a cron job to remove backups more than a configurable number of days
old or all backups except for the most recent n number of backups. Also can be
run manually.

For more details about backup scripts, see the Solr Wiki page
.http://wiki.apache.org/solr/SolrOperationsTools

http://wiki.apache.org/solr/SolrOperationsTools

Solr Reference Guide Jan 10, 2012

Page of 356 397

Using JMX with Solr
Java Management Extensions (JMX) is a technology that makes it possible for complex systems to
be controlled by tools without the systems and tools having any previous knowledge of each other.
In essence, it is a standard interface by which complex systems can be viewed and manipulated.

Solr, like any other good citizen of the Java universe, can be controlled via a JMX interface. You
can enable JMX support by adding lines to . You can use a JMX client, likesolrconfig.xml

jconsole, to connect with Solr. Check out the Wiki page forhttp://wiki.apache.org/solr/SolrJmx
more information. You may also find the following overview of JMX to be useful:

.http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html

http://wiki.apache.org/solr/SolrJmx
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html

Solr Reference Guide Jan 10, 2012

Page of 357 397

Scaling and Distribution
This section describes how to set up distribution and replication in Solr. It covers the following
topics:

: Conceptual information about distribution and replicationIntroduction to Scaling and Distribution
in Solr.

: Detailed information about implementing distributedDistributed Search with Index Sharding
searching in Solr.

: Detailed information about replicating your Solr indexes.Index Replication

: Detailed information about replicating shards in aCombining Distribution and Replication
distributed index.

: Information about combining separate indexes in Solr.Merging Indexes

Solr Reference Guide Jan 10, 2012

Page of 358 397

Introduction to Scaling and Distribution
Both Lucene and Solr were designed to scale to support large implementations with minimal
custom coding. This section covers:

 an index across multiple serversdistributing
 an index on multiple serversreplicating

merging indexes

What Problem Does Distribution Solve?
If searches are taking too long or the index is approaching the physical limitations of its machine,
you should consider distributing the index across two or more Solr servers.

To distribute an index, you divide the index into partitions called shards, each of which runs on a
separate machine. Solr then partitions searches into sub-searches, which run on the individual
shards, reporting results collectively. The architectural details underlying index sharding are
invisible to end users, who simply experience faster performance on queries against very large
indexes.

What Problem Does Replication Solve?
Replicating an index is useful when:

You have a large search volume which one machine cannot handle, so you need to distribute
searches across multiple read-only copies of the index.
There is a high volume/high rate of indexing which consumes machine resources and reduces
search performance on the indexing machine, so you need to separate indexing and
searching.
You want to make a backup of the index (see).Backing Up

Solr Reference Guide Jan 10, 2012

Page of 359 397

Distributed Search with Index Sharding
When an index becomes too large to fit on a single system, or when a query takes too long to
execute, an index can be split into multiple shards, and Solr can query and merge results across
those shards. A single shard receives the query, distributes the query to other shards, and
integrates the results. You can find additional information about distributed search on the Solr wiki:

.http://wiki.apache.org/solr/DistributedSearch

The figure below compares a single server to a distributed configuration with two shards.

If single queries are currently fast enough and one simply wishes to expand the capacity
(queries/sec) of the search system, then standard index replication (replicating the entire
index on multiple servers) should be used instead of index sharding.

Distributing Documents across Shards
It is up to you to get all your documents indexed on each shard of your server farm. Solr does not
include out-of-the-box support for distributed indexing, but your method can be as simple as a
round robin technique. Just index each document to the next server in the circle. (For more
information about indexing, see .)Indexing and Basic Data Operations

A simple hashing system would also work. The following should serve as an adequate hashing
function.

uniqueId.hashCode() % numServers

One advantage of this approach is that it is easy to know where a document is if you need to
update it or delete. In contrast, if you are moving documents around in a round-robin fashion, you
may not know where a document actually is.

http://wiki.apache.org/solr/DistributedSearch

Solr Reference Guide Jan 10, 2012

Page of 360 397

Solr does not calculate universal term/doc frequencies. For most large-scale implementations, it is
not likely to matter that Solr calculates TD/IDF at the shard level. However, if your collection is
heavily skewed in its distribution across servers, you may find misleading relevancy results in your
searches. In general, it is probably best to randomly distribute documents to your shards.

Executing Distributed Searches with the shards Parameter
If a query request includes the parameter, the Solr server distributes the request across allshards

the shards listed as arguments to the parameter. The parameter uses this syntax:shards

host : port / base_url [, host : port / base_url]*

For example, the parameter below causes the search to be distributed across two Solrshards

servers: and , both of which are running on port 8983:solr1 solr2

http://localhost:8983/solr/select?

shards=solr1:8983/solr,solr2:8983/solr&indent=true&q=ipod+solr

Rather than require users to include the shards parameter explicitly, it is usually preferred to
configure this parameter as a default in the RequestHandler section of .solrconfig.xml

Do not add the parameter to the standard requestHandler; otherwise, searchshards

queries may enter an infinite loop. Instead, define a new requestHandler that uses the
 parameter, and pass distributed search requests to that handler.shards

Currently, only query requests are distributed. This includes requests to the standard request
handler (and subclasses such as the DisMax RequestHandler), and any other handler (

) using standard components that supportorg.apache.solr.handler.component.searchHandler

distributed search.

The following components support distributed search:

The component, which returns documents matching a queryQuery
The component, which processes facet.query and facet.field requests where facets areFacet
sorted by count (the default).
The component, which enables Solr to include "highlighted" matches in fieldHighlighting
values.
The component, which returns simple statistics for numeric fields within the DocSet.Stats
The component, which helps with debugging.Debug

Limitations to Distributed Search

Solr Reference Guide Jan 10, 2012

Page of 361 397

1.

Distributed searching in Solr has the following following limitations:

Each document indexed must have a unique key.
If Solr discovers duplicate document IDs, Solr selects the first document and discards
subsequent ones.
Inverse-document frequency (IDF) calculations cannot be distributed.
Distributed searching does not support the QueryElevationComponent, which configures the
top results for a given query regardless of Lucene's scoring. For more information, see

.http://wiki.apache.org/solr/QueryElevationComponent
The index for distributed searching may become out of date; for example, a document that
once matched a query and was subsequently changed may no longer match the query but
will still be retrieved.
Distributed searching supports only sorted-field faceting, not date faceting
The number of shards is limited by number of characters allowed for GET method's URI;
most Web servers generally support at least 4000 characters, but many servers limit URI
length to reduce their vulnerability to Denial of Service (DoS) attacks.
TF/IDF computations are per shard. This may not matter if content is well (randomly)
distributed.

Avoiding Distributed Deadlock
Each shard may also serve top-level query requests and then make sub-requests to all of the other
shards. In this configuration, care should be taken to ensure that the max number of threads
serving HTTP requests in the servlet container is greater than the possible number of requests from
both top-level clients and other shards. If this is not the case, the configuration may result in a
distributed deadlock.

For example,a deadlock might occur in the case of two shards, each with just a single thread to
service HTTP requests. Both threads could receive a top-level request concurrently, and make
sub-requests to each other. Because there are no more remaining threads to service requests, the
servlet containers will block the incoming requests until the other pending requests are finished,
but they will not finish since they are waiting for the sub-requests. By ensuring that the servlets
are configured to handle a sufficient number of threads, you can avoid deadlock situations like this.

Testing Index Sharding on Two Local Servers
For simple functionality testing, it's easiest to just set up two local Solr servers on different ports.
(In a production environment, of course, these servers would be deployed on separate machines.)

Make a copy of the solr example directory:

cd solr

cp -r example example7574

http://wiki.apache.org/solr/QueryElevationComponent

Solr Reference Guide Jan 10, 2012

Page of 362 397

2.

3.

4.

5.

6.

Change the port number:

perl -pi -e s/8983/7574/g example7574/etc/jetty.xml

example7574/exampledocs/post.sh

In the first window, start up the server on port 8983:

cd examplejava -server -jar start.jar

In the second window, start up the server on port 7574:

cd example7574java -server -jar start.jar

In the third window, index some example documents to each server:

cd example/exampledocs./post.sh \[a-m\]*.xmlcd

../../example7574/exampledocs./post.sh \[n-z\]*.xml

Now do a distributed search across both servers with your browser or :curl

curl

'http://localhost:8983/solr/select?shards=localhost:8983/solr,localhost:7574/solr&indent=true&q=ipod+solr'

Solr Reference Guide Jan 10, 2012

Page of 363 397

Index Replication
Index Replication distributes complete copies of a master index to one or more slave servers. The
master server continues to manage updates to the index. All querying is handled by the slaves.
This division of labor enables Solr to scale to provide adequate responsiveness to queries against
large search volumes.

The figure below shows a Solr configuration using index replication. The master server's index is
replicated on the slaves.

A Solr index can be replicated across multiple slave servers, which then process requests.

Topics covered in this section:

Index Replication in Solr
Replication Terminology
Configuring the Replication RequestHandler on a Master Server
Index Replication using ssh and rsync
The Snapshot and Distribution Process
Snapshot Directories
Solr Distribution Scripts
Solr Distribution-related Cron Jobs
Commit and Optimization
Distribution and Optimization
Performance Tuning for Script-based Replication

Index Replication in Solr

Solr Reference Guide Jan 10, 2012

Page of 364 397

Solr includes a Java implementation of index replication that works over HTTP.

For information on the / based replication, see .ssh rsync Index Replication using ssh and rsync

The Java-based implementation of index replication offers these benefits:

Replication without requiring external scripts
The configuration affecting replication is controlled by a single file, solrconfig.xml
Supports the replication of configuration files as well as index files
Works across platforms with same configuration
No reliance on OS-dependent hard links
Tightly integrated with Solr; an admin page offers fine-grained control of each aspect of
replication
The Java-based replication feature is implemented as a RequestHandler. Configuring
replication is therefore similar to any normal RequestHandler.

Replication Terminology
The table below defines the key terms associated with Solr replication.

Term Definition

Collection A Lucene collection is a directory of files. These files make up the indexed and
returnable data of a Solr search repository.

Distribution The copying of a collection from the master server to all slaves. The distribution
process takes advantage of Lucene's index file structure.

Inserts and
Deletes

As inserts and deletes occur in the collection, the directory remains unchanged.
Documents are always inserted into newly created files. Documents that are
deleted are not removed from the files. They are flagged in the file, deletable, and
are not removed from the files until the collection is optimized.

Master and
Slave

The Solr distribution model uses the master/slave model. The master is the service
which receives all updates initially and keeps everything organized. Solr uses a
single update master server coupled with multiple query slave servers. All changes
(such as inserts, updates, deletes, etc.) are made against the single master server.
Changes made on the master are distributed to all the slave servers which service
all query requests from the clients.

Update An update is a single change request against a single Solr instance. It may be a
request to delete a document, add a new document, change a document, delete all
documents matching a query, etc. Updates are handled synchronously within an
individual Solr instance.

Solr Reference Guide Jan 10, 2012

Page of 365 397

Optimization A process that compacts the index and merges segments in order to improve query
performance. New secondary segment(s) are created to contain documents
inserted into the collection after it has been optimized. A Lucene collection must be
optimized periodically to maintain satisfactory query performance. Optimization is
run on the master server only. An optimized index will give you a performance gain
at query time of at least 10%. This gain may be more on an index that has become
fragmented over a period of time with many updates and no optimizations.
Optimizations require a much longer time than does the distribution of an
optimized collection to all slaves.

Segments The number of files in a collection.

mergeFactor A parameter that controls the number of files (segments) in a collection. For
example, when mergeFactor is set to 3, Solr will fill one segment with documents
until the limit maxBufferedDocs is met, then it will start a new segment. When the
number of segments specified by mergeFactor is reached—in this example, 3—then
Solr will merge all the segments into a single index file, then begin writing new
documents to a new segment.

Snapshot A directory containing hard links to the data files. Snapshots are distributed from
the master server when the slaves pull them, "smartcopying" the snapshot
directory that contains the hard links to the most recent collection data files.

Configuring the Replication RequestHandler on a Master Server
The example below shows how to configure the Replication RequestHandler on a master server.

Solr Reference Guide Jan 10, 2012

Page of 366 397

<requestHandler name="/replication" class="solr.ReplicationHandler" >

 <lst name="master">

 <!--Replicate on 'optimize'. Other values can be 'commit', 'startup'.

 It is possible to have multiple entries of this config string-->

 <str name="replicateAfter">optimize</str>

 <!--Create a backup after 'optimize'. Other values can be 'commit', 'startup'.

 It is possible to have multiple entries of this config string.

 Note that this is just for backup, replication does not require this. -->

 <!-- <str name="backupAfter">optimize</str> -->

 <!--Specify the number of backup copies to keep. The default value for this

parameter is MAX_VALUE. -->

 <!-- <int name="numberToKeep">2</int> -->

 <!--If configuration files need to be replicated give the names here, separated

by comma -->

 <str name="confFiles">schema.xml,stopwords.txt,elevate.xml</str>

 <!--The default value of reservation is 10 secs. Normally , you should not need

to specify this -->

 <str name="commitReserveDuration">00:00:10</str>

 </lst>

</requestHandler>

If your commits are very frequent and network is particularly slow, you can tweak an
extra attribute . This is<str name="commitReserveDuration">00:00:10</str>

roughly the time taken to download 5MB from master to slave. Default is 10
seconds.
If you are using option for , it is necessary to have a startup replicateAfter

/ entry also, if you want to trigger replication on futurecommit optimize
commits/optimizes. If only the option is given, replication will not bestartup
triggered on subsequent commits/optimizes after it is done for the first time at the
start.

Solr Reference Guide Jan 10, 2012

Page of 367 397

Replicating solrconfig.xml
In the configuration file on the master server, include a line like the following:

<str name="confFiles">solrconfig_slave.xml:solrconfig.xml,x.xml,y.xml</str>

This ensures that the local configuration will be saved as solrconfig_slave.xml solrconfig.xml

on the slave. All other files will be saved with their original names.

On the master server, the file name of the slave configuration file can be anything, as long as the
name is correctly identified in the string; then it will be saved as whatever file nameconfFiles

appears after the colon ':'.

Configuring the Replication RequestHandler on a Slave Server
The code below shows how to configure a ReplicationHandler on a slave.

<requestHandler name="/replication" class="solr.ReplicationHandler" >

 <lst name="slave">

 <!--fully qualified url for the replication handler of master. It is possible

to pass on this as

 a request param for the fetchindex command-->

 <str name="masterUrl">http://remote_host:port/solr/corename/replication</str>

 <!--Interval in which the slave should poll master .Format is HH:mm:ss . If

this is absent slave does not

 poll automatically.

 But a fetchindex can be triggered from the admin or the http API -->

 <str name="pollInterval">00:00:20</str>

 <!-- THE FOLLOWING PARAMETERS ARE USUALLY NOT REQUIRED-->

 <!--to use compression while transferring the index files. The possible values

are internal|external

 if the value is 'external' make sure that your master Solr has the settings to

honor the

 accept-encoding header.

 See here for details: http://wiki.apache.org/solr/SolrHttpCompression

 If it is 'internal' everything will be taken care of automatically.

 USE THIS ONLY IF YOUR BANDWIDTH IS LOW . THIS CAN ACTUALLY SLOWDOWN

REPLICATION IN A LAN-->

Solr Reference Guide Jan 10, 2012

Page of 368 397

 <str name="compression">internal</str>

 <!--The following values are used when the slave connects to the master to

download the index files.

 Default values implicitly set as 5000ms and 10000ms respectively. The user

DOES NOT need to specify

 these unless the bandwidth is extremely low or if there is an extremely high

latency-->

 <str name="httpConnTimeout">5000</str>

 <str name="httpReadTimeout">10000</str>

 <!-- If HTTP Basic authentication is enabled on the master, then the slave can

be

 configured with the following -->

 <str name="httpBasicAuthUser">username</str>

 <str name="httpBasicAuthPassword">password</str>

 </lst>

</requestHandler>

If you are not using cores, then you simply omit the parameter above in the corename

. To ensure that the URL is correct, just hit the URL with a browser. You mustmasterUrl

get a status OK response.

Setting Up a Repeater with the ReplicationHandler
A master may be able to serve only so many slaves without affecting performance. Some
organizations have deployed slave servers across multiple data centers. If each slave downloads
the index from a remote data center, the resulting download may consume too much network
bandwidth. To avoid performance degradation in cases like this, you can configure one or more
slaves as repeaters. A repeater is simply a node that acts as both a master and a slave.

To configure a server as a repeater, the definition of the Replication in the requestHandler

 file must include file lists of use for both masters and slaves.solrconfig.xml

Be sure to set the parameter to commit, even if is set toreplicateAfter replicateAfter

optimize on the main master. This is because on a repeater (or any slave), a commit is called
only after the index is downloaded. The optimize command is never called on slaves.
Optionally, one can configure the repeater to fetch compressed files from the master through
the compression parameter to reduce the index download time.

Here is an example of a ReplicationHandler configuration for a repeater:

Solr Reference Guide Jan 10, 2012

Page of 369 397

<requestHandler name="/replication" class="solr.ReplicationHandler">

 <lst name="master">

 <str name="replicateAfter">commit</str>

 <str name="confFiles">schema.xml,stopwords.txt,synonyms.txt</str>

 </lst>

 <lst name="slave">

 <str name="masterUrl">http://master.solr.company.com:8983/solr/replication</str>

 <str name="pollInterval">00:00:60</str>

 </lst>

 </requestHandler>

Commit and Optimize Operations
When a commit or optimize operation is performed on the master, the RequestHandler reads the
list of file names which are associated with each commit point. This relies on the replicateAfter
parameter in the configuration to decide which types of events should trigger replication.

replicateAfter Setting on the
Master

Description

commit Triggers replication whenever a commit is performed on the
master index.

optimize Triggers replication whenever the master index is optimized.

startup Triggers replication whenever the master index starts up.

The replicateAfter parameter can accept multiple arguments. For example:

<str name="replicateAfter">startup</str>

<str name="replicateAfter">commit</str>

<str name="replicateAfter">optimize</str>

Slave Replication
The master is totally unaware of the slaves. The slave continuously keeps polling the master
(depending on the parameter) to check the current index version the master. If thepollInterval

slave finds out that the master has a newer version of the index it initiates a replication process.
The steps are as follows:

The slave issues a command to get the list of the files. This command returns thefilelist

names of the files as well as some metadata (for example, size, a lastmodified timestamp, an
alias if any).

Solr Reference Guide Jan 10, 2012

Page of 370 397

The slave checks with its own index if it has any of those files in the local index. It then runs
the filecontent command to download the missing files. This uses a custom format (akin to
the HTTP chunked encoding) to download the full content or a part of each file. If the
connection breaks in between , the download resumes from the point it failed. At any point,
the slave tries 5 times before giving up a replication altogether.
The files are downloaded into a temp directory, so that if either the slave or the master
crashes during the download process, no files will be corrupted. Instead, the current
replication will simply abort.
After the download completes, all the new files are 'mov'ed to the live index directory and the
file's timestamp is same as its counterpart in on the master master.
A commit command is issued on the slave by the Slave's ReplicationHandler and the new
index is loaded.

Replicating Configuration Files
To replication configuration files, list them using using the parameter. Only files foundconfFiles

in the directory of the master's Solr instance will be replicatedconf

Solr replicates configuration files only when the index itself is replicated. That means even if a
configuration file is changed on the master, that file will be replicated only after there is a new
commit/optimize on master's index.

Unlike the index files, where the timestamp is good enough to figure out if they are identical,
configuration files are compared against their checksum. The files (on master andschema.xml

slave) are judged to be identical if their checksums are identical.

As a precaution when replicating configuration files, Solr copies configuration files to a temporary
directory before moving them into their ultimate location in the conf directory. The old
configuration files are then renamed and kept in the same directory. The ReplicationHandlerconf/

does not automatically clean up these old files.

If a replication involved downloading of at least one configuration file, the ReplicationHandler issues
a core-reload command instead of a commit command.

Resolving Corruption Issues on Slave Servers
If documents are added to the slave, then the slave is no longer in sync with its master. However,
the slave will not undertake any action to put itself in sync, until the master has new index data.
When a commit operation takes place on the master, the index version of the master becomes
different from that of the slave. The slave then fetches the list of files and finds that some of the
files present on the master are also present in the local index but with different sizes and
timestamps. This means that the master and slave have incompatible indexes. To correct this
problem, the slave then copies all the index files from master to a new index directory and and
asks the core to load the fresh index from the new directory.

Solr Reference Guide Jan 10, 2012

Page of 371 397

HTTP API Commands for the ReplicationHandler
You can use the HTTP commands below to control the ReplicationHandler's operations.

Command Description

http:// :master_host port
/solr/replication?command=enablereplication

Enables replication on the
master for all its slaves.

http:// :master_host port
/solr/replication?command=disablereplication

Disables replication on the
master for all its slaves.

http:// : /solr/replication?command=indexversionhost port Returns the version of the
latest replicatable index on
the specified master or slave

http:// : /solr/replication?command=fetchindexslave_host port Forces the specified slave to
fetch a copy of the index
from its master.

If you like, you can pass an
extra attribute such as
masterUrl or compression
(or any other parameter
which is specified in the

 tag) to<lst name="slave">

do a one time replication
from a master. This obviates
the need for hard-coding the
master in the slave.

http:// : /solr/replication?command=abortfetchslave_host port Aborts copying an index
from a master to the
specified slave.

http:// : /solr/replication?command=enablepollslave_host port Enables the specified slave
to poll for changes on the
master.

http:// : /solr/replication?command=disablepollslave_host port Disables the specified slave
from polling for changes on
the master.

http:// : /solr/replication?command=detailsslave_host port Retrieves configuration
details and current status.

Solr Reference Guide Jan 10, 2012

Page of 372 397

http://host:port/solr/replication?command=filelist&indexversion=<
>index-version-number

Retrieves a list of Lucene
files present in the specified
host's index. You can
discover the version number
of the index by running the

 command.indexversion

http:// : /solr/replication?command=backupmaster_host port Creates a backup on master
if there are committed index
data in the server;
otherwise, does nothing.
This command is useful for
making periodic backups.

Using the Replication Dashboard
The Solr Replication Dashboard, which is accessible through the Distribution link on the Admin Web
interfaces, shows the following information related to replication managed through the Replication
Handler:

status of current replication
percentage/size downloaded/to be downloaded
the name of the current file being downloaded
the time taken compared to the time remaining

The figure below shows the Replication Dashboard for a slave server.

Solr Reference Guide Jan 10, 2012

Page of 373 397

The Replication Dashboard reports details of the master-slave configuration and offers controls for
managing the replication.

You can perform the following actions from the Replication Dashboard:

Enable/Disable polling
Force-start replication (sometimes useful for making a backup copy of an index)
Abort an ongoing replication process

Index Replication using ssh and rsync
Solr supports / -based replication. ssh rsync This mechanism only works on systems that support
removing open hard links.

Solr distribution is similar in concept to database replication. All collection changes come to one
master Solr server. All production queries are done against query slaves. Query slaves receive all
their collection changes indirectly — as new versions of a collection which they pull from the
master. These collection downloads are polled for on a cron'd basis.

A collection is a directory of many files. Collections are distributed to the slaves as snapshots of
these files. Each snapshot is made up of hard links to the files so copying of the actual files is not
necessary when snapshots are created. Lucene only rewrites files following ansignificantly
optimization command. Generally, once a file is written, it will change very little, if at all. This
makes the underlying transport of rsync very useful. Files that have already been transferred and
have not changed do not need to be re-transferred with the new edition of a collection.

Solr Reference Guide Jan 10, 2012

Page of 374 397

1.

2.

3.

4.

5.

The Snapshot and Distribution Process
Here are the steps that Solr follows when replicating an index:

The command takes snapshots of the collection on the master. It runs whensnapshooter
invoked by Solr after it has done a commit or an optimize.
The command runs on the query slaves to pull the newest snapshot from thesnappuller
master. This is done via rsync in daemon mode running on the master for better performance
and lower CPU utilization over rsync using a remote shell program as the transport.
The runs on the slave after a snapshot has been pulled from the master. Thissnapinstaller
signals the local Solr server to open a new index reader, then auto-warming of the cache(s)
begins (in the new reader), while other requests continue to be served by the original index
reader. Once auto-warming is complete, Solr retires the old reader and directs all new
queries to the newly cache-warmed reader.
All distribution activity is logged and written back to the master to be viewable on the
distribution page of its GUI.
Old versions of the index are removed from the master and slave servers by a cron'd

.snapcleaner

If you are building an index from scratch, distribution is the final step of the process.

Manual copying of index files is not recommended; however, running distribution commands
manually (that is, not relying on to run them) is perfectly fine.crond

Snapshot Directories
Snapshots are stored in directories whose names follow this format: snapshot. yyyymmddHHMMSS

All the files in the index directory are hard links to the latest snapshot. This design offers these
advantages:

The Solr implementation can keep multiple snapshots on each host without needing to keep
multiple copies of index files that have not changed.
File copying from master to slave is very fast.
Taking a snapshot is very fast as well.

Solr Distribution Scripts
For the Solr distribution scripts, the name of the index directory is defined either by the
environment variable in the configuration file or the commanddata_dir solr/conf/scripts.conf

line argument . It should match the value used by the Solr server which is defined in -d

.solr/conf/solrconfig.xml

Solr Reference Guide Jan 10, 2012

Page of 375 397

All Solr collection distribution scripts are bundled in a Solr release and reside in the directory
. Lucid Imagination recommends that you install the scripts in a solr/src/scripts solr/bin/

directory.

Collection distribution scripts create and prepare for distribution a snapshot of a search collection
after each commit and optimize request if the and event listener ispostCommit postOptimize
configured in solrconfig.xml to execute .snapshooter

The script creates a directory , where is a timestamp in thesnapshooter snapshot.<ts> <ts>

format, . It contains hard links to the data files.yyyymmddHHMMSS

Snapshots are distributed from the master server when the slaves pull them, "smartcopying" the
snapshot directory that contains the hard links to the most recent collection data files.

Name Description

snapshooter Creates a snapshot of a collection. Snapshooter is normally configured to run
on the master Solr server when a commit or optimize happens. Snapshooter
can also be run manually, but one must make sure that the index is in a
consistent state, which can only be done by pausing indexing and issuing a
commit.

snappuller A shell script that runs as a job on a slave Solr server. The script lookscron

for new snapshots on the master Solr server and pulls them.

snappuller-enable Creates the file , whose presence enablessolr/logs/snappuller-enabled

snappuller.

snapinstaller Installs the latest snapshot (determined by the timestamp) into the place,
using hard links (similar to the process of taking a snapshot). Then

 is written and scp'd (secure copied) back tosolr/logs/snapshot.current

the master Solr server. snapinstaller then triggers the Solr server to open a
new Searcher.

snapcleaner Runs as a job to remove snapshots more than a configurable number ofcron

days old or all snapshots except for the most recent n number of snapshots.
Also can be run manually.

rsyncd-start Starts the rsyncd daemon on the master Solr server which handles collection
distribution requests from the slaves.

rsyncd daemon Efficiently synchronizes a collection—between master and slaves—by copying
only the files that actually changed. In addition, rsync can optionally compress
data before transmitting it.

Solr Reference Guide Jan 10, 2012

Page of 376 397

rsyncd-stop Stops the rsyncd daemon on the master Solr server. The stop script then
makes sure that the daemon has in fact exited by trying to connect to it for up
to 300 seconds. The stop script exits with error code 2 if it fails to stop the
rsyncd daemon.

rsyncd-enable Creates the file , whose presence allows thesolr/logs/rsyncd-enabled

rsyncd daemon to run, allowing replication to occur.

rsyncd-disable Removes the file , whose absence prevents thesolr/logs/rsyncd-enabled

rsyncd daemon from running, preventing replication.

For more information about usage arguments and syntax see the SolrCollectionDistributionScripts
page on the Solr Wiki.

Solr Distribution-related Cron Jobs
The distribution process is automated through the use of cron jobs. The cron jobs should run under
the user ID that the Solr server is running under.

Cron Job Description

snapcleaner The snapcleaner job should be run out of at the regular basis to clean up oldcron

snapshots. This should be done on both the master and slave Solr servers. For
example, the following job runs everyday at midnight and cleans upcron

snapshots 8 days and older:

0 0 * * * <solr.solr.home>/solr/bin/snapcleaner -D 7

Additional cleanup can always be performed on-demand by running snapcleaner
manually.

snappuller
snapinstaller

On the slave Solr servers, snappuller should be run out of cron regularily to get the
latest index from the master Solr server. It is a good idea to also run snapinstaller
with snappuller back-to-back in the same crontab entry to install the latest index
once it has been copied over to the slave Solr server.

For example, the following cron job runs every 5 minutes to keep the slave Solr server in sync with
the master Solr server:

0,5,10,15,20,25,30,35,40,45,50,55 * * * *

<solr.solr.home>/solr/bin/snappuller;<solr.solr.home>/solr/bin/snapinstaller

Modern cron allows this to be shortened to .*/5 * * * *...

http://wiki.apache.org/solr/SolrCollectionDistributionScripts

Solr Reference Guide Jan 10, 2012

Page of 377 397

Commit and Optimization
On a very large index, adding even a few documents then running an optimize operation causes
the complete index to be rewritten. This consumes a lot of disk I/O and impacts query
performance. Optimizing a very large index may even involve copying the index twice and calling
optimize at the beginning at the end. If some documents have been deleted, the first optimizeand
call will rewrite the index even before the second index is merged.

Optimization is an I/O intensive process, as the entire index is read and re-written in optimized
form. Anecdotal data shows that optimizations on modest server hardware can take around 5
minutes per GB, although this obviously varies considerably with index fragmentation and
hardware bottlenecks. We do not know what happens to query performance on a collection that
has not been optimized for a long time. We know that it will get worse as the collectiondo
becomes more fragmented, but how much worse is very dependent on the manner of updates and
commits to the collection. The setting of the attribute affects performance as well.mergeFactor

Dividing a large index with millions of documents into even as few as five segments may degrade
search performance by as much as 15-20%.

We are presuming optimizations should be run once following large updates to thebatch-like
collection and/or once a day.

Distribution and Optimization
The time required to optimize a master index can vary dramatically. A small index may be
optimized in minutes. A very large index may take hours. The variables include the size of the
index and the speed of the hardware.

Distributing a newly optimized collection may take only a few minutes or up to an hour or more,
again depending on the size of the index and the performance capabilities of network connections
and disks. During optimization the machine is under load and does not process queries very well.
Given a schedule of updates being driven a few times an hour to the slaves, we cannot run an
optimize with every committed snapshot. We do recommend that an optimize be run on the master
at least once a day.

Solr Reference Guide Jan 10, 2012

Page of 378 397

Copying an optimized collection means that the collection will need to be transferred duringentire
the next snappull. This is a large expense, but not nearly as huge as running the optimize
everywhere. Consider this example: on a three-slave one-master configuration, distributing a
newly-optimized collection takes approximately 80 seconds . Rolling the change across a tiertotal
would require approximately ten minutes per machine (or machine group). If this optimize were
rolled across the query tier, and if each collection being optimized were disabled and not receiving
queries, a rollout would take at least twenty minutes and potentially as long as an hour and a half.
Additionally, the files would need to be synchronized so that the rsync, snappull wouldfollowing
not think that the independently optimized files were different in any way. This would also leave
the door open to independent corruption of collections instead of each being a perfect copy of the
master.

Optimizing on the master allows for a straight-forward optimization operation. No query slaves
need to be taken out of service. The optimized collection can be distributed in the background as
queries are being normally serviced. The optimization can occur at any time convenient to the
application providing collection updates.

Performance Tuning for Script-based Replication
Because fetching a master index uses the rsync utility, which transfers only the segments that
have changed, replication is normally very fast. However, if the master server has been optimized,
then rsync may take a long time, because many segments will have been changed in the process
of optimization.

If replicating to multiple slaves consumes too much network bandwidth, consider the use of a
repeater.
Make sure that slaves do not pull from the master so frequently that a previous replication is
still running when a new one is started. In general, it's best to allow at least a minute for the
replication process to complete. But in configurations with low network bandwidth or a very
large index, even more time may be required.

Solr Reference Guide Jan 10, 2012

Page of 379 397

Combining Distribution and Replication
When your index is too large for a single machine and you have a query volume that single shards
cannot keep up with, it's time to replicate each shard in your distributed search setup.

The idea is to combine distributed search with replication. As shown in the figure below, a
combined distributed-replication configuration features a master server for each shard and then 1-
 slaves that are replicated from the master. As in a standard replicated configuration, the mastern

server handles updates and optimizations without adversely affecting query handling performance.

Query requests should be load balanced across each of the shard slaves. This gives you both
increased query handling capacity and fail-over backup if a server goes down.

A Solr configuration combining both replication and master-slave distribution.

None of the master shards in this configuration know about each other. You index to each master,
the index is replicated to each slave, and then searches are distributed across the slaves, using one
slave from each master/slave shard.

For high availability you can use a load balancer to set up a virtual IP for each shard's set of slaves.
If you are new to load balancing, HAProxy () is a good open source softwarehttp://haproxy.1wt.eu/
load-balancer. If a slave server goes down, a good load-balancer will detect the failure using some
technique (generally a heartbeat system), and forward all requests to the remaining live slaves
that served with the failed slave. A single virtual IP should then be set up so that requests can hit a
single IP, and get load balanced to each of the virtual IPs for the search slaves.

http://haproxy.1wt.eu/

Solr Reference Guide Jan 10, 2012

Page of 380 397

With this configuration you will have a fully load balanced, search-side fault-tolerant system (Solr
does not yet support fault-tolerant indexing). Incoming searches will be handed off to one of the
functioning slaves, then the slave will distribute the search request across a slave for each of the
shards in your configuration. The slave will issue a request to each of the virtual IPs for each shard,
and the load balancer will choose one of the available slaves. Finally, the results will be combined
into a single results set and returned. If any of the slaves go down, they will be taken out of
rotation and the remaining slaves will be used. If a shard master goes down, searches can still be
served from the slaves until you have corrected the problem and put the master back into
production.

Solr Reference Guide Jan 10, 2012

Page of 381 397

1.

2.
3.

4.
5.

Merging Indexes
If you need to combine indexes from two different projects or from multiple servers previously
used in a distributed configuration, you can use either the IndexMergeTool included in

 or the .lucene-misc CoreAdminHandler

To merge indexes, they must meet these requirements:

The two indexes must be compatible: their schemas should include the same fields and they
should analyze fields the same way.
The indexes must not include duplicate data.

Optimally, the two indexes should be built using the same schema.

Using IndexMergeTool
To merge the indexes, do the following:

Find the lucene JAR file that your version of Solr is using. You can do this by copying your
 file somewhere and unpacking it (). Your lucene JAR file shouldsolr.war jar xvf solr.war

be in . It is probably called something like WEB-INF/lib

.lucene-core-2007-05-20_00-04-53.jar

Copy it somewhere easy to find.
Download a copy of Lucene from and unpack it.http://www.lucidimagination.com/downloads
The file you're interested in is .contrib/misc/lucene-misc-VERSION.jar

Make sure that both indexes you want to merge are closed.
Issue this command:

java -cp /path/to/lucene-core-VERSION.jar:/path/to/lucene-misc-VERSION.jar

 org/apache/lucene/misc/IndexMergeTool

 /path/to/newindex

 /path/to/index1

 /path/to/index2

This will create a new index at that contains both index1 and index2./path/to/newindex

http://www.lucidimagination.com/downloads

Solr Reference Guide Jan 10, 2012

Page of 382 397

6. Copy this new directory to the location of your application's solr index (move the old one
aside first, of course) and start Solr.

For example:

java -cp /tmp/lucene-core-2007-05-20_00-04-53.jar:

./lucene-2.2.0/contrib/misc/lucene-misc-2.2.0.jarorg/apache/lucene/misc/IndexMergeTool

./newindex

 ./app1/solr/data/index

 ./app2/solr/data/index

Using CoreAdmin
This method uses the with either the or parameters.CoreAdminHandler indexDir srcCore

The parameter is used to define the path to the indexes for the cores that should beindexDir

merged, and merge them into a 3rd core that must already exist prior to initiation of the merge
process. The indexes must exist on the disk of the Solr host, which may make using this in a
distributed environment cumbersome. With the parameter, a commit should be called onindexDir

the cores to be merged (so the IndexWriter will close), and no writes should be allowed on either
core until the merge is complete. If writes are allowed, corruption may occur on the merged index.
Once complete, a commit should be called on the merged core to make sure the changes are
visible to searchers.

The following example shows how to construct the merge command with :indexDir

http://localhost:8983/solr/admin/cores?action=mergeindexes&core=core0&indexDir=/home/solr/core1/data/index&indexDir=/home/solr/core2/data/index

In this example, is the new core that is created prior to calling the merge process.core

The parameter is used to call the cores to be merged by name instead of defining thesrcCore

path. The cores do not need to exist on the same disk as the Solr host, and the merged core does
not need to exist prior to issuing the command. also protects against corruption duringsrcCore

creation of the merged core index, so writes are still possible while the merge occurs. However,
 can only merge Solr Cores - indexes built directly with Lucene should be merged withsrcCore

either the IndexMergeTool or the parameter.indexDir

The following example shows how to construct the merge command with :srcCore

http://localhost:8983/solr/admin/cores?action=mergeindexes&core=core0&srcCore=core1&srcCore=core2

Solr Reference Guide Jan 10, 2012

Page of 383 397

Client APIs
This section discusses the available client APIs for Solr. It covers the following topics:

: A conceptual overview of Solr client APIs.Introduction to Client APIs

: Information about choosing a response format in Solr.Choosing an Output Format

: Explains why you a client API is not needed for JavaScript responses.Using JavaScript

: Information about Python and JSON reponses.Using Python

: A list of all Solr Client APIs, with links.Client API Lineup

: Detailed information about SolrJ, an API for working with Java applications.Using SolrJ

: Detailed information about using Solr with Ruby applications.Using Solr From Ruby

: Describes the MBean request handler for programmatic access to SolrMBean Request Handler
server statistics and information.

Solr Reference Guide Jan 10, 2012

Page of 384 397

Introduction to Client APIs
At its heart, Solr is a Web application, but because it is built on open protocols, any type of client
application can use Solr.

HTTP is the fundamental protocol used between client applications and Solr. The client makes a
request and Solr does some work and provides a response. Clients use requests to ask Solr to do
things like perform queries or index documents.

Client applications can reach Solr by creating HTTP requests and parsing the HTTP responses.
Client APIs encapsulate much of the work of sending requests and parsing responses, which makes
it much easier to write client applications.

Clients use Solr's five fundamental operations to work with Solr. The operations are query, index,
delete, commit, and optimize.

Queries are executed by creating a URL that contains all the query parameters. Solr examines the
request URL, performs the query, and returns the results. The other operations are similar,
although in certain cases the HTTP request is a POST operation and contains information beyond
whatever is included in the request URL. An index operation, for example, may contain a document
in the body of the request.

Solr also features an EmbeddedSolrServer that offers a Java API without requiring an HTTP
connection. For details, see .Using SolrJ

Solr Reference Guide Jan 10, 2012

Page of 385 397

Choosing an Output Format
Many programming environments are able to send HTTP requests and retrieve responses. Parsing
the responses is a slightly more thorny problem. Fortunately, Solr makes it easy to choose an
output format that will be easy to handle on the client side.

Specify a response format using the parameter in a query. The available response formats arewt

documented in .Response Writers

Most client APIs hide this detail for you, so for many types of client applications, you won't ever
have to specify a parameter. In JavaScript, however, the interface to Solr is a little closer to thewt

metal, so you will need to add this parameter yourself.

Solr Reference Guide Jan 10, 2012

Page of 386 397

Using JavaScript
Using Solr from JavaScript clients is so straightforward that it deserves a special mention. In fact,
it is so straightforward that there is no client API. You don't need to install any packages or
configure anything.

HTTP requests can be sent to Solr using the standard mechanism.XMLHttpRequest

Out of the box, Solr can send , which are easilyJavaScript Object Notation (JSON) responses
interpreted in JavaScript. Just add to the request URL to have responses sent as JSON.wt=json

For more information and an excellent example, read the SolJSON page on the Solr Wiki:

http://wiki.apache.org/solr/SolJSON

http://wiki.apache.org/solr/SolJSON

Solr Reference Guide Jan 10, 2012

Page of 387 397

Using Python
Solr includes an output format specifically for , but is a little more robust.Python JSON output

Simple Python
Making a query is a simple matter. First, tell Python you will need to make HTTP connections.

from urllib2 import *

Now open a connection to the server and get a response. The query parameter tells Solr towt

return results in a format that Python can understand.

connection = urlopen(

 'http://localhost:8983/solr/select?q=cheese&wt=python')

response = eval(connection.read())

Now interpreting the response is just a matter of pulling out the information that you need.

print response\['response'\]\['numFound'\], "documents found."

Print the name of each document.

for document in response\['response'\]\['docs'\]:

 print " Name =", document\['name'\]

Python with JSON
JSON is a more robust response format, but you will need to add a Python package in order to use
it. At a command line, install the simplejson package like this:

$ sudo easy_install simplejson

Once that is done, making a query is nearly the same as before. However, notice that the wt query
parameter is now json, and the response is now digested by .simplejson.load()

Solr Reference Guide Jan 10, 2012

Page of 388 397

from urllib2 import *

import simplejson

connection = urlopen('http://localhost:8983/solr/select?q=cheese&wt=json')

response = simplejson.load(connection)

print response\['response'\]\['numFound'\], "documents found."

Print the name of each document.

for document in response\['response'\]\['docs'\]:

 print " Name =", document\['name'\]

Solr Reference Guide Jan 10, 2012

Page of 389 397

Client API Lineup
The Solr Wiki contains a list of client APIs at .http://wiki.apache.org/solr/IntegratingSolr

Here is the list of client APIs, current at this writing (November 2011):

Name Environment URL

SolRuby Ruby http://wiki.apache.org/solr/SolRuby

DelSolr Ruby http://delsolr.rubyforge.org/

acts_as_solr Rails , http://acts-as-solr.rubyforge.org/
http://rubyforge.org/projects/background-solr/

Flare Rails http://wiki.apache.org/solr/Flare

SolPHP PHP http://wiki.apache.org/solr/SolPHP

SolrJ Java http://wiki.apache.org/solr/SolJava

Python API Python http://wiki.apache.org/solr/SolPython

PySolr Python http://code.google.com/p/pysolr/

SolPerl Perl http://wiki.apache.org/solr/SolPerl

Solr.pm Perl http://search.cpan.org/~garafola/Solr-0.03/lib/Solr.pm

SolrForrest Forrest/Cocoon http://wiki.apache.org/solr/SolrForrest

SolrSharp C# http://www.codeplex.com/solrsharp

SolColdfusion ColdFusion http://solcoldfusion.riaforge.org/

SolrNet .NET http://code.google.com/p/solrnet/

AJAX Solr AJAX http://github.com/evolvingweb/ajax-solr/wiki

http://wiki.apache.org/solr/IntegratingSolr
http://wiki.apache.org/solr/SolRuby
http://delsolr.rubyforge.org/
http://acts-as-solr.rubyforge.org/
http://rubyforge.org/projects/background-solr/
http://wiki.apache.org/solr/Flare
http://wiki.apache.org/solr/SolPHP
http://wiki.apache.org/solr/SolJava
http://wiki.apache.org/solr/SolPython
http://code.google.com/p/pysolr/
http://wiki.apache.org/solr/SolPerl
http://search.cpan.org/~garafola/Solr-0.03/lib/Solr.pm
http://wiki.apache.org/solr/SolrForrest
http://www.codeplex.com/solrsharp
http://solcoldfusion.riaforge.org/
http://code.google.com/p/solrnet/
http://github.com/evolvingweb/ajax-solr/wiki

Solr Reference Guide Jan 10, 2012

Page of 390 397

Using SolrJ
SolrJ (also sometimes known as SolJava) is an API that makes it easy for Java applications to talk
to Solr. SolrJ hides a lot of the details of connecting to Solr and allows your application to interact
with Solr with simple high-level methods.

The center of SolrJ is the package, which contains just five mainorg.apache.solr.client.solrj

classes. Begin by creating a SolrServer, which represents the Solr instance you want to use. Send
SolrRequests or SolrQuerys and get back SolrResponses.

SolrServer is abstract, so to connect to a remote Solr instance, you'll actually create an instance of
, which knows how to use HTTP toorg.apache.solr.client.solrj.impl.CommonsHttpSolrServer

talk to Solr.

String urlString = "http://localhost:8983/solr";

SolrServer solr = new CommonsHttpSolrServer(urlString);

Creating a SolrServer does not make a network connection - that happens later when you perform
a query or some other operation — but it will throw if you give it a badMalformedURLException

URL string.

Once you have a SolrServer, you can use it by calling methods like , , and .query() add() commit()

For more information on SolrJ, see .https://wiki.apache.org/solr/Solrj

Building and Running SolrJ Applications
The SolrJ API is included with Solr, so you do not have to download or install anything else.
However, in order to build and run applications that use SolrJ, you have to add some libraries to
the classpath.

At build time, the examples presented with this section require the following libraries in the
classpath (all paths are relative to the root of the Solr installation).

apache-solr-common-3.x.0.jarapache-solr-solrj-3.x.0.jar

At run time, the examples in this section require the following libraries:

apache-solr-common-3.x.0.jar
apache-solr-solrj-3.x.0.jar
solrj-lib/commons-httpclient-3.x.jar
solrj-lib/commons-logging-1.0.4.jar
solrj-lib/commons-codec-3.x.jar

https://wiki.apache.org/solr/Solrj

Solr Reference Guide Jan 10, 2012

Page of 391 397

The Ant script bundled with this sections' examples includes the libraries as appropriate when
building and running.

You can sidestep a lot of the messing around with the JAR files by using Maven instead of Ant. All
you will need to do to include SolrJ in your application is to put the following dependency in the
project's :pom.xml

<dependency>

 <groupId>org.apache.solr</groupId>

 <artifactId>solr-solrj</artifactId>

 <version>3.x.0</version>

</dependency>

If you are worried about the SolrJ libraries expanding the size of your client application, you can
use a code obfuscator like ProGuard to remove APIs that you are not using. ProGuard is available
here:

http://proguard.sourceforge.net/

Setting XMLResponseParser
SolrJ uses a binary format, rather than XML, as its default format. Users of earlier Solr releases
who wish to continue working with XML must explicitly set the parser to the XMLResponseParser,
like so:

server.setParser(new XMLResponseParser());

Performing Queries
Use to have Solr search for results. You have to pass a SolrQuery object that describesquery()

the query, and you will get back a QueryResponse (from the
 package).org.apache.solr.client.solrj.response

SolrQuery has methods that make it easy to add parameters to choose a request handler and send
parameters to it. Here is a very simple example that uses the default request handler and sets the
q parameter:

SolrQuery parameters = new SolrQuery();

parameters.set("q", mQueryString);

To choose a different request handler, for example, just set the parameter like this:qt

http://proguard.sourceforge.net/

Solr Reference Guide Jan 10, 2012

Page of 392 397

parameters.set("qt", "/spellCheckCompRH");

Once you have your SolrQuery set up, submit it with :query()

QueryResponse response = solr.query(parameters);

The client make a network connection, the query is sent, Solr processes the query, and the
response is sent and parsed into a QueryResponse.

The QueryResponse is a collection of documents that satisfy the query parameters. You can
retrieve the documents directly with and you can call other methods to find outgetResults()

information about highlighting or facets.

SolrDocumentList list = response.getResults();

Indexing Documents
Other operations are just as simple. To index (add) a document, all you need to do is create a
SolrInputDocument and pass it along to the SolrServer's method.add()

String urlString = "http://localhost:8983/solr";

SolrServer solr = new CommonsHttpSolrServer(urlString);

SolrInputDocument document = new SolrInputDocument();

document.addField("id", "552199");

document.addField("name", "Gouda cheese wheel");

document.addField("price", "49.99");

UpdateResponse response = solr.add(document);

Remember to commit your changes!

solr.commit();

Uploading Content in XML or Binary Formats
SolrJ lets you upload content in XML and binary formats instead of the default XML format. Use the
following to upload using Binary format. this is the same format which SolrJ uses to fetch results.

server.setRequestWriter(new BinaryRequestWriter());

EmbeddedSolrServer

Solr Reference Guide Jan 10, 2012

Page of 393 397

The provides the Java interface described above without requiring an HTTPEmbeddedSolrServer
connection. This is the recommended approach if you need to use Solr in an embedded application.
This approach enables you to work with the same Java interface whether or not you have access to
HTTP.

EmbeddedSolrServer works only with handlers registered in .solrconfig.xml

RequestHandler must be mapped to for a request to function. For information/update

about configuring handlers in , see .solrconfig.xml Configuring solrconfig.xml

Note that the following property could be set through JVM level arguments:

System.setProperty("solr.solr.home",

"/home/shalinsmangar/work/oss/branch-1.3/example/solr");

CoreContainer.Initializer initializer = new CoreContainer.Initializer();

CoreContainer coreContainer = initializer.initialize();

EmbeddedSolrServer server = new EmbeddedSolrServer(coreContainer, "");

If you want to use features (which are described in), then youMultiCore Configuring solr.xml
should use this:

File home = new File("/path/to/solr/home");

File f = new File(home, "solr.xml");

CoreContainer container = new CoreContainer();

container.load("/path/to/solr/home", f);

EmbeddedSolrServer server = new EmbeddedSolrServer(container, "core name as defined in

solr.xml");

 ...

Using the StreamingUpdateSolrServer
If you are working with Java, you can take advantage of the StreamingUpdateSolrServer to
perform bulk updates at high speed. StreamingHttpSolrServer buffers all added documents and
writes them into open HTTP connections. This class is thread safe. Although any SolrServer request
can be made with this implementation, it is only recommended to use the
StreamingUpdateSolrServer for requests./update

You can learn more about the StreamingUpdateSolrServer here:

http://lucene.apache.org/solr/api/org/apache/solr/client/solrj/impl/StreamingUpdateSolrServer.html

More Information

http://lucene.apache.org/solr/api/org/apache/solr/client/solrj/embedded/EmbeddedSolrServer.html
http://wiki.apache.org/solr/MultiCore
http://lucene.apache.org/solr/api/org/apache/solr/client/solrj/impl/StreamingUpdateSolrServer.html

Solr Reference Guide Jan 10, 2012

Page of 394 397

As you begin developing with SolrJ, you will find the API documentation indispensable. It is
available online at the Apache Lucene site:

http://lucene.apache.org/solr/api/solrj/index.html

For more information about using SolrJ, read the page at the Solr Wiki:

http://wiki.apache.org/solr/Solrj

The Solr Wiki also contains another example which demonstrates setting :qt

http://wiki.apache.org/solr/SolJava

http://lucene.apache.org/solr/api/solrj/index.html
http://wiki.apache.org/solr/Solrj
http://wiki.apache.org/solr/SolJava

Solr Reference Guide Jan 10, 2012

Page of 395 397

Using Solr From Ruby
For Ruby applications, the solr-ruby gem encapsulates the fundamental Solr operations.

At a command line, install solr-ruby as follows:

$ gem install solr-ruby

Bulk updating Gem source index for: http://gems.rubyforge.org

Successfully installed solr-ruby-0.0.8

1 gem installed

Installing ri documentation for solr-ruby-0.0.8...

Installing RDoc documentation for solr-ruby-0.0.8...

This gives you a class that makes it easy to add documents, perform queries,Solr::Connection

and do other Solr stuff.

Solr-ruby takes advantage of Solr's Ruby response writer, which is a subclass of the JSON response
writer. This response writer sends information from Solr to Ruby in a form that Ruby can
understand and use directly.

Performing Queries
To perform queries, you just need to get a and call its query method. Here is aSolr::Connection

script that looks for cheese. The return value from is an array of documents, which arequery()

dictionaries, so the script iterates through each document and prints out a few fields.

require 'rubygems'

require 'solr'

solr = Solr::Connection.new('http://localhost:8983/solr')

response = solr.query('cheese')

response.each do |hit|

 puts hit\['id'\] + ' ' + hit\['name'\] + ' ' + hit\['price'\].to_s

end

An example run looks like this:

$ ruby query.rb

551299 Gouda cheese wheel 49.99

123 Fresh mozzarella cheese

Indexing Documents

Solr Reference Guide Jan 10, 2012

Page of 396 397

Indexing is just as simple. You have to get the just as before. Then call the Solr::Connection

 and methods.add() commit()

require 'rubygems'

require 'solr'

solr = Solr::Connection.new('http://localhost:8983/solr')

solr.add(:id => 123, :name => 'Fresh mozzarella cheese')

solr.commit()

More Information
For more information on solr-ruby, read the page at the Solr Wiki:

http://wiki.apache.org/solr/solr-ruby

http://wiki.apache.org/solr/solr-ruby

Solr Reference Guide Jan 10, 2012

Page of 397 397

MBean Request Handler
The MBean Request Handler offers programmatic access to the information provided on the

 and pages of the Admin UI. You can access the MBean Request Handler here: Statistics Info
.http://localhost:8983/solr/admin/mbeans

The MBean Request Handler accepts the following parameters:

Parameter Type Default Description

key multivalued all Restricts results by object key.

cat multivalued all Restricts results by category name.

stats boolean false Specifies whether statistics are returned with results. You can
override the parameter on a per-field basis.stats

Examples

To return information about the CACHE category only:

http://localhost:8983/solr/admin/mbeans?cat=CACHE

To return information and statistics about the CACHE category only:

http://localhost:8983/solr/admin/mbeans?stats=true&cat=CACHE

To return information for everything, and statistics for everything except the :fieldCache

http://localhost:8983/solr/admin/mbeans?stats=true&f.fieldCache.stats=false

To return information and statistics for the only:fieldCache

http://localhost:8983/solr/admin/mbeans?key=fieldCache&stats=true

http://localhost:8983/solr/admin/mbeans

	Solr and Lucene
	Lucid Imagination
	About This Guide
	Further Assistance
	Getting Started
	Installing Solr
	Got Java?
	Installing Solr
	To install Solr

	Running Solr
	Start the Server
	Add Documents
	Ask Questions

	A Quick Overview
	A Step Closer

	Using the Solr Administration User Interface
	Overview of the Solr Admin UI
	Configuring the Admin UI in solrconfig.xml

	The Solr Section
	Displaying the Solr Schema
	Displaying the Solr Configuration File
	Running Field Analysis to Test Analyzers, Tokenizers, and TokenFilters
	Using the Schema Browser
	Displaying the Configuration of a Field
	Displaying Additional Details about a Parameter
	Exploring the Most Popular Terms for a Field

	Displaying Statistics of the Solr Server
	Displaying Start-up Time Statistics about the Solr Server
	Displaying Information about a Distributed Solr Configuration
	Pinging the Solr Server to Test Its Responsiveness
	Viewing and Configuring Logfile Settings

	The App Server Section
	Displaying Java Properties
	Displaying the Active Threads in the Java Environment
	Enabling or Disabling the Server in a Load-balanced Configuration

	The Make a Query Section
	Using the Full Interface to Submit Queries

	The Assistance Section

	Documents, Fields, and Schema Design
	Overview of Documents, Fields, and Schema Design
	How Solr Sees the World
	Field Analysis

	Solr Field Types
	Field Type Definitions in schema.xml
	Field Types Included with Solr
	Working with Dates
	Working with External Files
	Field Type Properties
	Field Properties by Use Case

	Defining Fields
	Copying Fields
	Dynamic Fields
	Other Schema Elements
	Unique Key
	Default Search Field
	Query Parser Operator

	Putting the Pieces Together
	Choosing Appropriate Numeric Types
	Working With Text

	Understanding Analyzers, Tokenizers, and Filters
	Overview of Analyzers, Tokenizers, and Filters
	What Is An Analyzer?
	Analysis Phases

	What Is A Tokenizer?
	What Is a Filter?
	Tokenizers
	Standard Tokenizer
	Classic Tokenizer
	Keyword Tokenizer
	Letter Tokenizer
	Lower Case Tokenizer
	N-Gram Tokenizer
	Edge N-Gram Tokenizer
	ICU Tokenizer
	Path Hierarchy Tokenizer
	Regular Expression Pattern Tokenizer
	UAX29 URL Email Tokenizer
	White Space Tokenizer

	Filter Descriptions
	ASCII Folding Filter
	Classic Filter
	Common Grams Filter
	Collation Key Filter
	Edge N-Gram Filter
	English Minimal Stem Filter
	Hunspell Stem Filter
	Hyphenated Words Filter
	ICU Folding Filter
	ICU Normalizer 2 Filter
	ICU Transform Filter
	Keep Words Filter
	KStem Filter
	Length Filter
	Lower Case Filter
	N-Gram Filter
	Numeric Payload Token Filter
	Pattern Replace Filter
	Phonetic Filter
	Porter Stem Filter
	Position Filter Factory
	Remove Duplicates Token Filter
	Reversed Wildcard Filter
	Shingle Filter
	Snowball Porter Stemmer Filter
	Standard Filter
	Stop Filter
	Synonym Filter
	Token Offset Payload Filter
	Trim Filter
	Type As Payload Filter
	Word Delimiter Filter

	CharFilterFactories
	solr.MappingCharFilterFactory
	solr.HTMLStripCharFilterFactory
	solrPatternReplaceCharFilterFactory

	Language Analysis
	KeyWordMarkerFilterFactory
	StemmerOverrideFilterFactory
	Dictionary Compound Word Token Filter
	Unicode Collation
	Sorting Text for a Specific Language
	Sorting Text for Multiple Languages
	Sorting Text with Custom Rules
	Searching
	ICU Collation

	ISO Latin Accent Filter
	Arabic
	Brazilian Portuguese
	Bulgarian
	Chinese
	Chinese Tokenizer
	Chinese Filter Factory

	Simplified Chinese
	CJK
	Czech
	Dutch
	Finnish
	French
	Elision Filter
	French Light Stem Filter

	Galician
	German
	Greek
	Hindi
	Indonesian
	Italian
	Lao, Myanmar, Khmer
	Latvian
	Persian
	Persian Filter Factories

	Polish
	Portuguese
	Russian
	Russian Letter Tokenizer
	Russian Lower Case Filter
	Russian Stem Filter

	Spanish
	Swedish
	Swedish Stem Filter

	Thai
	Turkish

	Running Your Analyzer

	Indexing and Basic Data Operations
	What Is Indexing?
	The Solr Example Directory
	The curl Utility for Transferring Files

	Uploading Data with Solr Cell using Apache Tika
	Key Concepts
	Trying out Tika with the Solr Example Directory
	Input Parameters
	Order of Operations
	Configuring the Solr ExtractingRequestHandler
	Multi-Core Configuration

	Metadata
	Examples of Uploads Using the Extraction Request Handler
	Capture and Mapping
	Capture, Mapping, and Boosting
	Using Literals to Define Your Own Metadata
	XPath
	Extracting Data without Indexing It

	Sending Documents to Solr with a POST
	Sending Documents to Solr with Solr Cell and SolrJ

	Uploading Data with Index Handlers
	XMLUpdateRequestHandler for XML-formatted Data
	Configuration
	Adding Documents
	Commit and Optimize Operations
	Delete Operations
	Rollback Operations
	Using curl to Perform Updates with the Update Request Handler.
	A Simple Cross-Platform Posting Tool

	XSLTRequestHandler to Transform XML Content
	CSVRequestHandler for CSV Content
	Parameters

	Using the JSONRequestHandler for JSON Content
	Examples
	Update Commands

	Indexing Using SolrJ

	Uploading Structured Data Store Data with the Data Import Handler
	Concepts and Terminology
	Configuration
	Data Import Handler Commands
	Parameters for the full-import Command

	Data Sources
	ContentStreamDataSource
	FieldReaderDataSource
	FileDataSource
	JdbcDataSource
	URLDataSource

	Entity Processors
	The SQL Entity Processor
	The XPathEntityProcessor
	The FileListEntityProcessor
	LineEntityProcessor
	PlainTextEntityProcessor

	Transformers
	ClobTransformer
	The DateFormatTransformer
	The HTMLStripTransformer
	The LogTransformer
	The NumberFormatTransformer
	The RegexTransformer
	The ScriptTransformer
	The TemplateTransformer

	Special Commands for the Data Import Handler
	The Data Import Handler Development Console

	Detecting Languages During Indexing
	Configuring Language Detection
	Configuring Tika Language Detection
	Configuring LangDetect Language Detection

	langid Parameters

	UIMA Integration
	Configuring UIMA

	Content Streams
	Stream Sources
	RemoteStreaming
	Debugging Requests

	Searching
	Overview of Searching in Solr
	The Velocity Search UI

	Relevance
	Query Syntax and Parsing
	Common Query Parameters
	The defType Parameter
	The sort Parameter
	The start Parameter
	The rows Parameter
	The fq (Filter Query) Parameter
	The fl (Field List) Parameter
	The debugQuery Parameter
	The explainOther Parameter
	The timeAllowed Parameter
	The omitHeader Parameter
	The wt Parameter
	The cache=false Parameter

	The Standard Query Parser
	Standard Query Parser Parameters
	The Standard Query Parser's Response
	Sample Responses

	Specifying Terms for the Standard Query Parser
	Term Modifiers
	Wildcard Searches
	Fuzzy Searches
	Proximity Searches
	Range Searches
	Boosting a Term with ^

	Specifying Fields in a Query to the Standard Query Parser
	Boolean Operators Supported by the Standard Query Parser
	The Boolean Operator +
	The Boolean Operator AND (&&)
	The Boolean Operator NOT (!)
	Escaping Special Characters

	Grouping Terms to Form Subqueries
	Grouping Clauses within a Field

	Differences between Lucene Query Parser and the Solr Standard Query Parser
	Specifying Dates and Times

	The DisMax Query Parser
	DisMax Parameters
	The q Parameter
	The q.alt Parameter
	The qf (Query Fields) Parameter
	The mm (Minimum Should Match) Parameter
	The pf (Phrase Fields) Parameter
	The ps (Phrase Slop) Parameter
	The qs (Query Phrase Slop) Parameter
	The tie (Tie Breaker) Parameter
	The bq (Boost Query) Parameter
	The bf (Boost Functions) Parameter

	Examples of Queries Submitted to the DisMax Query Parser

	The Extended DisMax Query Parser
	Extended DisMax Parameters
	The boost Parameter
	The lowercaseOperators Parameter
	The pf2 Parameter
	The pf3 Parameter
	The stopwords Parameter

	Examples of Queries Submitted to the Extended DisMax Query Parser

	Local Parameters in Queries
	Basic Syntax of Local Parameters
	Query Type Short Form
	Specifying the Parameter Value with the ' v ' Key
	Parameter Dereferencing

	Function Queries
	Using FunctionQuery
	Example of Function Queries Using the top Function
	Sort By Function

	Highlighting
	Using Boundary Scanners with the Fast Vector Highlighter
	The breakIterator Boundary Scanner
	The simple Boundary Scanner

	MoreLikeThis
	Common Parameters for MoreLikeThis
	Parameters for the StandardRequestHandler
	Parameters for the MoreLikeThis Request Handler

	Faceting
	General Parameters
	The facet Parameter
	The facet.query Parameter

	Field-Value Faceting Parameters
	The facet.field Parameter
	The facet.prefix Parameter
	The facet.sort Parameter
	The facet.limit Parameter
	The facet.offset Parameter
	The facet.mincount Parameter
	The facet.missing Parameter
	The facet.method Parameter
	The facet.enum.cache.minDf Parameter

	Range Faceting
	The facet.range Parameter
	The facet.range.start Parameter
	The facet.range.end Parameter
	The facet.range.gap Parameter
	The facet.range.hardend Parameter
	The facet.range.include Parameter
	The facet.range.other Parameter

	Date Faceting Parameters
	LocalParams for Faceting
	Tagging and Excluding Filters
	Changing the Output Key

	Result Grouping
	Request Parameters
	Examples
	Grouping Results by Field
	Grouping by Query

	Distributed Result Grouping

	Spell Checking
	Configuring the SpellCheckComponent
	Define Spell Check in solrconfig.xml
	Add It to a Request Handler

	Spell Check Parameters
	The spellcheck Parameter
	The spellcheck.q or q Parameter
	The spellcheck.build Parameter
	The spellcheck.reload Parameter
	The spellcheck.count Parameter
	The spellcheck.onlyMorePopular Parameter
	The spellcheck.extendedResults Parameter
	The spellcheck.collate Parameter
	The spellcheck.maxCollations Parameter
	The spellcheck.maxCollationTries Parameter
	The spellcheck.maxCollationEvaluations Parameter
	The spellcheck.collateExtendedResult Parameter
	The spellcheck.dictionary Parameter
	The spellcheck.accuracy Parameter
	The spellcheck.<DICT_NAME>.key Parameter
	Example

	Distributed SpellCheck

	Suggester
	Configuring Suggester
	Suggester Parameters
	Suggester Search Component Parameters
	Suggester Request Handler Parameters

	Spatial Search
	Spatial Search Features
	Spatial Search Parameters
	geofilt
	bbox
	geodist

	More Examples
	Use as a Sub-Query to Expand Search Results
	Facet by Distance
	Boost Nearest Results

	The Terms Component
	Examples
	Using the Terms Component for an Auto-Suggest Feature
	Distributed Search Support

	The Term Vector Component
	Enabling the the TermVectorComponent
	Changes for solrconfig.xml
	Invoking the Term Vector Component

	Optional Parameters
	SolrJ and the Term Vector Component

	The Stats Component
	Stats Component Parameters
	Statistics Returned
	Example
	The Stats Component and Faceting

	The Query Elevation Component
	Configuring the Query Elevation Component
	elevate.xml

	Using the Query Elevation Component
	The enableElevation Parameter
	The forceElevation Parameter
	The exclusive Parameter
	The fq Parameter

	Response Writers
	The Standard XML Response Writer
	The version Parameter
	The stylesheet Parameter
	The indent Parameter

	The XSLT Response Writer
	tr Parameter
	Configuration

	JSON Response Writer
	Python Response Writer
	PHP Response Writer and PHP Serialized Response Writer
	Ruby Response Writer
	CSV Response Writer
	CSV Parameters
	Multi-Valued Field CSV Parameters
	Example

	Binary Response Writer

	The Well-Configured Solr Instance
	Configuring solrconfig.xml
	Specifying a Location for Index Data with the dataDir Parameter
	Specifying the DirectoryFactory For Your Index
	Configuring the Lucene IndexWriters
	UseCompoundFile
	mergeFactor
	Other Indexing Settings

	Controlling the Behavior of the Update Handler
	autoCommit
	maxPendingDeletes

	Query Settings in solrconfig.xml
	Caching
	filterCache
	queryResultCache
	documentCache
	User Defined Caches

	maxBooleanClauses
	enableLazyFieldLoading
	useColdSearcher
	maxWarmingSearchers

	HTTP RequestDispatcher Settings
	handleSelect Attribute
	requestParsers Element
	httpCaching Element
	The cacheControl Element

	Configuring solr.xml
	Using Multiple SolrCores
	The <solr> Element
	The <cores> Element
	The <core> Element

	Properties in solr.xml
	CoreAdminHandler
	STATUS
	CREATE
	RELOAD
	RENAME
	ALIAS
	SWAP
	UNLOAD

	Solr Plugins
	JVM Settings
	Choosing Memory Heap Settings
	Use the Server HotSpot VM
	Checking JVM Settings

	Managing Solr
	Running Solr on Tomcat
	How Solr Works with Tomcat
	Running Multiple Solr Instances
	Deploying Solr with the Tomcat Manager

	Running Solr on Jetty
	Changing the Solr Listening Port

	Configuring Logging
	Temporary Logging Settings
	Permanent Logging Settings
	Tomcat Logging Settings
	Jetty Logging Settings

	Backing Up
	Making Backups with the Solr Replication Handler
	Backup Scripts from Earlier Solr Releases

	Using JMX with Solr

	Scaling and Distribution
	Introduction to Scaling and Distribution
	What Problem Does Distribution Solve?
	What Problem Does Replication Solve?

	Distributed Search with Index Sharding
	Distributing Documents across Shards
	Executing Distributed Searches with the shards Parameter
	Limitations to Distributed Search
	Avoiding Distributed Deadlock
	Testing Index Sharding on Two Local Servers

	Index Replication
	Index Replication in Solr
	Replication Terminology
	Configuring the Replication RequestHandler on a Master Server
	Replicating solrconfig.xml
	Configuring the Replication RequestHandler on a Slave Server
	Setting Up a Repeater with the ReplicationHandler
	Commit and Optimize Operations
	Slave Replication
	Replicating Configuration Files
	Resolving Corruption Issues on Slave Servers
	HTTP API Commands for the ReplicationHandler
	Using the Replication Dashboard

	Index Replication using ssh and rsync
	The Snapshot and Distribution Process
	Snapshot Directories
	Solr Distribution Scripts
	Solr Distribution-related Cron Jobs
	Commit and Optimization
	Distribution and Optimization
	Performance Tuning for Script-based Replication

	Combining Distribution and Replication
	Merging Indexes
	Using IndexMergeTool
	Using CoreAdmin

	Client APIs
	Introduction to Client APIs
	Choosing an Output Format
	Using JavaScript
	Using Python
	Simple Python
	Python with JSON

	Client API Lineup
	Using SolrJ
	Building and Running SolrJ Applications
	Setting XMLResponseParser
	Performing Queries
	Indexing Documents
	Uploading Content in XML or Binary Formats
	EmbeddedSolrServer
	Using the StreamingUpdateSolrServer
	More Information

	Using Solr From Ruby
	Performing Queries
	Indexing Documents
	More Information

	MBean Request Handler

