lucidworks
For solr

APACHE SOLR
REFERENCE GUIDE

lucid

IMAGINATION

Solr Reference Guide

Jan 10, 2012

Table of Contents

Solr and Lucene

18

Lucid Imagination

19

About This Guide

20

Further Assistance

22

Getting Started

23

Installing Solr

23

Got Java?

24

Installing Solr

24

To install Solr

24

Running Solr

25

Start the Server

26

Add Documents

26

Ask Questions

28

A Quick Overview

31

A Step Closer

34

Using the Solr Administration User Interface

36

Overview of the Solr Admin UI

36

Configuring the Admin UI in solrconfig.xml

37

The Solr Section

38

Displaying the Solr Schema

39

Displaying the Solr Configuration File

40

Running Field Analysis to Test Analyzers, Tokenizers, and TokenFilters
Using the Schema Browser

41

45

Displaying the Configuration of a Field

46

Displaying Additional Details about a Parameter

47

Exploring the Most Popular Terms for a Field

48

Displaying Statistics of the Solr Server

49

Displaying Start-up Time Statistics about the Solr Server

50

Displaying Information about a Distributed Solr Configuration

51

Pinging the Solr Server to Test Its Responsiveness

53

Viewing and Configuring Lodfile Settings

54

The App Server Section

56

Displaying Java Properties

57

Displaying the Active Threads in the Java Environment

58

59

Enabling or Disabling the Server in a Load-balanced Configuration
The Make a Query Section

60

Using the Full Interface to Submit Queries

61

The Assistance Section

63

Page 2 of 397

Solr Reference Guide Jan 10, 2012

Documents, Fields, and Schema Design 65
Overview of Documents, Fields, and Schema Design 65
How Solr Sees the World 66
Field Analysis 66
Solr Field Types 67
Field Type Definitions in schema.xml 68
Field Types Included with Solr 69
Working with Dates 70
Working with External Files 71
Field Type Properties 72
Field Properties by Use Case 73
Defining Fields 74
Copying Fields 75
Dynamic Fields 76
Other Schema Elements 77
Unique Key 78
Default Search Field 78
Query Parser Operator 78
Putting the Pieces Together 78
Choosing Appropriate Numeric Types 79
Working With Text 79
Understanding Analyzers, Tokenizers, and Filters 81
Overview of Analyzers, Tokenizers, and Filters 81
What Is An Analyzer? 82
Analysis Phases 84
What Is A Tokenizer? 85
What Is a Filter? 86
Tokenizers 88
Standard Tokenizer 90
Classic Tokenizer 91
Keyword Tokenizer 91
Letter Tokenizer 92
Lower Case Tokenizer 92
N-Gram Tokenizer 93
Edge N-Gram Tokenizer 93
ICU Tokenizer 94
Path Hierarchy Tokenizer 95
Regular Expression Pattern Tokenizer 95
UAX29 URL Email Tokenizer 97
White Space Tokenizer 98

Page 3 of 397

Solr Reference Guide Jan 10, 2012

Filter Descriptions 98
ASCII Folding Filter 100
Classic Filter 101
Common Grams Filter 102
Collation Key Filter 102
Edge N-Gram Filter 102
English Minimal Stem Filter 104
Hunspell Stem Filter 104
Hyphenated Words Filter 105
ICU Folding Filter 105
ICU Normalizer 2 Filter 106
ICU Transform Filter 107
Keep Words Filter 107
KStem Filter 109
Length Filter 109
Lower Case Filter 110
N-Gram Filter 110
Numeric Payload Token Filter 112
Pattern Replace Filter 112
Phonetic Filter 114
Porter Stem Filter 115
Position Filter Factory 116
Remove Duplicates Token Filter 116
Reversed Wildcard Filter 117
Shingle Filter 118
Snowball Porter Stemmer Filter 119
Standard Filter 120
Stop Filter 121
Synonym Filter 122
Token Offset Payload Filter 123
Trim Filter 124
Type As Payload Filter 124
Word Delimiter Filter 125

CharfFilterFactories 128
solr.MappingCharFilterFactory 129
solr.HTMLStripCharFilterFactory 129
solrPatternReplaceCharFilterFactory 130

Language Analysis 131
KeyWordMarkerFilterFactory 133
StemmerOverrideFilterFactory 134
Dictionary Compound Word Token Filter 134

Page 4 of 397

Solr Reference Guide Jan 10, 2012

Unicode Collation 135
Sorting Text for a Specific Language 135
Sorting Text for Multiple Languages 136
Sorting Text with Custom Rules 137
Searching 138
ICU Collation 138

ISO Latin Accent Filter 139

Arabic 139

Brazilian Portuguese 140

Bulgarian 141

Chinese 141
Chinese Tokenizer 141
Chinese Filter Factory 141

Simplified Chinese 142

CIK 143

Czech 143

Dutch 144

Finnish 144

French 145
Elision Filter 145
French Light Stem Filter 145

Galician 146

German 146

Greek 147

Hindi 148

Indonesian 148

Italian 149

Lao, Myanmar, Khmer 149

Latvian 150

Persian 150
Persian Filter Factories 150

Polish 151

Portuguese 151

Russian 152
Russian Letter Tokenizer 152
Russian Lower Case Filter 153
Russian Stem Filter 153

Spanish 154

Swedish 155
Swedish Stem Filter 155

Thai 155

Turkish 156

Page 5 of 397

Solr Reference Guide Jan 10, 2012

Running Your Analyzer 156
Indexing and Basic Data Operations 163
What Is Indexing? 163
The Solr Example Directory 164
The curl Utility for Transferring Files 164
Uploading Data with Solr Cell using Apache Tika 165
Key Concepts 166
Trying out Tika with the Solr Example Directory 167
Input Parameters 168
Order of Operations 169
Configuring the Solr ExtractingRequestHandler 170
Multi-Core Configuration 171
Metadata 171
Examples of Uploads Using the Extraction Request Handler 172
Capture and Mapping 172
Capture, Mapping, and Boosting 172

Using Literals to Define Your Own Metadata 172

XPath 172
Extracting Data without Indexing It 173
Sending Documents to Solr with a POST 173
Sending Documents to Solr with Solr Cell and Solr] 173
Uploading Data with Index Handlers 174
XMLUpdateRequestHandler for XML-formatted Data 175
Configuration 182

Adding Documents 175
Commit and Optimize Operations 176

Delete Operations 177
Rollback Operations 178

Using curl to Perform Updates with the Update Request Handler. 178

A Simple Cross-Platform Posting Tool 179
XSLTRequestHandler to Transform XML Content 179
CSVRequestHandler for CSV Content 180
Parameters 181

Using the JSONRequestHandler for JSON Content 182
Examples 183

Update Commands 184
Indexing Using Solr] 185

Page 6 of 397

Solr Reference Guide

Jan 10, 2012

Uploading Structured Data Store Data with the Data Import Handler 185
Concepts and Terminology 186
Configuration 187
Data Import Handler Commands 189

Parameters for the full-import Command 190
Data Sources 191
ContentStreamDataSource 191
FieldReaderDataSource 191
FileDataSource 192
JdbcDataSource 192
URLDataSource 192
Entity Processors 193
The SQL Entity Processor 194
The XPathEntityProcessor 195
The FileListEntityProcessor 197
LineEntityProcessor 199
PlainTextEntityProcessor 200
Transformers 200
ClobTransformer 201
The DateFormatTransformer 202
The HTMLStripTransformer 202
The LogTransformer 203
The NumberFormatTransformer 203
The RegexTransformer 204
The ScriptTransformer 205
The TemplateTransformer 206
Special Commands for the Data Import Handler 206
The Data Import Handler Development Console 207

Detecting Languages During Indexing 210

Configuring Language Detection 211
Configuring Tika Language Detection 211
Configuring LangDetect Language Detection 211

langid Parameters 212

UIMA Integration 214
Configuring UIMA 215

Content Streams 217
Stream Sources 218
RemoteStreaming 218
Debugging Requests 218

Searching 220

Overview of Searching in Solr 221

The Velocity Search UI 224

Page 7 of 397

Solr Reference Guide Jan 10, 2012

Relevance 225
Query Syntax and Parsing 227
Common Query Parameters 228
The defType Parameter 229

The sort Parameter 229

The start Parameter 230

The rows Parameter 230

The fq (Filter Query) Parameter 230

The fl (Field List) Parameter 231

The debugQuery Parameter 232

The explainOther Parameter 232

The timeAllowed Parameter 232

The omitHeader Parameter 232

The wt Parameter 233

The cache=false Parameter 233

The Standard Query Parser 233
Standard Query Parser Parameters 234

The Standard Query Parser's Response 234
Sample Responses 234
Specifying Terms for the Standard Query Parser 236
Term Modifiers 236

Wildcard Searches 236

Fuzzy Searches 237

Proximity Searches 238

Range Searches 238

Boosting a Term with » 239
Specifying Fields in a Query to the Standard Query Parser 239
Boolean Operators Supported by the Standard Query Parser 240

The Boolean Operator + 241

The Boolean Operator AND (&&) 241

The Boolean Operator NOT (!) 241

Escaping Special Characters 242

Grouping Terms to Form Subqueries 242
Grouping Clauses within a Field 242
Differences between Lucene Query Parser and the Solr Standard Query Parser 242
Specifying Dates and Times 243

Page 8 of 397

Solr Reference Guide

Jan 10, 2012

The DisMax Query Parser

Function Queries

Using FunctionQuery

Sort By Function

Highlighting

MoreLikeThis

243

DisMax Parameters 244

The q Parameter 245

The g.alt Parameter 245

The gf (Query Fields) Parameter 245

The mm (Minimum Should Match) Parameter 245

The pf (Phrase Fields) Parameter 247

The ps (Phrase Slop) Parameter 247

The gs (Query Phrase Slop) Parameter 247

The tie (Tie Breaker) Parameter 247

The bg (Boost Query) Parameter 248

The bf (Boost Functions) Parameter 248
Examples of Queries Submitted to the DisMax Query Parser 248

The Extended DisMax Query Parser 249
Extended DisMax Parameters 250

The boost Parameter 250

The lowercaseOperators Parameter 251

The pf2 Parameter 251

The pf3 Parameter 251

The stopwords Parameter 251
Examples of Queries Submitted to the Extended DisMax Query Parser 251
Local Parameters in Queries 251
Basic Syntax of Local Parameters 252
Query Type Short Form 252
Specifying the Parameter Value with the ' v ' Key 252
Parameter Dereferencing 252

253

261

Example of Function Queries Using the top Function 261
262

262

Using Boundary Scanners with the Fast Vector Highlighter 266
The breaklIterator Boundary Scanner 266

The simple Boundary Scanner 267

267

Common Parameters for MoreLikeThis 268
Parameters for the StandardRequestHandler 268
Parameters for the MoreLikeThis Request Handler 269

Page 9 of 397

Solr Reference Guide Jan 10, 2012

Faceting 269
General Parameters 270
The facet Parameter 270

The facet.query Parameter 270
Field-Value Faceting Parameters 271
The facet.field Parameter 272

The facet.prefix Parameter 272

The facet.sort Parameter 272

The facet.limit Parameter 272

The facet.offset Parameter 273

The facet.mincount Parameter 273

The facet.missing Parameter 273

The facet.method Parameter 273

The facet.enum.cache.minDf Parameter 274
Range Faceting 274
The facet.range Parameter 275

The facet.range.start Parameter 275

The facet.range.end Parameter 275

The facet.range.gap Parameter 276

The facet.range.hardend Parameter 276

The facet.range.include Parameter 276

The facet.range.other Parameter 277
Date Faceting Parameters 277
LocalParams for Faceting 277
Tagging and Excluding Filters 277
Changing the Output Key 278
Result Grouping 278
Request Parameters 279
Examples 280
Grouping Results by Field 280
Grouping by Query 283
Distributed Result Grouping 284

Page 10 of 397

Solr Reference Guide

Jan 10, 2012

Spell Checking 285
Configuring the SpellCheckComponent 286
Define Spell Check in solrconfig.xml 286

Add It to a Request Handler 287
Spell Check Parameters 288
The spellcheck Parameter 289

The spellcheck.q or g Parameter 289

The spellcheck.build Parameter 289

The spellcheck.reload Parameter 290

The spellcheck.count Parameter 290

The spellcheck.onlyMorePopular Parameter 290

The spellcheck.extendedResults Parameter 290

The spellcheck.collate Parameter 290

The spellcheck.maxCollations Parameter 290

The spellcheck.maxCollationTries Parameter 291

The spellcheck.maxCollationEvaluations Parameter 291

The spellcheck.collateExtendedResult Parameter 291

The spellcheck.dictionary Parameter 291

The spellcheck.accuracy Parameter 292

The spellcheck.<DICT_NAME>.key Parameter 292
Example 292
Distributed SpellCheck 293
Suggester 293
Configuring Suggester 294
Suggester Parameters 296
Suggester Search Component Parameters 296
Suggester Request Handler Parameters 297
Spatial Search 298
Spatial Search Features 299
Spatial Search Parameters 299
geofilt 299
bbox 300
geodist 300
More Examples 301
Use as a Sub-Query to Expand Search Results 301
Facet by Distance 301
Boost Nearest Results 301

The Terms Component 301
Examples 303
Using the Terms Component for an Auto-Suggest Feature 305
Distributed Search Support 306

Page 11 of 397

Solr Reference Guide

Jan 10, 2012

The Term Vector Component

Optional Parameters

The Stats Component

Statistics Returned

Example

The Query Elevation Component

Response Writers

JSON Response Writer

Python Response Writer

Ruby Response Writer

CSV Response Writer

Example

Binary Response Writer

306

Enabling the the TermVectorComponent 307
Changes for solrconfig.xml 307
Invoking the Term Vector Component 307

308

Solr] and the Term Vector Component 308
309

Stats Component Parameters 310
310

310

The Stats Component and Faceting 312
313

Configuring the Query Elevation Component 314
elevate.xml 315
Using the Query Elevation Component 315
The enableElevation Parameter 315

The forceElevation Parameter 315

The exclusive Parameter 316

The fq Parameter 316

316

The Standard XML Response Writer 317
The version Parameter 317

The stylesheet Parameter 318

The indent Parameter 318

The XSLT Response Writer 318
tr Parameter 318
Configuration 318

319

319

PHP Response Writer and PHP Serialized Response Writer 319
320

320

CSV Parameters 320
Multi-Valued Field CSV Parameters 321

321

321

323

The Well-Configured Solr Instance

Page 12 of 397

Solr Reference Guide

Jan 10, 2012

Configuring solrconfig.xml 323
Specifying a Location for Index Data with the dataDir Parameter 324
Specifying the DirectoryFactory For Your Index 325
Configuring the Lucene IndexWriters 325

UseCompoundFile 325
mergeFactor 326
Other Indexing Settings 326
Controlling the Behavior of the Update Handler 327
autoCommit 327
maxPendingDeletes 328
Query Settings in solrconfig.xml 328
Caching 328
filterCache 329
queryResultCache 330
documentCache 330

User Defined Caches 330
maxBooleanClauses 330
enablelLazyFieldLoading 331
useColdSearcher 331
maxWarmingSearchers 331
HTTP RequestDispatcher Settings 331
handleSelect Attribute 332
requestParsers Element 332
httpCaching Element 332

The cacheControl Element 333

Configuring solr.xml 334

Using Multiple SolrCores 335
The <solr> Element 335

The <cores> Element 336

The <core> Element 337
Properties in solr.xml 338
CoreAdminHandler 339
STATUS 339
CREATE 340
RELOAD 340
RENAME 341
ALIAS 341
SWAP 341
UNLOAD 342

Solr Plugins 342

Page 13 of 397

Solr Reference Guide

Jan 10, 2012

JVM Settings

Checking JVM Settings

Managing Solr

Running Solr on Tomcat

Running Solr on Jetty

Configuring Logging

Backing Up

343

Choosing Memory Heap Settings 344
Use the Server HotSpot VM 345
345

346

346

How Solr Works with Tomcat 347
Running Multiple Solr Instances 347
Deploying Solr with the Tomcat Manager 348
349

Changing the Solr Listening Port 350
350

Temporary Logging Settings 351
Permanent Logging Settings 352
Tomcat Logging Settings 352
Jetty Logging Settings 353

353

Making Backups with the Solr Replication Handler 354
Backup Scripts from Earlier Solr Releases 354
355

Using JMX with Solr

Page 14 of 397

Solr Reference Guide Jan 10, 2012

Scaling and Distribution 357
Introduction to Scaling and Distribution 357
What Problem Does Distribution Solve? 358
What Problem Does Replication Solve? 358
Distributed Search with Index Sharding 358
Distributing Documents across Shards 359
Executing Distributed Searches with the shards Parameter 360
Limitations to Distributed Search 360
Avoiding Distributed Deadlock 361
Testing Index Sharding on Two Local Servers 361
Index Replication 362
Index Replication in Solr 363
Replication Terminology 364
Configuring the Replication RequestHandler on a Master Server 365
Replicating solrconfig.xml 366
Configuring the Replication RequestHandler on a Slave Server 367

Setting Up a Repeater with the ReplicationHandler 368
Commit and Optimize Operations 369

Slave Replication 369
Replicating Configuration Files 370
Resolving Corruption Issues on Slave Servers 370

HTTP API Commands for the ReplicationHandler 370

Using the Replication Dashboard 372

Index Replication using ssh and rsync 373
The Snapshot and Distribution Process 373
Snapshot Directories 374
Solr Distribution Scripts 374
Solr Distribution-related Cron Jobs 376
Commit and Optimization 376
Distribution and Optimization 377
Performance Tuning for Script-based Replication 378
Combining Distribution and Replication 378
Merging Indexes 380
Using IndexMergeTool 381
Using CoreAdmin 382

Page 15 of 397

Solr Reference Guide Jan 10, 2012

Client APIs 383
Introduction to Client APIs 383
Choosing an Output Format 384
Using JavaScript 385
Using Python 386

Simple Python 387
Python with JSON 387
Client API Lineup 388
Using Solr] 389
Building and Running Solr] Applications 390
Setting XMLResponseParser 391
Performing Queries 391
Indexing Documents 392
Uploading Content in XML or Binary Formats 392
EmbeddedSolrServer 392
Using the StreamingUpdateSolrServer 393
More Information 393
Using Solr From Ruby 394
Performing Queries 395
Indexing Documents 395
More Information 396
MBean Request Handler 396

Page 16 of 397

Solr Reference Guide Jan 10, 2012

This reference guide describes Apache Solr, an open source solution for search. You can download
Apache Solr at www.lucidimagination.com/downloads. This guide contains the following sections:

Getting Started: Installing Solr and getting it running for the first time

Using the Solr Administration User Interface: How to use the built-in Ul

Documents, Fields, and Schema Design: Designing the index for optimal retrieval
Understanding Analyzers, Tokenizers, and Filters: Setting up Solr to handle your content
Indexing and Basic Data Operations: Indexing your content

Searching: Ways to improve the search experience for your users

The Well-Configured Solr Instance: Optimal settings to keep the system running smooth
Managing Solr: Web containers, logging and backups

Scaling and Distribution: Best practices for increasing system capacity

Client APIs: Clients that can be used to provide search interfaces for users

Page 17 of 397

http://www.lucidimagination.com/Downloads

Solr Reference Guide Jan 10, 2012

Solr and Lucene

Solr makes it easy for programmers to develop sophisticated, high-performance search applications
with advanced features such as faceting (arranging search results in columns with numerical
counts of key terms). Solr builds on another open source search technology: Lucene, a Java library
that provides indexing and search technology, as well as spellchecking, hit highlighting and
advanced analysis/tokenization capabilities. Both Solr and Lucene are managed by the Apache
Software Foundation (www.apache.org).

The Lucene search library currently ranks among the top 15 open source projects and is one of the
top 5 Apache projects, with installations at over 4,000 companies. Lucene/Solr downloads have
grown nearly ten times over the past three years, with a current run-rate of over 6,000 downloads
a day. The Solr search server, which provides application builders a ready-to-use search platform
on top of the Lucene search library, is the fastest growing Lucene sub-project. Apache Lucene/Solr
offers an attractive alternative to the proprietary licensed search and discovery software vendors.

Page 18 of 397

http://www.apache.org/

Solr Reference Guide Jan 10, 2012

Lucid Imagination

Lucid Imagination is the first commercial company exclusively dedicated to Apache Lucene/Solr
open source technology. To learn more about Lucid Imagination, please see
www.lucidimagination.com. The Lucid Imagination founding team consists of several key
contributors and committers to the Lucene project, as well as experts in enterprise search software
development.

We provide the planet's best search solution development platforms built on the power of
Solr/Lucene open source search. LucidWorks Enterprise makes the power of Solr/Lucene open
source search more accessible to the broad range of application developers and slashes the
learning curve for search solution development. Unlike "black box" products, LucidWorks Enterprise
allows organizations of all sizes and types to continuously tune their search to fit the ongoing
needs of their users and achieve a consistently lower cost of growth.

Lucid Imagination also offers free software for developers, documentation, commercial-grade
support, high-level consulting, and comprehensive training. Customers include AT&T, Sears, Ford,
Verizon, Cisco, Zappos, Raytheon, The Guardian, The Smithsonian Institution, Salesforce.com, The
MotleyFool, Macy's, Qualcomm, Taser, eHarmony, and many other household names around the
world.

Page 19 of 397

http://www.lucidimagination.com

Solr Reference Guide Jan 10, 2012

About This Guide

This guide describes all of the important features and functions of Apache Solr. It is free to
download from Lucid Imagination.

Designed to provide high-level documentation, this guide is intended to be more encyclopedic and
less of a cookbook. It is structured to address a broad spectrum of needs, ranging from new
developers getting started to well-experienced developers extending their application or
troubleshooting. It will be of use at any point in the application life cycle, for whenever you need
authoritative information about Solr.

The material as presented assumes that you are familiar with some basic search concepts and that
you can read XML. It does not assume that you are a Java programmer, although knowledge of
Java is helpful when working directly with Lucene or when developing custom extensions to a
Lucene/Solr installation.

This guide includes the following sections:
® (Getting Started: This section guides you through the installation and setup of Solr.

® Using the Solr Administration User Interface: This section introduces the Solr Web-based
user interface. From your browser you can view configuration files, submit queries, view
logfile settings and Java environment settings, and monitor and control distributed
configurations.

® Documents, Fields, and Schema Design: This section describes how Solr organizes its data
for indexing. It explains how a Solr schema defines the fields and field types which Solr uses
to organize data within the document files it indexes.

® Understanding Analyzers, Tokenizers, and Filters: This section explains how Solr prepares
text for indexing and searching. Analyzers parse text and produce a stream of tokens, lexical
units used for indexing and searching. Tokenizers break field data down into tokens. Filters
perform other transformational or selective work on token streams.

® Indexing and Basic Data Operations: This section describes the indexing process and basic
index operations, such as commit, optimize, and rollback.

® Searching: This section presents an overview of the search process in Solr. It describes the
main components used in searches, including request handlers, query parsers, and response
writers. It lists the query parameters that can be passed to Solr, and it describes features
such as boosting and faceting, which can be used to fine-tune search results.

Page 20 of 397

http://www.lucidimagination.com/downloads

Solr Reference Guide Jan 10, 2012

® The Well-Configured Solr Instance: This section discusses performance tuning for Solr. It
begins with an overview of the sol rconfi g. xnl file, then tells you how to configure cores
with sol r. xm , how to configure the Lucene index writer, and more.

® Managing Solr: This section discusses important topics for running and monitoring Solr. It
describes running Solr in the Apache Tomcat servlet runner and Web server. Other topics
include how to back up a Solr instance, and how to run Solr with Java Management
Extensions (JMX).

® Scaling and Distribution: This section tells you how to grow a Solr distribution by dividing a
large index into sections called shards, which are then distributed across multiple servers, or
by replicating a single index across multiple services.

® (Client APIs: This section tells you how to access Solr through various client APIs, including
JavaScript, JSON, and Ruby.

~ The default port configured for Solr during the install process is 8983. The samples, URLs
and screenshots in this guide may show different ports, because the port number that Solr
uses is configurable. If you have not customized your installation of Solr, please make sure
that you use port 8983 when following the examples, or configure your own installation to
use the port numbers shown in the examples. For information about configuring port
numbers used by Tomcat or Jetty, see Managing Solr.

Page 21 of 397

Solr Reference Guide Jan 10, 2012

Further Assistance

In addition to providing this Reference Guide for Solr, Lucid Imagination offers other helpful
documentation and tips on its Web site, www.lucidimagination.com. Visit the Web site for:

® Technical Notes on special topics
® White Papers about important search topics and methodologies
® Blog posts about the latest news and events of interest to the Lucene and Solr communities

® Podcasts presenting Lucene and Solr tutorials, as well as interview with Lucene and Solr
committers and customers

There is also a very active user community around Solr and Lucene. The solr-user mailing list is a
great resource for questions. To view the archives or subscribe to the list, see
http://mail-archives.apache.org/mod_mbox/lucene-solr-user/.

Lucid Imagination has created a search index for all things Lucene and Solr, called LucidFind.
Content to be found there includes: All messages to the mailing lists for Lucene and Solr, the full
contents of the Lucene/Solr websites, the Lucene/Solr documentation wikis, all of the Lucid

Imagination published content, and mailing lists, websites and wikis for a host of related Apache
projects.

For more information about services or software offered by Lucid Imagination, contact us online or
at:

Lucid Imagination
3800 Bridge Parkway, Suite 101
Redwood City, CA 94065

Tel: 650.353.4057
Fax: 650.620.9540

Page 22 of 397

http://www.lucidimagination.com/
http://mail-archives.apache.org/mod_mbox/lucene-solr-user/
http://www.lucidimagination.com/search/
http://www.lucidimagination.com/about/contact-us

Solr Reference Guide Jan 10, 2012

Getting Started

This section helps you get Solr up and running quickly, and introduces you to the basic Solr
architecture and features. It covers the following topics:

Installing Solr: A walkthrough of the Solr installation process.

Running Solr: An introduction to running Solr. Includes information on starting up the servers,
adding documents, and running queries.

A Quick Overview: A high-level overview of how Solr works.

A Step Closer: An introduction to Solr's home directory and configuration options.

Page 23 of 397

Solr Reference Guide Jan 10, 2012

Installing Solr

This section describes how to install Solr. You can install Solr anywhere that a suitable Java
Runtime Environment (JRE) is available, as detailed below. Currently this includes Linux, OS X, and
Microsoft Windows. The instructions in this section should work for any platform, with a few
exceptions for Windows as noted.

Got Java?

You will need the Java Runtime Environment (JRE) version 1.5 or higher, although 1.6 is highly
recommended. At a command line, check your Java version like this:

$ *java -version*

java version "1.6.0_0"

lcedTea6 1.3.1 (6b12-Oubuntu6.1) Runtime Environment (build 1.6.0_0-b12)
QpenJDK Cient VM (build 1.6.0_0-bl2, nixed node, sharing)

The output will vary, but you need to make sure you have version 1.5 or higher. If you don't have
the required version, or if the java command is not found, download and install the latest version
from Sun at http://java.sun.com/javase/downloads/.

Installing Solr

Solr is available from the Lucid Imagination website at
http://www.lucidimagination.com/Downloads.

For Linux/Unix/OSX systems, download the . gzi p file. For Microsoft Windows systems, download
the . zi p file.

Solr runs inside a Java servlet container such as Tomcat, Jetty, or Resin. The Solr distribution
includes a working demonstration server in the Exanpl e directory that runs in Jetty. You can use
the example server as a template for your own installation, whether or not you are using Jetty as
your servlet container. For more information about the demonstration server, see the Solr Tutorial.

To install Solr

1. Unpack the Solr distribution to your desired location.

2. Stop your Java servlet container.

3. Copy the sol r. war file from the Solr distribution to the webapps directory of your servlet
container. Do not change the name of this file: it must be named sol r. war .

4. Copy the Solr Home directory apache-sol r- 3. x. 0/ exanpl e/ sol r/ from the distribution to
your desired Solr Home location.

Page 24 of 397

http://java.sun.com/javase/downloads/
http://www.lucidimagination.com/Downloads
https://lucene.apache.org/solr/tutorial.html

Solr Reference Guide Jan 10, 2012

5. Start your servlet container, passing to it the location of your Solr Home in one of these
ways:

® Set the Java system property sol r. sol r. horre to your Solr Home. (for example, using
the example jetty setup: java -Dsolr.solr. home=/sonme/dir -jar start.jar).

® Configure the servlet container so that a JNDI lookup of j ava: conp/ env/ sol r/ hone by
the Solr webapp will point to your Solr Home.

® Start the servlet container in the directory containing ./ sol r : the default Solr Home is
sol r under the JVM's current working directory ($CWD/ sol r).

To confirm your installation, go to the Solr Admin page at http://_host nanme_: 8983/ sol r/ adm n/ .
Note that your servlet container may have started on a different port: check the documentation for
your servlet container to troubleshoot that issue. Also note that if that port is already in use, Solr
will not start. In that case, shut down the servlet container running on that port, or change your
Solr port.

For more information about installing and running Solr on different Java servlet containers, see the
SolrInstall page on the Solr Wiki.

Page 25 of 397

https://wiki.apache.org/solr/SolrInstall
https://wiki.apache.org/solr/FrontPage

Solr Reference Guide Jan 10, 2012

Running Solr

This section describes how to run Solr with an example schema, how to add documents, and how
to run queries.

Start the Server

If you didn't start Solr after installing it, you can start it by running start.jar from the Solr
exanpl e directory.

$ java -jar start.jar

If you are running Windows, you can start the Web server by running st art. bat instead.

C:\ Appl i cations\ Sol r\exanpl e > start. bat

That's it! Solr is running. If you need convincing, use a Web browser to see the Admin Console.

http://1 ocal host: 8983/ sol r/adm n

Solr Admin (example) "
Apache -

drews-macbook:8983 "
cwd=/Users/drewwheeler/apache-solr-3.4.0/example SolrHome=solr/./ SOI r
HTTP caching is OFF
Solr [scHEMA] [CONFIG] [ANALYSIS] [SCHEMA BROWSER |

[sTaTISTICS] [INFO] [DISTRIBUTION] [PING] [LOGGING]
App server: [1AvA PROPERTIES] [THREAD DUMP]
|T\.‘Iake a (-luery [FULL INTERFACE]
Query String: solr

| Search
Assistance [DOCUMENTATION] [ISSUE TRACKER] [SEND EMAIL]

[SOLR QUERY SYNTAX]

Current Time: Fri Sep 30 09:58:15 PDT 2011

Server Start At: Thu Sep 29 12:40:47 PDT 2011

The Solr Admin interface.

If Solr is not running, your browser will complain that it cannot connect to the server. Check your
port number and try again.

Add Documents

Page 26 of 397

Solr Reference Guide Jan 10, 2012

Solr is built to find documents that match queries. Solr's schema provides an idea of how content is
structured (more on the schema later), but without documents there is nothing to find. Solr needs
input before it can do anything.

You may want to add a few sample documents before trying to index your own content. The Solr
installation comes with example documents located in the exanpl e/ exanpl edocs directory of your
installation.

In the exanpl edocs directory is the SimplePostTool, a Java-based command line tool, post.j ar,
which can be used to index the documents. Do not worry too much about the details for now. The
Indexing and Basic Data Operations section has all the details on indexing.

To see some information about the usage of post . j ar, use the - hel p option.

$ java -jar post.jar -help

The SimplePostTool is a simple command line tool for POSTing raw XML to a Solr port. XML data
can be read from files specified as command line arguments, as raw command line ar g strings, or
via STDIN.

Examples:

java -Ddata=files -jar post.jar *.xnl
java -Ddata=args ~-jar post.jar '<del ete><id>42</id></del ete>'
java -Ddata=stdin -jar post.jar < hd.xm

Other options controlled by System Properties include the Solr URL to POST to, and whether a
commit should be executed. These are the defaults for all System Properties:

-Ddat a=fil es
-Durl =http://Iocal host: 8983/ sol r/ updat e
-Dcommi t =yes

Go ahead and add all the documents in the directory as follows:

Page 27 of 397

Solr Reference Guide Jan 10, 2012

$ *java -Durl=http://1ocal host:8983/sol r/update -jar post.jar *.xm*
Si npl ePost Tool : version 1.2

Si npl ePost Tool : WARNI NG Make sure your XM docunents are encoded in UTF-8, other
encodi ngs are not currently supported

Si npl ePost Tool : POSTing files to http://10.211.55. 8:8983/sol r/ update. .
Si npl ePost Tool : PCSTing file hd. xnl

Si npl ePost Tool : POSTing file ipod_other.xm

Si npl ePost Tool : POSTing file ipod_video. xni

Si npl ePost Tool : POSTing file mem xm

Si npl ePost Tool : PCSTing file nonitor. xm

Si npl ePost Tool : POSTing file nonitor2. xm

Si npl ePost Tool : PCSTing file np500. xm

Si npl ePost Tool : PCOSTing file sd500. xm

Si npl ePost Tool : PCSTing file solr.xm

Si npl ePost Tool : PCSTing file spellchecker.xm

Si npl ePost Tool : POSTing file utf8-exanple.xmn

Si npl ePost Tool : PCSTing file vidcard. xm

Si npl ePost Tool : COMM Tting Solr index changes..

$

That's it! Solr has indexed the documents contained in the files.

Ask Questions

Now that you have indexed documents, you can perform queries. The simplest way is by building a
URL that includes the query parameters. This is exactly the same as building any other HTTP URL.

For example, the following query searches all document fields for "video":
http://1 ocal host: 8983/ sol r/ sel ect ?q=vi deo

Notice how the URL includes the host name (| ocal host), the port number where the server is
listening (8983), the application name (sol r), the request handler for queries (sel ect), and finally,
the query itself (q=vi deo).

The results are contained in an XML document, which you can examine directly by clicking on the
link above. The document contains two parts. The first part is the r esponseHeader , which contains
information about the response itself. The main part of the reply is in the result tag, which contains
one or more doc tags, each of which contains fields from documents that match the query. You can
use standard XML transformation techniques to mold Solr's results into a form that is suitable for
displaying to users. Alternatively, Solr can output the results in JSON, PHP, Ruby and even
user-defined formats.

Page 28 of 397

Solr Reference Guide

Jan 10, 2012

Just in case you are not running Solr as you read, the following screen shot shows the result of a
query (the next example, actually) as viewed in Mozilla Firefox. The top-level response contains a
I st nhamed r esponseHeader and a result named response. Inside result, you can see the three

docs that represent the search results.

eno Mozilla Firefox

J. http:/ /localhost... (select?q=video I + l

|. localhost:8983 /solr/select?g=video v C‘] (_"'l' GoogQ) @

This XML file does not appear to have any style information associated with it. The document tree is shown below.

— <response>
— «lst name="responseHeader">
<int name="status">0</int>
<int name="QTime">0</int>
— <lst name="params">
<sir name="q">video</str>
</lst>
</Ist>
— <result name="response” numFound="3" start="0">
- <doc>
— <arr name="cat">
<str>electronics</str>
<str>music</str>
</arr>
— <arr name="features">
<str>iTunes, Podcasts, Audiobooks</str>
— <Str>
Stores up to 15,000 songs, 25,000 photos, or 150 hours of video
</str>
— <Str>
2.5-inch, 320x240 color TFT LCD display with LED backlight
</str>
<str>Up to 20 hours of battery life</str>
— <str>
Plays AAC, MP3, WAV, AIFF, Audible, Apple Lossless, H.264 video
</str>
— <str>
Notes, Calendar, Phone book, Hold button, Date display, Photo wallet, Built-in games, JPEG photo playback, Upgradeable
firmware, USB 2.0 compatibility, Playback speed control, Rechargeable capability, Battery level indication
</str>
</arr>
<str name="id">MA147LL/A</str>
<bool name="inStock">true</bool>
<sir name="includes">earbud headphones, USB cable</str>
<str name="manu">Apple Computer Inc.</str>
<date name="manufacturedate_dt">2005-10-12T08:00:00Z</date>
<sir name="name">Apple 60 GB iPod with Video Playback Black</str>
<int name="popularity">10</int>
<float name="price">399 0</float>
<str name="store">37.7752,-100.0232</str>
<float name="weight">5.5</float>
</doc>

|| PSP e A v N A B, | sl e P

An XML response to a query.

M
U

Once you have mastered the basic idea of a query, it is easy to add enhancements to explore the
query syntax. This one is the same as before but the results only contain the ID, name, and price
for each returned document. If you don't specify which fields you want, all of them are returned.

Page 29 of 397

Solr Reference Guide Jan 10, 2012

http://1 ocal host: 8983/ sol r/ sel ect ?g=vi deo&f | =i d, nane, pri ce

Here is another example which searches for "black" in the name field only. If you do not tell Solr
which field to search, it will search default fields, as specified in the schema.

http://1 ocal host: 8983/ sol r/ sel ect ?2q=nane: bl ack

You can provide ranges for fields. The following query finds every document whose price is
between $0 and $400.

http://1 ocal host: 8983/ sol r/ sel ect ?2q=pri ce: 09%20TOR0400&f | =i d, nane, pri ce

Faceted browsing is one of Solr's key features. It allows users to narrow search results in ways that
are meaningful to your application. For example, a shopping site could provide facets to narrow
search results by manufacturer or price.

Faceting information is returned as a third part of Solr's query response. To get a taste of this
power, take a look at the following query. It adds f acet =t rue and f acet . fi el d=cat .

http://1 ocal host: 8983/ sol r/ sel ect ?2g=pri ce: 09%20TOR0400&f | =i d, nane, pri ce&f acet =t r ue&f

In addition to the familiar r esponseHeader and response from Solr, a f acet _count s element is
also present. Here is a view with the r esponseHeader and response collapsed so you can see the
faceting information clearly.

Page 30 of 397

Solr Reference Guide Jan 10, 2012

Mozilla Firefox

J. http:/ /localhost... (select?q=video u_+ L -

4 localhost:8983 solr/select?q=price:0%20TO%20400&f=id,name price&facet=true&facet. field=cat v -"l' GoolQ) || I3~ m'

~

This XML file does not appear to have any style information associated with it. The document tree is shown below.

— <response>
— <lst name="responscHeader">
<int name="status">0</int>
<int name="QTime">1</int>
— <lst name="params">
<str name="gq">video</str>

</lst>
</lst>
— <result name="response" numFound="3" start="0">
- <doc>
— <arr name="cat">
<str>electronics</str>
<str>music</str>
</arr>

— <arr name="features">
<str>iTunes, Podcasts, Audiobooks</str>
— <str>
Stores up to 15,000 songs, 25,000 photos, or 150 hours of video
</str>
— <str>
2.5-inch, 320x240 color TFT LCD display with LED backlight
</str>
<str>Up to 20 hours of battery life</str>
— <Str>
Plays AAC, MP3, WAV, AIFF, Audible, Apple Lossless, H.264 video
</str>
— <Str>
Notes, Calendar, Phone book, Hold button, Date display, Photo wallet, Built-in games, JPEG photo playback, Upgradeable
firmware, USB 2.0 compatibility, Playback speed control, Rechargeable capability, Battery level indication
</str>
</arr>
<sir name="id">MA147LL/A</str>
<bool name="inStock">true</bool>
<sir name="includes">earbud headphones, USB cable</str>
<sir name="manu">Apple Computer Inc.</str>
<date name="manufacturedate_dt">2005-10-12T08:00:00Z</date>
<sir name="name">Apple 60 GB iPod with Video Playback Black</str>
<int name="popularity">10</int>
<float name="price">399.0</float>
<str name="store">37.7752,-100.0232</str>
<float name="weight">5.5</float>
</doc>

i sdoc> T R g I TV I g S S vy S S)

An XML Response with faceting.

The facet information shows how many of the query results have each possible value of the cat
field. You could easily use this information to provide users with a quick way to narrow their query
results. You can filter results by adding one or more filter queries to the Solr request. Here is a
request further constraining the request to documents with a category of "software".

http://1 ocal host: 8983/ sol r/ sel ect ?2g=pri ce: 09%20TOR0400&f | =i d, nane, pri ce&f acet =t r ue&f

Page 31 of 397

Solr Reference Guide Jan 10, 2012

A Quick Overview

Having had some fun with Solr, you will now learn about all the cool things it can do.

Here is a typical configuration:

In the scenario above, Solr runs alongside another application in a Web server like Tomcat. For
example, an online store application would provide a user interface, a shopping cart, and a way to
make purchases. The store items would be kept in some kind of database.

Solr makes it easy to add the capability to search through the online store through the following
steps:

1. Define a schema. The schema tells Solr about the contents of documents it will be indexing.
In the online store example, the schema would define fields for the product name,
description, price, manufacturer, and so on. Solr's schema is powerful and flexible and allows
you to tailor Solr's behavior to your application. See Documents, Fields, and Schema Design
for all the details.

Page 32 of 397

Solr Reference Guide Jan 10, 2012

2. Deploy Solr to your application server.
3. Feed Solr the document for which your users will search.
4. Expose search functionality in your application.

Because Solr is based on open standards, it is highly extensible. Solr queries are RESTful, which
means, in essence, that a query is a simple HTTP request URL and the response is a structured
document: mainly XML, but it could also be JSON, CSV, or some other format. This means that a
wide variety of clients will be able to use Solr, from other web applications to browser clients, rich
client applications, and mobile devices. Any platform capable of HTTP can talk to Solr. See Client
APIs for details on client APIs.

Solr is based on the Apache Lucene project, a high-performance, full-featured search engine. Solr
offers support for the simplest keyword searching through to complex queries on multiple fields
and faceted search results. Searching has more information about searching and queries.

If Solr's capabilities are not impressive enough, its ability to handle very high-volume applications
should do the trick.

A relatively common scenario is that you have so many queries that the server is unable to
respond fast enough to each one. In this case, you can make copies of an index. This is called
replication. Then you can distribute incoming queries among the copies in any way you see fit. A
round-robin mechanism is one simple way to do this.

Replication
Master

slavel slave2 slave3

Another useful technique, less common than replication, is sharding. If you have so many
documents that you simply cannot fit them all on a single box for RAM or index size reasons, you
can split an index into multiple pieces, called shards. Each shard lives on its own physical server.
An incoming query is sent to all the shard servers, which respond with matching results.

Page 33 of 397

Solr Reference Guide Jan 10, 2012

Single Server Distributed

Shard1 Shard 2

= — —_—

If you are fortunate enough to have huge numbers of documents and users, you might need to
combine the techniques of sharding and replication. In this case, you create some number of
shards, then replicate the shards. Incoming queries are sent to one server for each shard.

Distributed + Replication

Shard 1 Master Shard 2 Master Shard 3 Master

£

slavel slavel slavel

slave?2 slave2 slave?2

For full details on sharding and replication, see Scaling and Distribution.

Best of all, this talk about high-volume applications is not just hypothetical: some of the famous
Internet sites that use Solr today are Macy's, EBay, and Zappo's.

For more information, take a look at https://wiki.apache.org/solr/PublicServers.

Page 34 of 397

https://wiki.apache.org/solr/PublicServers

Solr Reference Guide Jan 10, 2012

A Step Closer

You already have some idea of Solr's schema. This section describes Solr's home directory and
other configuration options.

When Solr runs in an application server, it needs access to a home directory. The home directory
contains important configuration information and is the place where Solr will store its index.

The crucial parts of the Solr home directory are shown here:

<sol r-hone-directory>/
sol r.xm
conf/
sol rconfig. xm
schema. xm
dat a/

You supply sol r. xm , sol rconfi g. xm , and schena. xm to tell Solr how to behave. By default,
Solr stores its index inside data.

sol r. xm specifies configuration options for your Solr core, and also allows you to configure
multiple cores. For more information on sol r. xnl see The Well-Configured Solr Instance.

sol rconfi g. xm controls high-level behavior. You can, for example, specify an alternate location
for the data directory. For more information on sol rconfi g. xm , see The Well-Configured Solr
Instance.

schema. xm describes the documents you will ask Solr to index. Inside schema. xnl , you define a
document as a collection of fields. You get to define both the field types and the fields themselves.
Field type definitions are powerful and include information about how Solr processes incoming field
values and query values. For more information on schema. xm , see Documents, Fields, and
Schema Design.

Page 35 of 397

Solr Reference Guide Jan 10, 2012

Using the Solr Administration User Interface

This section discusses the Solr Administration User Interface ("Admin UI"). It covers the following
topics:

Overview of the Solr Admin UI: An introduction to the Solr Administration User Interface.

The Solr Section: Detailed information about the Solr section of the Admin UL.

The App Server Section: Detailed information about the App Server section of the Admin UI.

The Make a Query Section: Detailed information about the Make A Query section of the Admin UI.

The Assistance Section: Detailed information about the Assistance section of the Admin UI.

Page 36 of 397

Solr Reference Guide Jan 10, 2012

Overview of the Solr Admin UI

Solr features a Web interface that makes it easy for Solr administrators and programmers to:

® view Solr configuration details

® run queries and analyze document fields in order to fine-tune a Solr configuration
® access online documentation and other help

Users access the Admin UI through the sol r/ adni n/ page, which by default is located at http: //

host nanme : 8983/ sol r/ adm n/ . The name of the Solr installation's top directory appears in
parentheses at the top of the page.

Solr Admin (example) 7.
Apache)

drews-macbook:8983 o
cwd=/Users/drewwheeler/apache-solr-3.4 0/example SolrHome=solr/./ SOI r
HTTP caching is OFF
Solr [scaEMA] [coNFIG] [ANALYSIS] [SCHEMA BROWSER]

[sTaTisTICS] [INFO] [DISTRIBUTION] [PING] [LOGGING]
App server: [JAVA PROPERTIES] [THREAD DUMP]
[Make a ﬁuery [FULL INTERFACE]
Query String: solx

| Search
Assistance [DOCUMENTATION] [ISSUE TRACKER] [SEND EMAIL]

[SOLR QUERY SYNTAX]

Current Time: Fri Sep 30 09:58:15 PDT 2011

Server Start At: Thu Sep 29 12:40:47 PDT 2011

The Solr Admin UL.
The main page of the Admin UI is divided into three parts:

® a section for exploring the Solr server and its application server
® a section for running queries

® a section on getting assistance, either by accessing documentation or the Solr issue tracker,
or by contacting the Apache Solr project team

"~ If you are running Solr on a Macintosh, you should access the Admin UI in a browser other

than Safari, because Safari will not display raw XML content, such as the contents of the
Solr schena. xnl file.

Configuring the Admin UI in solrconfig.xml

Page 37 of 397

Solr Reference Guide Jan 10, 2012

You can configure the Solr Admin UI by editing the file sol rconfi g. xm . The <adni n> block in the
sol rconfig. xm file determines:

® Which files the Web interface can access
® How the interface's PING link should call the ping command
® Whether or not the interface displays the ENABLE/DISABLE link in the App Server section

In its default configuration, which is shown below, the Admin Ul is configured to access

sol rconfig.xm and schema. xni . It also specifies the parameters the interface should pass to the
ping command when a user clicks on the interface's PING link. It also creates a file called
server-enabled, which will be created or deleted depending on the server's status.

<admi n>
<def aul t Query>sol r </ def aul t Query>
<gett abl eFi | es>
sol rconfi g. xni
schema. xm
</ gettabl eFi |l es>
<pi ngQuer y>g=sol r &anp; ver si on=2. 0&anp; st art =0&anp; r ows=0</ pi ngQuery>

<I-- configure a healthcheck file for servers behind a | oadbal ancer -->

<heal t hcheck type="fil e">server-enabl ed</ heal t hcheck>
</ admi n>

Page 38 of 397

Solr Reference Guide Jan 10, 2012

The Solr Section

The Solr section of the Admin UI includes the following links.

Link

SCHEMA

CONFIG

ANALYSIS

SCHEMA
BROWSER

STATISTICS

INFO

DISTRIBUTION

PING

LOGGING

Description

Displays the schena. xni file, a configuration file that describes the data to be
indexed and searched.

Displays the sol rconfi g. xnil file, a file that contains most of the parameters for
configuring Solr itself.

Displays a Field Analysis form, which is useful for testing the behavior of
Analyzers, Tokenizers, and TokenFilters on different fields.

Displays a dynamic HTML interface for exploring the schema. xm settings of the
Solr server.

Displays configuration details and statistics about the following aspects of the
Solr server: CORECACHEQUERY, handl er sUPDATE, handl er sHI GHLI GHTI NGOTHER
(reserved for future use). The Solr server continually updates the statistics
presented on this page.

Displays startup-time data about the following categories: CORECACHEQUERY,
handl er sUPDATE, handl er sOTHER (reserved for future use). Unlike the statistics
presented on the STATISTICS page, the statistics presented on the INFO page
do not change after startup.

Displays details about a distributed Solr configuration, if the Solr server is
configured as either a Master or Slave server. On a Master instance, each row
displays the name of the slave and the snapshots the slave has retrieved. On a
Slave instance, the page displays a single line showing the name of its last
attempt to retrieve a snapshot from its master.

Runs the ping command against the Solr server in order to confirm that the
server is running and responsive to network requests. If the command is
successful, it returns HTTP 200 to the browser but displays nothing. If
unsuccessful, the command returns HTTP 500 (an error) and displays an
exception message.

Displays an interactive form for setting and viewing the effective logging levels
of the JDK Log hierarchy.

Displaying the Solr Schema

Page 39 of 397

Solr Reference Guide

Jan 10, 2012

To display the Solr schema. xm file in your browser, click the SCHEMA link. The browser will then

display then schema. xml file, as shown in the image below.

ano Mozilla Firefox

‘ . http:/ /localhos...file=schema.xml

-

Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.

The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); yvou may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE=2.0

Unless reguired by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

—

-

This is the Solr schema file. This file should be named "schema.xml" and
should be in the conf directory under the solr home

(i.e. ./solr/conf/schema.xml by default)

or located where the classloader for the Solr webapp can find it.

This example schema is the recommended starting point for users.
It should be kept correct and concise, usable out-of-the-box.

For more information, on how to customize this file, please see
http://wiki.apache.org/solr/SchemaXml

PERFORMANCE NOTE: this schema includes many optional features and should not

be used for benchmarking. To improve performance one could

- set stored="false" for all fields possible (esp large fields) when you
only need to search on the field but don't need to return the original
value.

- set indexed="false" if you don't need to search on the field, but only
return the field as a result of searching on other indexed fields.

- remove all unneeded copyField statements

- for best index size and searching performance, set "index" to false
for all general text fields, use copyField to copy them to the
catchall "text" field, and use that for searching.

- For maximum indexing performance, use the StreaminglUpdateSolrServer
java client.

- Remember to run the JVM in server mode, and use a higher logging level
that aveoids logging every reguest

—
— <schema name="example" version="1.4">
—<l==
attribute "name"” is the name of this schema and is only used for display purposes.

Applications should change this to reflect the nature of the search collection.
version="1.4" is Solr's version number for the schema syntax and semantics.
not normally be changed by applications.
1.0: multiValued attribute did not exist, all fields are multiValued by nature
1.1: multiValued attribute introduced, false by default
1.2: omitTermFregAndPositions attribute introduced, true by default except for text fields.
1.3: removed optional field compress feature
1.4: default auto-phrase (QueryParser feature) to off

i S .)

The schema.xml file.

ks
v
ERE]

For more information on the schena. xnl file, see Documents, Fields, and Schema Design.

Displaying the Solr Configuration File

To display the sol rconfi g. xml file, click the CONFI G link. Solr displays the file in the browser, as
shown below.

Page 40 of 397

Solr Reference Guide Jan 10, 2012

enon Mozilla Firefox
J. http:/ /localhost...=solrconfig.xml I + l

-
@ E localhost: 8983 /solrfadmin/file?contentType=text/xml;charset=utf-8&file=solrconfig.xml v C‘] (_'"l' Goo:_Q) @

This XML file does not appear to have any style information associated with it. The document tree is shown below.

=<

Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.

The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless reguired by applicable law or agreed to in writing, software
distributed under the License 1s distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

—
=<
For more details about configurations options that may appear in
this file, see http://wiki.apache.org/solr/SolrConfigXml.
—
— <config>
-
In all configuration below, a prefix of "solr." for class names
is an alias that causes solr to search appropriate packages,
including org.apache.solr. (search|update|request [core analysis)
You may also specify a fully gualified Java classname if you
have your own custom plugins.
—
-
Set this to 'false' if you want solr to continue working after
it has encountered an severe configuration error. In a
production environment, you may want solr to keep working even
if one handler is mis-configured.
You may also set this to false using by setting the system
property:
-Dsolr.abortOnConfigurationError=false
—
<abortOnConfigurationError>3{solr.abortOnConfigurationError: true }</abortOnConfigurationError>
-

Controls what version of Lucene various components of Solr
adhere to. Generally, you want to use the latest version to
get all bug fixes and improvements. It is highly recommended
that you fully re-index after changing this setting as it can
affect both how text is indexed and gueried.

‘-
r
A

RN

s
<

The solrconfig.xml file.

Running Field Analysis to Test Analyzers, Tokenizers, and
TokenFilters

When defining fields and field types, and configuring Analyzers, Tokenizers, and TokenFilters, it's
helpful to see how the current configuration of Solr indexes a sample text and processes a sample
query. The Field Analysis feature of the Solr Admin UI makes it easy to run queries against sample
text, so you can assess the current configuration of the Solr server.

Click the ANALYSI S link to display the Field Analysis form, shown below.

Page 41 of 397

Solr Reference Guide Jan 10, 2012

anm Solr admin page
Jso., Solr admin page H_ + L T
@ | 5o localhost:8983/solrfadmin /analysis.jsp?highlight=on v || (#8- Goo) [#]
Solr Admin (example) L.
drews-machook:8983 < -
cwd=/Users/drewwheeler/apache-solr-3.4.0/example SolrHome=solr/./ SOI I"

HTTP caching is OFF

Field Analysis

'ﬁeld name ? I

verbose output [
highlight matches #

Field value (Query)
verbose output [

Field value (Index) |

The Field Analysis form.

The Field Analysis form includes three main parts:

®* A Field name/type field, in which you toggle a drop-down menu to select name or type,
then enter the name of the field name or field type in the text box to the right. The value you

enter must correspond to a field name or field type defined in the Solr server's schema.xml
file.

A Field value (Index) text box, in which you type sample text for a field, as though it were
a field in a document indexed by Solr. To see a detailed analysis of how the Solr server calls
Analyzers, Tokenizers, and TokenFilters to index the text, click the checkbox to select
"verbose output.”

A Field value (Query) text box, in which you type the text to be used in a query performed
by the Server against the text you entered in the Field value (Index) text box. To see
details of how the Server processes the query, click the checkbox to select "verbose output.”

The image below shows the Field Analysis form performing a query against text entered in the
Field value (Index) field.

Page 42 of 397

Solr Reference Guide Jan 10, 2012

n“ st localhost:8983 /solrfadmin/analysis.jsp [o~ (D] B -]

text

the guick brown fox jumped over the lazy dog

Field Analysis form performing a query against text entered in the Field value (Index) field.

To see these processes in detail, one can re-run the analysis, selecting the verbose output
options. The following image shows the verbose output for the indexing process. You can see the
order in which Tokenizers and TokenFilters are called, beginning with the
WhiteSpaceTokenizerFactory, which demarcates words by identifying the white spaces around
them.

Page 43 of 397

Solr Reference Guide Jan 10, 2012

eano Salr admin page
Js,,.; Solr admin page H_-I- L =
|s.,. localhost:8983 /solrfadmin/analysis.jsp ¥ l I'_-'l' Google Q) @
Solr Admin (example) 7,
drews-macbook:8983 apache %
cwd=/Users/drewwheeler/apache-solr-3.4.0/example SolrHome=solr/./ So I r :
HTTP caching is OFF
Field Analysis
'ﬁeld “name 3] llexl—
Field value (Index) the guick brown fox jumped over the lazy dog
verbose output #
highlight matches #
A
Field value (Query) I
verbose output [4
Analyze
Index Analyzer
.apache.solr.analysis.StandardTokenizerFactory {luceneMatchVersion=LUCENE_34}
position |1 2 3 m 5 T 7 8]
term text |the quick brown fox ljumped over the lazy dog
startOffset|0 4 10 16 20 27 32 36 41
endOffset 3 9 15 19 26 31 35 40 44
type <ALPHANUM:=<ALPHANUM=|<ALPHANUM:> < ALPHANUM:>|< ALPHANUM:> < ALPHANUM:=> < ALPHANUM=>|<ALPHANUM:> <ALPHANUM:=>
org.apache.solr.analysis.StopFilterFactory {words=stopwords.ixt, ignoreCase=true, enablePositionincrements=true,
luceneMatchVersion=LUCENE_34}
position |1 2 3 n 5 6 7 8 9
term text |the quick brown fox ljumped lover the lazy dog
startOffset|0 4 10 16 20 27 32 36 41
endOffset 3 9 15 19 26 31 35 40 44
type < ALPHANUM>{<ALPHANUM>|< ALPHANUM>|<ALPHANUM>|< ALPHANUM> < ALPHANUM> < ALPHANUM>|<ALPHANUM><ALPHANUM:>
p.apache.solr.analysis.LowanseFIIhrFadory {luceneMatchVersion=LUCEN Ei34}
position |1 2 3 4 3 6 7 8 9
term text [the quick brown fox ljumped over the lazy dog
startOffset|0 4 10 16 20 27 32 36 41
endOffset 3 9 15 19 26 31 35 40 44
type < ALPHANUM><ALPHANUM>|<ALPHANUM:><ALPHANUM>|<ALPHANUM:> < ALPHANUM:> < ALPHANUM>|<ALPHANUM:><ALPHANUM:>

The verbose output option reveals the steps involved in the indexing process.

The next image shows the verbose output option selected for the querying process. You can see
that Solr's Query Analyzer invokes or g. apache. sol r. anal ysi s. Wi t espaceTokeni zer Factory.
The "verbose output" option shows you all the analyzers in the order in which they are invoked.

Page 44 of 397

Solr Reference Guide Jan 10, 2012

OO Solr admin page
JSQ., Solr admin page {_—I— L

|50. localhost:8983/solrfadmin/analysis.jsp v @

v
(29~ Google Q) E]

Solr Admin (example) ",
drews-macbook:8983 - %
cwd=/Users/drewwheeler/apache-solr-3 4.0/example SolrHome=solr/./ SOI r :
HTTP caching is OFF
Field Analysis
'ﬁeld name |¥] text
Field value (Index)
verbose output @
highlight matches #
A

Field value (Query) |the quick brown fox jumped over the lazy deg
verbose output # Vi

Analyze
Query Analyzer
org.apache.solr.analysis.StandardTokenizerFactory {luceneMatchVersion=LUCENE_34}
position |1 2 3 n 5 T 7 8 g
term text |the quick brown fox |jumped over the lazy dog
startOffset|0 4 10 16 20 27 32 36 41
endOffset |3 9 15 19 26 31 35 40 44
type < ALPHANUM>|<ALPHANUM>|<ALPHANUM:>|<ALPHANUM:><ALPHANUM:> < ALPHANUM> <ALPHANUM:>|<ALPHANUM>|<ALPHANUM:>
org.apache.solr.analysis.StopFilterFactory {words=stopwords.txt, ignoreCase=true, enablePositionincrements=true,
luceneMatchVersion=LUCENE_34}
position |1 2 3 4 5 6 7 8 9
term text (the quick brown fox [jumped over the lazy dog
startOffset|0 4 10 16 20 27 32 36 41
endOffset |3 9 15 19 26 31 35 40 44
type <ALPHANUM>|<ALPHANUM><AL PHANUM>|<ALPHANUM><ALPHANUM>|<ALPHANUM><ALPHANUM:><AL PHANUM><ALPHANUM>
org.apache.solr.analysis.SynonymFilterFactory {synonyms=synonyms.txt, expand=true, I!norec:lsn:uue, luceneMatchVersion=LUCENE_34}
position |1 2 3 4 5 6 7 8 9
term text (the quick brown fox [jumped over the lazy dog
type <ALPHANUM:>|<ALPHANUM><ALPHANUM:>|<ALPHANUM:><ALPHANUM:> < ALPHANUM:> <ALPHANUM:>|<ALPHANUM>|< ALPHANUM:>
startOffset|0 4 10 16 20 27 32 36 41
endOffset |3 9 15 19 26 31 35 40 44
org.apache.solr.analysis.LowerCaseFilterFactory {luceneMatchVersion=LUCENE_34}
position |1 2 g n 5 G 7 8 q
term text |the quick brown fox |jumped over the lazy dog
type <ALPHANUM>|<ALPHANUM>|<ALPHANUM:>|<ALPHANUM><ALPHANUM:> < ALPHANUM> < ALPHANUM>|<ALPHANUM>|<ALPHANUM:>
startOffset|0 4 10 16 20 27 32 36 41
endOffset |3 9 15 19 26 31 35 40 44

The verbose output option for the query process.

Using the Schema Browser

The Schema Browser is a dynamic Ajax-based window for viewing details of the Solr server's
schema, which defines fields, dynamic fields, and field types used for indexing. When you first open
the browser, it displays three categories on the left side of the screen: fields, dynamic fields, and
field types, as shown below.

Page 45 of 397

Solr Reference Guide Jan 10, 2012

Solr admin page

()| s localnost:8983/solr/admin/schema.jsp [- coogl@Q) (A | (-] (B -

The Schema Browser.

Displaying the Configuration of a Field

The Schema Browser makes it easy to explore the definitions of fields, dynamic fields, and field
types. To display the Schema Browser, click the SCHEMA BROASER link in the Solr Admin UI.

In the left hand navigation bar, click the word Fields to see a list of fields defined in the
schema. xni file. Then click on a specific field's name to see details about that particular field.

Page 46 of 397

Solr Reference Guide Jan 10, 2012

B OE
(4) > | [+ localhost:8983/solr/admin/schema.jsp v 'S - startingpag®) (A] B2+ (-

&&&#mumum:g

The Schema Browser displaying information about a selected field.

Displaying Additional Details about a Parameter

The schema information for some fields includes low-level details which are not displayed by
default. If an item includes a DETAI LS link, you can click the link to see additional details. To hide
the additional details, click the DETAI LS link again.

Page 47 of 397

Solr Reference Guide Jan 10, 2012

Selr admin

(g] < localhost:8983/solr/admin/schema.jsp vy 'S ~ StartingpagQ (] (B -] (EF -]

8
Em
283 |22g8

PAYLOADS

TEXT_RE
KEYWORDS
INKS

:

CATEGOR
PRICE

INSTOCR
COMMENTS
0_COORDINATE

:
i

STORE_I_COORDINATE
INCUBATIONDATE D
DYNAMIC FIELDS

FIELD TYPES

Click the DETAILS link to see additional details about a configuration parameter.

Exploring the Most Popular Terms for a Field

Toward the bottom of the page, the Schema Browser presents a table of terms and a bar chart
related to the selected field. The table, Top n Terms, where n is by default 10, lets you see the
most popular n terms in that field in the index. You can enter a different number for n in the form
and see a shortened or lengthened list of terms (depending on whether you enter a lower or higher
number for n). If you enter a number that exceeds the number of terms found in that field, the
form automatically substitutes the total number of terms and displays only that humber of terms.
The image below shows an example of this display.

Page 48 of 397

Solr Reference Guide Jan 10, 2012

Nalls
(4> [localhost:8983/salr/admin/schema.jsp Trw 'S - startingpag®) (A] B2+ (-

LAST_MODI 'i!:
DESCRIPTIO
NAME

&&&#mumum:g

Displaying the top n terms.

A histogram shows the number of terms with a given frequency in the field. For example, in the
image above, there are six terms that appear once, eight terms that appear twice, and so on.

Displaying Statistics of the Solr Server

The STATI STI CS link displays statistics related to the Solr server's performance. The server
continually updates these statistics. The image below shows an example of the statistics reported
by the Statistics page.

Page 49 of 397

Solr Reference Guide

Jan 10, 2012

Solr Statistics: (example)

-

~

J i Solr Statistics: (example) L1
4 so¢ localhost:8983 /solrfadmin/stats.jsp vie|(8-san@) (][] -
- L]
Solr Statistics: (example) L
drews-macbook § ;I r ’
Category [corE] [cACHE] [QUERY] [UPDATE] [HIGHLIGHTING] [OTHER]
Current Time: Wed Oct 19 21:04:55 PDT 2011
Server Start Time: Tue Oct 18 07:04:05 PDT 2011
CORE
name: core
class:
version: 1.0
description: SolrCore
stats: coreName :
startTime : Tue Oct 18 07:04:05 PDT 2011
refCount : 2
aliases :]
name: searcher
class: org.apache.solr.search.SolrIndexSearcher
version: 1.0
description: index searcher
stats: searcherName : Searcher@52cab854 main
caching : true
numDocs : 17
maxDoc : 17
reader :
SolrIndexReader{this=4¢767286 r=ReadOnlyDirectoryReader@4c767286,refCnt=1 segments=1}
readerDir : org.apache.lucene.store NIOFSDirectory @/Users/drewwheeler/apache-solr-3.4.0
fexample/solr/data/index lockFactory=org.apache.lucene store NativeFSLockFactory@358ee21f5
indexVersion : 1317325247603
openedAt : Tue Oct 18 07:04:06 PDT 2011
registered At : Tue Oct 18 07:04:06 PDT 2011
warmupTime : 0

O i e B T I I I P T

The Solr Statistics page.

a

v

The Solr Statistics page groups its data into several sections: core, cache, query, update,
highlighting, and other. To jump to the reported data about a particular topic, click on that topic's

link (for example, CORE) at the top of the Solr Statistics page.

Displaying Start-up Time Statistics about the Solr Server

To display statistics about the server at start-up time, click the INFO link. Unlike the information
displayed by the STATISTICS link, the Solr information displayed by INFO is not continuously

updated.

Page 50 of 397

Solr Reference Guide

Jan 10, 2012

800

J v Solr Info

Solr Info

|s‘,. localhost:8983 /solr/admin/registry.jsp

v || (8~ sunQ) @

T
Solr Info (example) e 72 |
drews-macbook So I r f
Category [corE] [cAcHE] [QUERY] [UPDATE] [HIGHLIGHTING] [OTHER]
Solr Specification Version: 3.4.0.2011.09.09.09.06.17
Solr Implementation Version: 3.4.0 1167142 - mike - 2011-09-09 09:06:17
Lucene Specification Version: 3.4.0
Lucene Implementation Version: 3.4.0 1167142 - mike - 2011-09-09 09:02:09
Current Time: Wed Oct 19 21:06:28 FDT 2011
Server Start Time:Tue Oct 18 07:04:05 PDT 2011
CORE
name: core
class:
version: 1.0
description: SolrCore
sourceid: $Id: SolrCore.java 1145527 2011-07-12 10:27:45Z% shalin §
source: SURL: https://svn.apache.org/repos/asf/lucene/dev/branches/lucene_solr 3 4
/solr/core/src/javalorg/apache/solr/core/SolrCore.java $
name: searcher
class: org.apache.solr.search.SolrIndexSearcher
version: 1.0
description: index searcher
sourceid: $Id: SolrIndexSearcher.java 1149748 2011-07-22 22:09:402 yonik §
source: $URL: https://svn.apache.org/repos/asf/lucene/dev/branches/lucene solr 3 4
/solr/core/src/java/org/apache/solr/search/8olrIndexSearcher.java $
name: Searcher@52cab854 main
class: org.apache.solr.search.SolrIndexSearcher
version: 1.0
description: index searcher

The Solr Info page reports configuration details and statistics.

a

v

Displaying Information about a Distributed Solr Configuration

Click the DI STRI BUTI ON link to see information about master and slave servers. In master/slave
configurations, the master server's index is replicated on one or more slave servers, which process
queries (for more information about replicated indexes, see Scaling and Distribution).

On a master server, the Admin UI's Distribution Info reports information about the snapshot of the
index being distributed to slave servers.

Page 51 of 397

Solr Reference Guide Jan 10, 2012

000 Solr replication admin page
| solr replication admin page x|z Solr replic

Solr replication admin page

@ [;f} localhost:8983/solr/admin/replication/index.jsp

T’-\Fvle] C.' SLarlIngpag-Q) E E]

Index Version: 1317325247607, Generation: 3

Location: /Users/drewwheeler/apache-solr-3.4.0/example/solr/data/index
Size: 19.29 KB

Config Files To Replicate: schema.xml stopwords. txt

Trigger Replication On: [commit, startup]

Current Time: Wed Oct 19 22:12:09 PDT 2011
Server Start At: Wed Oct 19 22:11:56 PDT 2011

On a master server, the Distribution Info page identifies the filename of the master server index
snapshot and reports on the replication of this snapshot to any slave servers.

On a slave server, the Distribution Info page shows simply information for the slave server itself,
as shown below. The page identifies which version of the replicated index the slave server is using.
It also reports on the status of the most recent replication process.

Page 52 of 397

Solr Reference Guide Jan 10, 2012

ano Solr replication admin page
| si_ Solr replication admin page % | /i Solr replication admin page x | + | -
@E |so., localhost:8984 /solrfadmin/replication/ v I'_S v SL\nng,\QQJ E]
. .

Solr replication (example) Slave ronre "2
drews-macbook:8984 o
cwd=/Users/drewwheeler/apache-solr-3.4.0/example8984 SolrHome=solr/./ SOI r

(WHAT 1S THIS PAGE?)

Master http://localhost:8983/solr/replication

Latest Index Version:null, Generation: null
Replicatable Index Version:1317325247607, Generation: 3

Poll Interval 00:00:60

Local Index Index Version: 1317325247607, Generation: 3
Location: /Users/drewwheeler/apache-solr-3.4.0/example8984/solr/data/index
Size: 19.29 KB

Times Replicated Since Startup: 33

Previous Replication Done At: Wed Oct 19 22:13:00 PDT 2011
Config Files Replicated At: null

Config Files Replicated: null

Times Config Files Replicated Since Startup: null

Next Replication Cycle At: Wed Oct 19 22:14:00 PDT 2011

Controls Disable Foll
Replicate Now

Current Time: Wed Oct 19 22:13:33 PDT 2011
Server Start At: Wed Oct 19 22:12:43 PDT 2011

RETURN TO ADMIN PAGE

The Distribution Info page for a slave server.

Pinging the Solr Server to Test Its Responsiveness

The pi ng command, which is supported by Windows, Linux, and MacOS, sends a signal to a
network-accessible server and reports the time it takes the server to respond, if it responds at all.
The command executable is stored at / adni n/ pi ng on the Solr server. The pi ng command is a
straightforward, convenient tool for checking whether or not a server is running.

To run ping against the Solr server, click the PI NG link. If the server is running, the Admin UI
displays an XML-formatted response like that shown below.

Page 53 of 397

Solr Reference Guide Jan 10, 2012

enon Mozilla Firefox
_J. http:/ /localhos...solr/admin/ping [-+ l

|. localhost:8983 /salrfadmin/ping v (1§~ 5tanQ) @ B- B

This XML file does not appear to have any style information associated with it. The document tree is shown below.

— <response>
— <lst name="responseHeader">
<int name="status">0</int>
<int name="QTime">4</int>
— <Ist name="params">
<str name="echoParams">all</str>
<sitr name="rows">10</str>
<str name="¢choParams">all</str>
<str name="q">solrpingquery</str>
<str name="qt">search</str>
</Ist>
</lst>
<str name="status">0OK </str>
</response>

P T Y P e

An XML-formatted response to the pi ng command.

Viewing and Configuring Logfile Settings
Click the LOGA NG link to display a long page that offers radio-button settings for JDK lodfiles.

~ Any changes you make to logdfile settings through Admin UI will last only as long as the
current Solr session. Once the server is shut down and restarted, settings will revert to the
configuration specified in the logfile configuration files.

Page 54 of 397

Solr Reference Guide Jan 10, 2012

Nelle

. Solr Admin: JDK Log Level Selec... -

nﬂ B Iocalhost: 8983 /solr/admin/logging Tﬂ?" [] Eﬂ (EF - |

]

I\ l.f{;,:

=

C
®
o

O INFO
O INFO

Level
unset FINEST FINE CONFIG INFO WARNING SEVERE OFF Effective
(6]
®

org .apache solr.analysis BaseTokenFilterFactory INFO
org.apache.solr.analysis BaseTokenStreamFactory INFO
org .apache solr.analysis BaseTokenizerFactory INFO

® @@

) ®

org .apache solr.common.util. ConcurrentLRUCache INFO
org.apache.solr.core.Config

org .apache solr.core.CoreContainer

org .apache solr.core. JmxMonitoredMap
org.apache.solr.core RequestHandlers
org.apache solr.core SolrConfig

org.apache.solr.core.SolrCore
org .apache solr.core.SolrResourceLoader

®®

®

® 0o e e ®K

® ® @

org.apache.solr.handler.ReplicationHandler INFO
org .apache solrhandler.SnapPuller INFO
org.apache.solr.handler.XmlUpdateRequestHandler INFO

» O]

A

@
()
®
®
()
]
(-]
®
®
()
]
&
(=)
(=)
()
]
(-]
(=)
(=)
®
(=)
(-]
(=)
®
@

o] o [elielle] o [ellellollcllel[elle] o [e)le] o o fellelle] ¢ o o o lelle
ORJO(C|ICKAC|IC|O|CCCIOKAC O O C ORI C| O
©] o felielle] o [ellelicllellellolle] o [olle] ¢ o [ollclle] ¢ ¢ o o (o
©] o feliolle] o [ollelellellellolle] o [olle] ¢ o [ollolle] @ © o o (o]
@] o [elfolle] o [ollellollellel[olle] o [olle] & o follolle] ¢ o o olelle
@] o [elfelle] o [ollellcllcllollolle] o [olle] ¢ o [ellelfe] ¢ ¢ o o [0

ofg.apache solrhandlegadmin.Core AdminHandler) [INFO

The JDK Log Level Selector page.

The table below describes the various levels for logging used in JDK lodfiles. See "An Introduction
to the Java Logging API," O'Reilly Media,
http://www.onjava.com/pub/a/onjava/2002/06/19/log.html

Level Usage

SEVERE The highest value; intended for extremely important messages (such as fatal program
errors).

WARNING Intended for warning messages.
INFO Informational run-time messages.

CONFIG Informational messages about configuration settings.

Page 55 of 397

http://www.onjava.com/pub/a/onjava/2002/06/19/log.html

Solr Reference Guide Jan 10, 2012

FINE Used for greater detail when debugging/diagnosing problems.
FINEST The lowest value; provides the greatest detail.
ALL All messages.

OFF No messages.

Page 56 of 397

Solr Reference Guide Jan 10, 2012

The App Server Section

The App Server section of the Admin UI always displays a JAVA PROPERTI ES link and a THREAD
DUMP link. It may also display an ENABLE/ DI SABLE link, depending on the configuration of the
<admi n> block in the sol rconfi g. xni file.

The table below describes the links in the App Server section.

Link Description
JAVA Displays the properties of the Solr server's Java environment.
PROPERTIES

THREAD DUMP Displays a thread dump of the Solr server's Java HotSpot VM.

ENABLE/DISABLE Enables or disables the Solr application server by creating or removing the file
specified in the optional <heal t hcheck> tag in the <adnmi n> block of
sol rconfi g. xm . If the <heal t hcheck> tag is absent, the ENABLE/ DI SABLE

link does not appear in the Admin UI.

When using load balancers, this feature makes it easy to take a server in or
out of rotation by enabling or disabling the server and causing its healthcheck
to succeed or fail.

Displaying Java Properties

To see the properties of the Java Runtime Environment in which the Solr server is running, click
the JAVA PROPERTI ES link. The server reports Java configuration details, as shown below.

Page 57 of 397

Solr Reference Guide Jan 10, 2012

800 Mozilla Firefox
J. http:/ /localhost...t-properties.jsp H =
[Iocalhost:8983/solr/admin/get-properties.jsp v @] (S~ statin@) [(#r]

java.runtime.name = Java(TM}) SE Runtime Environment
sun.boot.library.path = /System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Libraries
java.vm.version = 20.1-b02-384

awt .nativeDoubleBuffering = true

gopherProxySet = false

mrj.build = 10M3425

java.vm.vendor = Apple Inc.

java.vendor.url = http://www.apple.com/

path.separator = :

java.vm.name = Java HotSpot{TM) 64-Bit Server VM

file.encoding.pkg = sun.io

user.country = US

sun.java.launcher = SUN_STANDARD

sun.os.patch.level = unknown

java.vm.specification.name = Java Virtual Machine Specification
user.dir = /Users/drewwheeler/apache-solr-3.4.0/example
java.runtime.version = 1.6.0_26-b03-384-10M3425
java.awt.graphicsenv = apple.awt.CGraphicsEnvironment
java.endorsed.dirs = /System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home/lib/endorsed
os.arch = xB6_64

java.ioc.tmpdir = /var/folders/GF/GFIu9b7KFvaulD0BHxZooU+++TL/-Tmp-/
line.separator =

java.vm.specification.vendor = Sun Microsystems Inc.

os.name = Mac 0S5 X

sun.jnu.encoding = MacRoman

java.library.path = .:/Library/Java/Extensions:/System/Library/Java/Extensions:/usr/lib/java
java.specification.name = Java Platform API Specification

java.class.version = 50.0

jetty.home = /Users/drewwheeler/apache-solr-3.4.0/example

sun.management.compiler = HotBpot 64-Bit Tiered Compilers

os.version = 10.6.8

http.nonProxyHosts = local|*.local|169.254/16|%.169.254/16

user.home = /Users/drewwheeler

user.timezone = America/Los_Angeles

java.awt.printerjob = apple.awt.CPrinterJcb

org.mortbay.jetty.Request .maxFormContentSize = 1000000

java.specification.version = 1.6

file.encoding = MacRoman

user.name = drewwheeler

java.class.path = /Users/drewwheeler/apache-solr-3.4.0/example/lib/jetty-6.1.26-patched-JETTY-1340.jar:/Users/drewwheeler/apache-solr-

java.vm.specification.version = 1.0

sun.arch.data.model = 64

java.home = /System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home
sun.java.command = /Users/drewwheeler/apache-solr-3.4.0/example/start. jar
java.specification.vendor = Sun Microsystems Inc.

user.language = en

awt.toolkit = apple.awt.CToolkit

java.vm.info mixed mode

java.version 1.6.0_26

java.ext.dirs = /Library/Java/Extensions:/System/Library/Java/Extensions:/System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/E
sun.boot.class.path = /System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Classes/jsfd. jar:/System/Library/Java/JavaVirtualMac
java.vendor = Apple Inc.

file.separator = /

java.vendor.url.bug = http://bugreport.apple.com/

sun.cpu.endian = little

sun.io.unicode.encoding = UnicodeLittle

mrj.version = 1060.1.6.0_26-384

socksNonProxyHosts = local|*.local|169.254/16|%.169.254/16

ftp.nonProxyHosts = local|*.local|169.254/16|*.169.254/16

sun.cpu.isalist =

e
The Java Properties display.

Displaying the Active Threads in the Java Environment

To see which threads are active in the Java Runtime Environment, click the THREAD DUMP link.

Page 58 of 397

Solr Reference Guide

Jan 10, 2012

eano Salr Info
Jso- Solr Info [+ L -
GE |sa~ localhost:B983 /salr fadmin/threaddump.jsp v | S/~ StartingQ J E]
O m
solr Admln () Apache -’0‘ |
Thread Dum |
P Solr j

example

Java HotSpot(TM) 64-Bit Server VM20.1-b02-384

‘Thread Count: current=18, peak=19, daemon=6

IFull Thread Dump:

'DestroyJavaVM' Id=27, RUNNABLE on lock=, total cpu time=1989.5820ms user time=1805.5550ms

'pool-1-thread-1' I1d=26, WAITING on lock=java.util.concurrent locks.AbstractQueuedSynchronizer$ConditionObject@1eb7d25, total cpu
time=65.9530ms user time=61.6950ms

at sun.misc.Unsafe. park(Native Method)

at java.util.concurrent locks LockSupport.park(LockSupport.java:158)

at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueued Synchronizer.java: 1987)

at java.util.concurrent. LinkedBlockingQueue.take(LinkedBlockingQueue.java:399)

at java.util.concurrent. ThreadPoolExecutor.getTask(ThreadPoolExecutor.java:947)

at java.util.concurrent. ThreadPoolExecutor§Worker.run(ThreadPoolExecutor.java:907)

at java.lang.Thread.run(Thread.java:680)

'"Timer-1' Id=24, TIMED_ WAITING on lock=java.util.TaskQueue@b65091f, total cpu time=4.7060ms user time=3.6790ms

at java.lang Object.wait(Native Method)

at java.util.TimerThread .mainl.oop(Timer.java:509)

at java.util. TimerThread .run(Timer.java:462)

"Poller SunPKCS11-Darwin' Id=23, TIMED_WAITING on lock=, total cpu time=89.5810ms user time=76.9280ms

at java.lang.Thread.sleep(Native Method)

at sun.security.pkes11.SunPKCS115TokenPoller.un(SunPKCS11 java:692)

at java.lang. Thread.run(Thread.java:680)

'1033068770@qtp-1715374531-9 - Acceptor(SocketConnector @0.0.0.0:8983' Id=22, RUNNABLE on lock=, total cpu time=30.8430ms user
time=27.7660ms

at java.net.PlainSocketImpl socketAccept(Native Method)

at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:408)

at java.net.ServerSocket.implAccept(ServerSocket.java:462)

at java.net.ServerSocket.accept(ServerSocket.java:430)

at org.mortbay.jetty.bio.SocketConnector.accept(SocketConnector.java:99)

at org.mortbay.jetty. AbstractConnector$ Acceptor.run({AbstractConnector java: 708)

at org.mortbay.thread.QueuedThreadPool$Pool Thread run(Quened ThreadPool java: 582)

'1500389297 @qtp-1715374531-8' Id=21, RUNNABLE on lock=, total epu time=685.1930ms user time=638.0560ms

at sun.management. ThreadImpl.getThreadInfol(Native Method)

at sun.management. ThreadImpl.getThreadInfo(ThreadImpl java: 154)

at org.apache.jsp.admin.threaddump_jsp._jspService(org.apache.jsp.admin.threaddump_jsp:264)

at org.apache.jasperruntime.HttpJspBase.service(HttpJspBase.java:109)

at javax.servlet.http . HitpServlet.service(HttpServlet.java:820)

at org.apache.jasper.servlet.JspServletWrapper.service(JspServletWrapper.java:389)

at org.apache.jasper.servlet.JspServlet.servicelspFile(JspServlet java:486)
at org.apache.jasper.servlet.JspServlet.service(JspServlet.java:380)
at javax.servlet.hitp . HitpServlet.service(HttpServlet.java:820)
I . T e B

The Thread Dump display.

T ST £ o I o b A bt [Py, et o i A

Enabling or Disabling the Server in a Load-balanced Configuration

This link is only displayed if a <heal t hcheck> directive appears in the <adni n> block of the

sol rconrfig. xm file. For example:

<heal t hcheck type="fil e">solr/conf/heal t hcheck. t xt </ heal t hcheck>

When using load balancers, the ENABLE/ DI SABLE link makes it easy to take a server in or out of

rotation by making a healthcheck succeed or fail.

Clicking ENABLE/ DI SABLE changes the contents of the healthcheck file:

Page 59 of 397

Solr Reference Guide Jan 10, 2012

http://localhost:8983/solr/admin/file/?file=healthcheck.txt

Changing the file toggles the function of the server, either enabling or disabling it for rotation with
the load balancer.

Page 60 of 397

http://localhost:8983/solr/admin/file/?file=healthcheck.txt

Solr Reference Guide

Jan 10, 2012

The Make a Query Section

You can use the Make a Query section of the Admin UI to submit a search query to the Solr
server and analyze the results. The server returns the query results to the browser as XML, as

shown in the following screen shot:

— <response>
— <lst name="responscHeader">
<int name="status">0</int>
<int name="QTime">0</int>
— <lst name="params">>
q">video</str>

n

<sir name=
</lst>
</lst>
— <result name="response" numFound="3" start="0">
— <doc>
— <arr name="cat">
<str>electronics</str>
<str>music</str>
</arr=>
— <arr name="features">
<str>iTunes, Podcasts, Audiobooks</str>
— <S§ir>
Stores up to 15,000 songs, 25,000 photos, or 150 hours of video
</str>
— <Str>
2.5-inch, 320x240 color TFT LCD display with LED backlight
</str>
<str>Up to 20 hours of battery life</str>
— <Sir>

Plays AAC, MP3, WAV, AIFF, Audible, Apple Lossless, H.264 video

</str>
— <str>

Notes, Calendar, Phone book, Hold button, Date display, Photo wallet, Built-in games, JPEG photo playback,

Upgradeable firmware, USB 2.0 compatibility, Playback speed control, Rechargeable capability, Battery level indication

</str>
</arr>
<str name="id">MA147LL/A</str>
<bool name="inStock">true</bool>
<str name="includes">earbud headphones, USB cable</str>
<str name="manu">Apple Computer Inc.</str>
<date name="manufacturedate_dt">2005-10-12T08:00:00Z</date>

<str name="name">Apple 60 GB iPod with Video Playback Black</str>

<int name="popularity">10</int>
<float name="price">399 O</float>
<str name="store">37.7752,-100.0232</str>
<float name="weight">3.5</float>
</doc>
— <doc>

Query results are displayed in XML.

Using the Full Interface to Submit Queries

For more control over the details of the query and its response, click the FULL | NTERFACE link. The

Solr server displays a new page like that shown below.

Page 61 of 397

Solr Reference Guide Jan 10, 2012

eanon Solr admin page
Solr admin page H_ + L

Js‘)‘i -
@E | sei localhost:8983 /solrjadmin /form.jsp v (E'] {8~ starinQ } @
Solr Admin (example) o,

»
Apache -
drews-macbook:8983 o
cwd=/Users/drewwheeler/apache-solr-3.4.0/example SolrHome=solr/./ SOI I"
HTTP caching is OFF

Filter Query

Start Row

Fields to Return

Query Type
Output Type
Debug: enable

Solr/Lucene Statement video

Maximum Rows Returned 10

*,score

] Note: you may need to "view source” in your browser to see explain() corvectly indented.

Debug: explain others Apply original query scoring to matches of this query to see how they compare.
Enable Highlighting
Fields to Highlight

=

This form d. strates the most query opti ilable for the built in Query Types. Please consult the Solr Wiki for additional Query Parameters.

The Full Search query interface.

The table below explains the fields in this form:

Field

Solr/Lucene

Description

The Lucene/Solr query to be submitted. For a description of query syntax, see

Statement Searching.

Start Row The offset into the query result starting at which documents should be returned.
The default value is 0, meaning that the query should return results starting with
the first document that matches. This field accepts the same syntax as the start
query parameter, which is described in Searching

Maximum The number of rows of results that should be displayed at one time for pagination.

Rows The default is 10. Accepts the same syntax as the rows query parameter.

Returned

Fields to Specifies a list of fields to return. Accepts the same syntax as the fl query

Return parameter.

Query Type Specifies the query handler for the request. If a query handler is not specified, Solr

processes the query with the standard query handler.

Page 62 of 397

Solr Reference Guide Jan 10, 2012

Response
Type

Debug:
enable

Debug:
explain
others

Enable
Highlighting

Fields to
Highlight

Specifies a response handler for the request. If a response handler is not specified,
Solr processes the response with the standard response handler.

Augments the query response with debugging information, including "explain info"
for each document returned. This debugging information is intended to be
intelligible to the administrator or programmer.

Accepts a Lucene query identifying a set of documents. If non-blank, the "explain
info" data of each document matching this query, relative the main query (specified
in the Solr/Lucene Statement field) will be returned along with the rest of the
debugging information.

Causes the query response to highlight the fields specified in the Fields to
Highlight box in the form.

Specifies which fields in the response to highlight, if highlighting is enabled.

Page 63 of 397

Solr Reference Guide Jan 10, 2012

The Assistance Section

The Assistance section includes the following links.

Link Description

DOCUMENTATION Navigates to the Apache Solr documentation hosted on
http://lucene.apache.org/solr/

ISSUES Navigates to the JIRA issue tracking server for the Apache Solr project. This
server resides at http://issues.apache.org/jira/browse/SOLR

SEND EMAIL Invokes the local email client to send email to solr-user@lucene.apache.org

SOLR QUERY Navigates to the Apache Wiki page describing the Solr query syntax:

SYNTAX http://wiki.apache.org/solr/SolrQuerySyntax

Page 64 of 397

http://lucene.apache.org/solr/
http://issues.apache.org/jira/browse/SOLR
http://wiki.apache.org/solr/SolrQuerySyntax

Solr Reference Guide Jan 10, 2012

Documents, Fields, and Schema Design

This section discusses how Solr organizes its data into documents and field, as well as how to work
with the Solr schema file, schena. xnl . It includes the following topics:

Overview of Documents, Fields, and Schema Design: An introduction to the concepts covered in
this section.

Solr Field Types: Detailed information about field types in Solr, including the field types in the
default Solr schema.

Defining Fields: Describes how to define fields in Solr.
Copying Fields: Describes how to copy fields in Solr.

Dynamic Fields: Information about using dynamic fields in Solr in order to catch and index fields
that do not exactly conform to other field definitions in your schema.

Other Schema Elements: Describes other important elements in the Solr schema: Unique Key,
Default Search Field, and the Query Parser Operator.

Putting the Pieces Together: A higher-level view of the Solr schema and how its elements work
together.

Page 65 of 397

Solr Reference Guide Jan 10, 2012

Overview of Documents, Fields, and Schema Design

The fundamental premise of Solr is simple. You give it a lot of information, then later you can ask it
questions and find the piece of information you want. The part where you feed in all the
information is called indexing or updating. When you ask a question, it's called a query.

One way to understand how Solr works is to think of a loose-leaf book of recipes. Every time you
add a recipe to the book, you update the index at the back. You list each ingredient and the page
number of the recipe you just added. Suppose you add one hundred recipes. Using the index, you
can very quickly find all the recipes that use garbanzo beans, or artichokes, or coffee, as an
ingredient. Using the index is much faster than looking through each recipe one by one. Imagine a
book of one thousand recipes, or one million.

Solr allows you to build an index with many different fields, or types of entries. The example above
shows how to build an index with just one field, i ngredi ents. You could have other fields in the
index for the recipe's cooking style, like Asi an, Caj un, or vegan, and you could have an index field
for preparation times. Solr can answer questions like "What Cajun-style recipes that have blood
oranges as an ingredient can be prepared in fewer than 30 minutes?"

The schema is the place where you tell Solr how it should build indexes from input documents.

How Solr Sees the World

Solr's basic unit of information is a document, which is a set of data that describes something. A
recipe document would contain the ingredients, the instructions, the preparation time, the cooking
time, the tools needed, and so on. A document about a person, for example, might contain the
person's name, biography, favorite color, and shoe size. A document about a book could contain
the title, author, year of publication, number of pages, and so on.

In the Solr universe, documents are composed of fields, which are more specific pieces of
information. Shoe size could be a field. First name and last name could be fields.

Fields can contain different kinds of data. A name field, for example, is text (character data). A
shoe size field might be a floating point humber so that it could contain values like 6 and 9.5.
Obviously, the definition of fields is flexible (you could define a shoe size field as a text field rather
than a floating point number, for example), but if you define your fields correctly, Solr will be able
to interpret them correctly and your users will get better results when they perform a query.

You can tell Solr about the kind of data a field contains by specifying its field type. The field type
tells Solr how to interpret the field and how it can be queried.

When you add a document, Solr takes the information in the document's fields and adds that
information to an index. When you perform a query, Solr can quickly consult the index and return
the matching documents.

Page 66 of 397

Solr Reference Guide Jan 10, 2012

Field Analysis

Field analysis tells Solr what to do with incoming data when building an index. A more accurate
name for this process would be processing or even digestion, but the official name is analysis.

Consider, for example, a biography field in a person document. Every word of the biography must
be indexed so that you can quickly find people whose lives have had anything to do with ketchup,
or dragonflies, or cryptography.

However, a biography will likely contains lots of words you don't care about and don't want
clogging up your index—words like "the," "a," "to," and so forth. Furthermore, suppose the
biography contains the word "Ketchup," capitalized at the beginning of a sentence. If a user makes
a query for "ketchup," you want Solr to tell you about the person even though the biography
contains the capitalized word.

The solution to both these problems is field analysis. For the biography field, you can tell Solr how
to break apart the biography into words. You can tell Solr that you want to make all the words
lower case, and you can tell Solr to remove accents marks.

Field analysis is an important part of a field type. Understanding Analyzers, Tokenizers, and Filters
is a detailed description of field analysis.

Page 67 of 397

Solr Reference Guide

Jan 10, 2012

Solr Field Types

The field type defines how Solr should interpret data in a field and how the field can be queried.
There are many field types included with Solr by default, and they can be defined locally also.

Topics covered in this section:

® Field Type Definitions in schema. xmi
Field Types Included with Solr
Working with Dates

Working with External Files

Field Type Properties

Field Properties by Use Case

Field Type Definitions in schema.xml

A field type includes four types of information:

® The name of the field type
® An implementation class name

® If the field type is Text Fi el d, a description of the field analysis for the field type

® Field attributes

In schema. xnl , the field types are defined in the types element. Here is an example of a field type

definition:

<fiel dType nane="text Tight" class="solr. TextFi el d"
posi ti onl ncrenent Gap="100" >
<anal yzer >
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr.SynonynFilterFactory"
synonyns="synonyns. txt" ignoreCase="true" expand="fal se"/>
<filter class="solr.WrdDelimterFilterFactory"
gener at eWr dPart s="0" gener at eNunber Part s="0"
cat enat eWrds="1" cat enat eNunbers="1" catenateAl|="0"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.Snowbal | PorterFilterFactory"
| anguage="Engl i sh" protected="protwords.txt"/>
<filter class="solr.RenmoveDuplicatesTokenFilterFactory"/>
</ anal yzer >
</fieldType>

Page 68 of 397

Solr Reference Guide

Jan 10, 2012

The first line in the example above contains the field type name, t ext Ti ght, and the name of the
implementing class, sol r. Text Fi el d. The rest of the definition is about field analysis, described in
Understanding Analyzers, Tokenizers, and Filters.

The implementing class is responsible for making sure the field is handled correctly. In the class
names in schema. xnm , the string solr is shorthand for or g. apache. sol r. schena or

or g. apache. sol r. anal ysi s. Therefore, sol r. Text Fi el d is really

or g. apache. sol r. schena. Text Fi el d.

Field Types Included with Solr

The following table lists the field types that are available in Solr. The or g. apache. sol r. schema
package includes all the classes listed in this table.

Class

BCDIntField

BCDLongField
BCDStrField
BinaryField

BoolField

ByteField
DateField
DoubleField

ExternalFileField

FloatField
IntField
Location
LongField

Point

Description

Binary-coded decimal (BCD) integer. BCD is a relatively inefficient encoding
that offers the benefits of quick decimal calculations and quick conversion to
a string.

BCD long integer
BCD string
Binary data

Contains either true or false. Values of "1", "t", or "T" in the first character
are interpreted as true. Any other values in the first character are
interpreted as false.

Contains an array of bytes.
Represents a point in time with millisecond precision. See the section below.
Double (64-bit IEEE floating point)

Pulls values from a file on disk. See the section below on working with
external files.

Floating point (32-bit IEEE floating point)

Integer (32-bit signed integer)

For spatial search: a latitude/longitude coordinate pair.
Long integer (64-bit signed integer)

For spatial search: An arbitrary n-dimensional point, useful for searching
sources such as blueprints or CAD drawings.

Page 69 of 397

Solr Reference Guide

Jan 10, 2012

RandomSortField

ShortField

Does not contain a value. Queries that sort on this field type will return
results in random order. Use a dynamic field to use this feature.

Short integer

SortableDoubleField The Sortable* fields provide correct numeric sorting. If you use the plain

SortableFloatField
SortableIntField
SortableLongField
StrField

TextField
TrieDateField
TrieDoubleField

TrieField

TrieFloatField
TrielntField
TrieLongField

UUIDField

types (Doubl eFi el d, I nt Fi el d, and so on) sorting will be lexicographical
instead of numeric.

Numerically sorted floating point

Numerically sorted integer

Numerically sorted long integer

String (UTF-8 encoded string or Unicode)

Text, usually multiple words or tokens

Date field accessible for Lucene TrieRange processing
Double field accessible Lucene TrieRange processing

If this type is used, a "type" attribute must also be specified, with a value of
either: integer, long, float, double, date. Using this field is the same as
using any of the Trie*Fields.

Floating point field accessible Lucene TrieRange processing
Int field accessible Lucene TrieRange processing
Long field accessible Lucene TrieRange processing

Universally Unique Identifier (UUID). Pass in a value of "NEW" and Solr will
create a new UUID.

Working with Dates

Dat eFi el d represents a point in time with millisecond precision. The format is:

YYYY- Mt DDThh: mm ssZ

YYYY is the year.
MMis the month.

DD is the day of the month.
hh is the hour of the day as on a 24-hour clock.

mmis minutes.
ss is seconds.

Page 70 of 397

Solr Reference Guide Jan 10, 2012

Note that no time zone can be specified; the time given should be expressed in Coordinated
Universal Time (UTC). Here is an example value:

1972-05-20T17: 33: 182

You can include fractional seconds if you wish, although trailing zeros are not allowed and any
precision beyond milliseconds will be ignored. Here is another example value with milliseconds
included:

1972-05-20T17: 33:18. 7727

In addition, Dat eFi el d also supports date math. This makes it easy to create times relative to the
current time. This represents a point in time two months from now:

+2MONTHS

This is one day ago:

- 1DAY

Use a slash to indicate rounding. This represents the beginning of the current hour:
/ HOUR

You can combine terms. The following is six months and three days in the future, at the beginning
of the day:

+6 MONTHS+3DAYS/ DAY

Working with External Files

Ext er nal Fi | eFi el d makes it possible to specify field values for documents in a file. For such a
field, the file contains mappings from a key field to the field value. Another way to think of this is
that, instead of specifying the field in documents as they are indexed, Solr finds values of this field
in the external file.

External fields are not searchable. They can be used only for function queries. For more
information on function queries, see Searching.

Ext ernal Fi | eFi el d is handy for cases where you want to update a particular field in many
documents more often than you want to update the rest of the documents. For example, suppose
you have some kind of document rank based on number of views. You might want to update the
rank of all the documents daily or hourly, while the rest of the contents of the documents might be
updated much less frequently.

Page 71 of 397

Solr Reference Guide Jan 10, 2012

Without Ext er nal Fi | eFi el d, you would need to update each document just to change the rank.
Using Ext er nal Fi | eFi el d is much more efficient because all document values for a particular field
are stored in an external file that can be updated as frequently as you wish.

An attribute in the field type declaration, val Type, specifies the actual type of the values that will
be found in the file. Note that only pfl oat fields are currently supported.

<fiel dType nane="entryRankFil e" keyFi el d="pkl d" defVal ="0"
stored="fal se" indexed="fal se"
class="solr.External Fil eFi el d" val Type="pfloat"/>

The file itself is located in Solr's index directory, which by default is dat a/ i ndex in the Solr home
directory. The name of the file should be _external _<fiel dname> or _external _<fi el dnane>. *.
For the example above, then, the file could be named _external entryRankFil e or _external _
entryRankFil e. txt.

. If any files using the name pattern .* appear, the last (after being sorted by name) will be
used and previous versions will be deleted. This behavior supports implementations on
systems where one may not be able to overwrite a file (for example, on Windows, if the file
is in use).

The file contains entries that map a key field, on the left of the equals sign, to a value, on the
right. Here are a few example entries:

doc33=1. 414
doc34=3. 14159
doc40=42

Field Type Properties

The field type class determines most of the behavior of a field type, but optional properties can
also be defined in schema. xnl . For example, the following definition of a date field type defines two
properties, sort M ssi ngLast and omi t Nor ns.

<fiel dType nane="date" class="solr. DateField"
sortM ssingLast="true" om tNorns="true"/>

Most properties are either true or false.

Here are some commonly used properties:

Page 72 of 397

Solr Reference Guide Jan 10, 2012

Field Property Description Values
indexed If true, the value of the field can be used in queries to true or
retrieve matching documents false
stored If true, the actual value of the field can be retrieved by true or
queries false
sortMissingFirst Control the placement of documents when a sort field is true or
sortMissinglLast not present. As of Solr 3.5, these work for all numeric false

fields, including Trie and date fields.

multiValued If true, indicates that a single document might contain true or
multiple values for this field type false
positionIncrementGap For multivalued fields, specifies a distance between integer

multiple values, which prevents spurious phrase matches

omitNorms If true, omits the norms associated with this field (this true or
disables length normalization and index-time boosting for false
the field, and saves some memory). Only full-text fields or
fields that need an index-time boost need norms.

omitTermFregAndPositions If true, omits term frequency, positions, and payloads from true or
postings for this field. This can be a performance boost for false
fields that don't require that information. It also reduces
the storage space required for the index. Queries that rely
on position that are issued on a field with this option will
silently fail to find documents. This property defaults to
true for all fields that are not text fields.

autoGeneratePhraseQueries For text fields. If true, Solr automatically generates phrase
queries for adjacent terms. If false, terms must be
enclosed in double-quotes to be treated as phrases.

Field Properties by Use Case

Here is a summary of available options on a field, broken down by use case. A true or false
indicates that the option must be set to the given value for the use case to function correctly.

Use Case indexed stored multiValued omitNorms termVectors termPositions
search within true

field

retrieve contents true

Page 73 of 397

Solr Reference Guide

Jan 10, 2012

use as unique true
key
sort on field true

use field boosts

[5]

document boosts
affect searches
within field

highlighting true [4] true
faceting [5] true

add multiple
values,
maintaining
order

field length
affects doc score

MoreLikeThis [5]

Notes:

: (if termVectors=true)

AU h~h WN -

: Recommended but not necessary.
: Will be used if present, but not necessary.

false

false

true

true [1]
false
false
[2]
false
true [6]

: A tokenizer must be defined for the field, but it doesn't need to be indexed.
: Described in Understanding Analyzers, Tokenizers, and Filters.
: Term vectors are not mandatory here. If not true, then a stored field is analyzed. So term

vectors are recommended, but only required if stored=false.

true [3]

Page 74 of 397

Solr Reference Guide Jan 10, 2012

Defining Fields

Once you have the field types set up just the way you like, defining the fields themselves is simple.
All you do is supply a name and a field type. If you wish, you can also provide options that will
override the options for the field type.

Fields are defined in the fields element of schema. xnl . The following example defines a field named
price with a type of sfl oat .

<field nane="price" type="sfloat" indexed="true" stored="true"/>

Fields can have the same options as field types. The field type options serve as defaults which can
be overridden by options defined per field.

Page 75 of 397

Solr Reference Guide Jan 10, 2012

Copying Fields

You might want to interpret some document fields in more than one way. Solr has a mechanism for
making copies of fields so that you can apply several distinct field types to a single piece of
incoming information. For Linux shell geeks, this is something like t ee.

The name of the field you want to copy is the source, and the name of the copy is the destination.
In schema. xm , it's very simple to make copies of fields:

<copyFi el d source="cat" dest="text" maxChars="30000" />

If the text field has data of its own in input documents, the contents of cat will be added to the
index for text. The maxChar s parameter, an i nt parameter, establishes an upper limit for the
number of characters to be copied. This limit is useful for situations in which you want to control
the size of index files.

Both the source and the destination of copyFi el d can contain asterisks, which will match anything.
For example, the following line will copy the contents of all incoming fields that match the wildcard
pattern *t to the text field.:

<copyField source="*_t" dest="text" maxChars="25000" />

% The copyFi el d command can use a wildcard (*) character in the dest parameter only if
the source parameter contains one as well. copyFi el d uses the matching glob from the
source field for the dest field name into which the source content is copied.

Page 76 of 397

Solr Reference Guide Jan 10, 2012

Dynamic Fields

Dynamic fields allow Solr to index fields that you did not explicitly define in your schema. This is
useful if you discover you have forgotten to define one or more fields. Dynamic fields can make
your application less brittle by providing some flexibility in the documents you can add to Solr.

A dynamic field is just like a regular field except it has a name with a wildcard in it. When you are
indexing documents, a field that does not match any explicitly defined fields can be matched with a
dynamic field.

For example, suppose your schema includes a dynamic field with a name of *_i . If you attempt to
index a document with a cost _i field, but no explicit cost _i field is defined in the schema, then
the cost _i field will have the field type and analysis defined for * i .

Dynamic fields are also defined in the fields element of schema. xnl . Like fields, they have a name,
a field type, and options.

<dynami cField name="*_i" type="sint" indexed="true" stored="true"/>

Lucid Imagination recommends that you include basic dynamic field mappings (like that shown
above) in your schema. xm . The mappings can be very useful.

Page 77 of 397

Solr Reference Guide Jan 10, 2012

Other Schema Elements

This section describes several other important elements of schema. xni .

Unique Key

The uni queKey element specifies which field is a unique identifier for documents. Although

uni queKey is not required, it is nearly always warranted by your application design. For example,
uni queKey should be used if you will ever update a document in the index. For more information,
consult the Solr Wiki at http://wiki.apache.org/solr/UniqueKey.

You can define the unique key field by naming it:

<uni queKey>i d</ uni queKey>

Default Search Field

If you are using the Lucene query parser, queries that don't specify a field name will use the
def aul t Sear chFi el d. The DisMax and Extended DisMax query parsers do not use this value. For
more information about query parsers, see Searching.

Just name a field to use it as the default search field:

<def aul t Sear chFi el d>t ext </ def aul t Sear chFi el d>

Query Parser Operator

In queries with multiple terms, Solr can either return results where all conditions are met or where
one or more conditions are met. The operator controls this behavior. An operator of AND means
that all conditions must be fulfilled, while an operator of OR means that one or more conditions
must be true.

In schema. xm , use the sol r Quer yPar ser element to control what operator is used if an operator
is not specified in the query. The default operator setting only applies to the Lucene query parser,
not the DisMax or Extended DisMax query parsers, which internally hard-code their operators to
OR.

<sol r QueryPar ser defaul t Operator="0R"'/>

Page 78 of 397

http://wiki.apache.org/solr/UniqueKey

Solr Reference Guide Jan 10, 2012

Putting the Pieces Together

At the highest level, schema. xnl is structured as follows. This example is not real XML, but it gives
you an idea of the important parts of the file.

<schenma>
<types>
<fields>
<uni queKey>
<def aul t Sear chFi el d>
<sol r QueryPar ser def aul t Oper at or >
<copyFi el d>
</ schema>

Obviously, most of the excitement is in types and fields, where the field types and the actual field
definitions live. These are supplemented by copyFi el ds. Sandwiched between fields and the
copyFi el d section are the unique key, default search field, and the default query operator.

For more information about schema. xm , see http://wiki.apache.org/solr/SchemaXml.

Choosing Appropriate Numeric Types

For general numeric needs, use the sortable field types, Sort abl el nt Fi el d, Sort abl eLongFi el d,
Sort abl eFl oat Fi el d, and Sort abl eDoubl eFi el d. These field types will sort numerically instead of
lexicographically, which is the main reason they are preferable over their simpler cousins,

I nt Fi el d, LongFi el d, Fl oat Fi el d, and Doubl eFi el d.

If you expect users to make frequent range queries on numeric types, consider using Tri eFi el d. It
offers faster speed for range queries at the expense of increasing index size.

Working With Text

Handling text properly will make your users happy by providing them with the best possible results
for text searches.

One technique is using a text field as a catch-all for keyword searching. Most users are not
sophisticated about their searches and the most common search is likely to be a simple keyword
search. You can use copyFi el d to take a variety of fields and funnel them all into a single text field
for keyword searches. In the example schema representing a store, copyFi el d is used to dump the
contents of cat, nane, manu, f eat ures, and i ncl udes into a single field, t ext . In addition, it could
be a good idea to copy | Dinto t ext in case users wanted to search for a particular product by
passing its product humber to a keyword search.

Page 79 of 397

http://wiki.apache.org/solr/SchemaXml

Solr Reference Guide Jan 10, 2012

Another technique is using copyFi el d to use the same field in different ways. Suppose you have a
field that is a list of authors, like this:

Schildt, Herbert; Wl pert, Lewis; Davies, P.

For searching by author, you could tokenize the field, convert to lower case, and strip out
punctuation:

schildt / herbert / wolpert / lewis / davies / p

For sorting, just use an untokenized field, converted to lower case, with punctuation stripped:
schildt herbert wol pert lewis davies p

Finally, for faceting, use the primary author only via a Stri ngFi el d:

Schil dt, Herbert

Page 80 of 397

Solr Reference Guide Jan 10, 2012

Understanding Analyzers, Tokenizers, and
Filters

This sections describes how Solr breaks down and works with textual data. It covers the following
topics:

Overview of Analyzers, Tokenizers, and Filters: A conceptual introduction to Solr's analyzers,
tokenizers, and filters.

What Is An Analyzer?: Detailed conceptual information about Solr analyzers.
What Is A Tokenizer?: Detailed conceptual information about Solr tokenizers.
What Is a Filter?: Detailed conceptual information about Solr filters.

Tokenizers: Information about configuring tokenizers, and about the tokenizer factory classes
included in this distribution of Solr.

Filter Descriptions: Information about configuring filters, and about the filter factory classes
included in this distribution of Solr.

CharfFilterFactories: Information about filters for pre-processing input characters.

Language Analysis: Information about tokenizers and filters for character set conversion or for use
with specific languages.

Running Your Analyzer: Detailed information about testing and running your Solr analyzer.

Page 81 of 397

Solr Reference Guide Jan 10, 2012

Overview of Analyzers, Tokenizers, and Filters

Field analyzers are used both during ingestion, when a document is indexed, and at query time. An
analyzer examines the text of fields and generates a token stream. Analyzers may be a single class
or they may be composed of a series of tokenizer and filter classes.

Tokenizers break field data into lexical units, or tokens. Filters examine a stream of tokens and
keep them, transform or discard them, or create new ones. Tokenizers and filters may be
combined to form pipelines, or chains, where the output of one is input to the next. Such a
sequence of tokenizers and filters is called an analyzer and the resulting output of an analyzer is
used to match query results or build indices.

Although the analysis process is used for both indexing and querying, the same analysis process
need not be used for both operations. For indexing, you often want to simplify, or normalize,
words. For example, setting all letters to lowercase, eliminating punctuation and accents, mapping
words to their stems, and so on. Doing so can increase recall because, for example, "ram", "Ram"
and "RAM" would all match a query for "ram". To increase query-time precision, a filter could be
employed to narrow the matches by, for example, ignoring all-cap acronyms if you're interested in
male sheep, but not Random Access Memory.

The tokens output by the analysis process define the values, or terms, of that field and are used
either to build an index of those terms when a new document is added, or to identify which
documents contain the terms your are querying for.

This section will show you how to configure field analyzers and also serves as a reference for the
details of configuring each of the available tokenizer and filter classes. It also serves as a guide so
that you can configure your own analysis classes if you have special needs that cannot be met with
the included filters or tokenizers.

For more information on Solr's analyzers, tokenizers, and filters, see
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters.

Page 82 of 397

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Solr Reference Guide Jan 10, 2012

What Is An Analyzer?

An analyzer examines the text of fields and generates a token stream. Analyzers are specified as a
child of the <fi el dType> element in the schema. xml configuration file that can be found in the
sol r/ conf directory, or wherever sol rconfi g. xm is located.

In normal usage, only fields of type sol r. Text Fi el d will specify an analyzer. The simplest way to
configure an analyzer is with a single <anal yzer > element whose class attribute is a fully qualified
Java class name. The named class must derive from or g. apache. | ucene. anal ysi s. Anal yzer . For
example:

<fiel dType nane="nanmetext" class="solr. TextField">
<anal yzer cl ass="org. apache. | ucene. anal ysi s. Wi t espaceAnal yzer"/>
</fieldType>

In this case a single class, Wi t espaceAnal yzer, is responsible for analyzing the content of the
named text field and emitting the corresponding tokens. For simple cases, such as plain English
prose, a single analyzer class like this may be sufficient. But it's often necessary to do more
complex analysis of the field content.

Even the most complex analysis requirements can usually be decomposed into a series of discrete,
relatively simple processing steps. As you will soon discover in Sections and , the Solr distribution
comes with a large selection of tokenizers and filters that covers most scenarios you are likely to
encounter. Setting up an analyzer chain is very straightforward; you specify a simple <anal yzer >
element (no class attribute) with child elements that name factory classes for the tokenizer and
filters to use, in the order you want them to run.

For example:

<fiel dType nane="nanetext" class="solr. TextField">
<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.StandardFilterFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory"/>
<filter class="solr.EnglishPorterFilterFactory"/>
</ anal yzer >
</fieldType>

Note that classes in the or g. apache. sol r. anal ysi s package may be referred to here with the
shorthand sol r. prefix.

Page 83 of 397

Solr Reference Guide Jan 10, 2012

In this case, no Analyzer class was specified on the <anal yzer > element. Rather, a sequence of
more specialized classes are wired together and collectively act as the Analyzer for the field. The
text of the field is passed to the first item in the list (sol r. St andar dTokeni zer Fact ory), and the
tokens that emerge from the last one (sol r. Engl i shPorterFil terFactory) are the terms that are
used for indexing or querying any fields that use the "nametext" fi el dType.

Analysis Phases

Analysis takes place in two contexts. At index time, when a field is being created, the token stream
that results from analysis is added to an index and defines the set of terms (including positions,
sizes, and so on) for the field. At query time, the values being searched for are analyzed and the
terms that result are matched against those that are stored in the field's index.

In many cases, the same analysis should be applied to both phases. This is desirable when you
want to query for exact string matches, possibly with case-insensitivity, for example. In other
cases, you may want to apply slightly different analysis steps during indexing than those used at
query time.

If you provide a simple <anal yzer > definition for a field type, as in the examples above, then it will
be used for both indexing and queries. If you want distinct analyzers for each phase, you may
include two <anal yzer > definitions distinguished with a type attribute. For example:

<fiel dType nane="nanetext" class="solr. TextFiel d">
<anal yzer *type="index"{*}>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.KeepWrdFilterFactory" words="keepwords.txt"/>
<filter class="solr.SynonynFilterFactory" synonyns="syns.txt"/>
</ anal yzer >
<anal yzer *type="query"{*}>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
</fieldType>

In this theoretical example, at index time the text is tokenized, the tokens are set to lowercase,
any that are not listed in keepwor ds. t xt are discarded and those that remain are mapped to
alternate values as defined by the synonym rules in the file syns. t xt . This essentially builds an
index from a restricted set of possible values and then normalizes them to values that may not
even occur in the original text.

Page 84 of 397

Solr Reference Guide Jan 10, 2012

At query time, the only normalization that happens is to convert the query terms to lowercase. The
filtering and mapping steps that occur at index time are not applied to the query terms. Queries

must then, in this example, be very precise, using only the normalized terms that were stored at
index time.

Page 85 of 397

Solr Reference Guide Jan 10, 2012

What Is A Tokenizer?

The job of a tokenizer is to break up a stream of text into tokens, where each token is (usually) a
sub-sequence of the characters in the text. An analyzer is aware of the field it is configured for, but
a tokenizer is not. Tokenizers read from a character stream (a Reader) and produce a sequence of
Token objects (a TokenStream).

Characters in the input stream may be discarded, such as whitespace or other delimiters. They
may also be added to or replaced, such as mapping aliases or abbreviations to normalized forms. A
token contains various metadata in addition to its text value, such as the location at which the
token occurs in the field. Because a tokenizer may produce tokens that diverge from the input text,
you should not assume that the text of the token is the same text that occurs in the field, or that
its length is the same as the original text. It's also possible for more than one token to have the
same position or refer to the same offset in the original text. Keep this in mind if you use token
metadata for things like highlighting search results in the field text.

<fiel dType nane="text" class="solr. TextField">
<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
</ anal yzer >
</fieldType>

The class named in the <tokenizer> element is not the actual tokenizer, but rather a class that
implements the or g. apache. sol r. anal ysi s. Tokeni zer Fact ory interface. This factory class will
be called upon to create new tokenizer instances as needed. Objects created by the factory must
derive from or g. apache. | ucene. anal ysi s. TokenSt r eam which indicates that they produce
sequences of tokens. If the tokenizer produces tokens that are usable as-is, it may be the only
component of the analyzer. Otherwise, the tokenizer's output tokens will serve as input to the first
filter stage in the pipeline.

Page 86 of 397

Solr Reference Guide Jan 10, 2012

What Is a Filter?

Like tokenizers, filters consume input and produce a stream of tokens. Filters also derive from

org. apache. | ucene. anal ysi s. TokenSt r eam Unlike tokenizers, a filter's input is another
TokenStream. The job of a filter is usually easier than that of a tokenizer since in most cases a
filter looks at each token in the stream sequentially and decides whether to pass it along, replace it
or discard it.

A filter may also do more complex analysis by looking ahead to consider multiple tokens at once,
although this is less common. One hypothetical use for such a filter might be to normalize state
names that would be tokenized as two words. For example, the single token "california" would be
replaced with "CA", while the token pair "rhode" followed by "island" would become the single
token "RI".

Because filters consume one TokenSt r eamand produce a new TokenSt r eam they can be chained
one after another indefinitely. Each filter in the chain in turn processes the tokens produced by its
predecessor. The order in which you specify the filters is therefore significant. Typically, the most
general filtering is done first, and later filtering stages are more specialized.

<fiel dType nane="text" class="solr. TextField">
<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr. StandardFilterFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.EnglishPorterFilterFactory"/>
</ anal yzer >
</fieldType>

This example starts with Solr's standard tokenizer, which breaks the field's text into tokens. Those
tokens then pass through Solr's standard filter, which removes dots from acronyms, and performs
a few other common operations. All the tokens are then set to lowercase, which will facilitate
case-insensitive matching at query time.

The last filter in the above example is a stemmer filter that uses the Porter stemming algorithm. A
stemmer is basically a set of mapping rules that maps the various forms of a word back to the
base, or stem, word from which they derive. For example, in English the words "hugs", "hugging"
and "hugged" are all forms of the stem word "hug". The stemmer will replace all of these terms
with "hug", which is what will be indexed. This means that a query for "hug" will match the term
"hugged", but not "huge".

Conversely, applying a stemmer to your query terms will allow queries containing non stem terms,
like "hugging", to match documents with different variations of the same stem word, such as
"hugged". This works because both the indexer and the query will map to the same stem ("hug").

Page 87 of 397

Solr Reference Guide Jan 10, 2012

Word stemming is, obviously, very language specific. Solr includes several language-specific
stemmers created by the Snowball generator that are based on the Porter stemming algorithm.
The generic Snowball Porter Stemmer Filter can be used to configure any of these language
stemmers. Solr also includes a convenience wrapper for the English Snowball stemmer. There are
also several purpose-built stemmers for non-English languages. These stemmers are described in
Language Analysis.

Page 88 of 397

http://snowball.tartarus.org/

Solr Reference Guide Jan 10, 2012

Tokenizers

You configure the tokenizer for a text field type in schenma. xnm with a <t okeni zer > element, as a
child of <anal yzer >:

<fiel dType nane="text" class="solr. TextField">
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.StandardFilterFactory"/>
</ anal yzer >
</fieldType>

The class attribute names a factory class that will instantiate a tokenizer object when needed.
Tokenizer factory classes implement the or g. apache. sol r. anal ysi s. Tokeni zer Factory. A
TokenizerFactory's cr eat e() method accepts a Reader and returns a TokenStream. When Solr
creates the tokenizer it passes a Reader object that provides the content of the text field.

Arguments may be passed to tokenizer factories by setting attributes on the <t okeni zer > element.

<fiel dType nane="semi col onDel i mted" class="solr. TextField">
<anal yzer type="query">
<t okeni zer cl ass="solr. PatternTokeni zer Factory" pattern="; "/>
<anal yzer >

</fieldType>

The following sections describe the tokenizer factory classes included in this release of Solr.

For more information about Solr's tokenizers, see
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters.

Page 89 of 397

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Solr Reference Guide

Jan 10, 2012

Tokenizers discussed in this section:

Standard Tokenizer

Classic Tokenizer

Keyword Tokenizer

Letter Tokenizer

Lower Case Tokenizer
N-Gram Tokenizer

Edge N-Gram Tokenizer
ICU Tokenizer

Path Hierarchy Tokenizer
Regular Expression Pattern Tokenizer
UAX29 URL Email Tokenizer
White Space Tokenizer

Standard Tokenizer

This tokenizer splits the text field into tokens, treating whitespace and punctuation as delimiters.

Delimiter characters are discarded, with the following exceptions:

Periods (dots) that are not followed by whitespace are kept as part of the token.

Words are split at hyphens, unless there is a number in the word, in which case the token is

not split and the numbers and hyphen(s) are preserved.

Recognizes Internet domain names and email addresses and preserves them as a single
token.

The Standard Tokenizer supports Unicode standard annex UAX#29 word boundaries with the
following token types: <ALPHANUM>, <NUM>, <SOUTHEAST_ASI AN>, <| DEOGRAPHI C>, and <H RAGANA>.

Factory class: solr.StandardTokenizerFactory

Arguments:

maxTokenLength: (integer, default 255) Solr ignores tokens that exceed the number of characters
specified by maxTokenLengt h.

Example:

Page 90 of 397

http://unicode.org/reports/tr29/#Word_Boundaries

Solr Reference Guide Jan 10, 2012

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
</ anal yzer >

In: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

Out: "Please"”, "email", "john.doe@foo.com”, "by", "03-09", "re", "m37-xq"

Classic Tokenizer

The Classic Tokenizer preserves the same behavior as the Standard Tokenizer of Solr versions 3.1
and previous. It does not use the Unicode standard annex UAX#29 word boundary rules that the
Standard Tokenizer uses. This tokenizer splits the text field into tokens, treating whitespace and
punctuation as delimiters. Delimiter characters are discarded, with the following exceptions:

® Periods (dots) that are not followed by whitespace are kept as part of the token.

® Words are split at hyphens, unless there is a number in the word, in which case the token is
not split and the numbers and hyphen(s) are preserved.

® Recognizes Internet domain names and email addresses and preserves them as a single
token.

Factory class: solr.ClassicTokenizerFactory

Arguments:

maxTokenlLength: (integer, default 255) Solr ignores tokens that exceed the number of characters
specified by maxTokenLengt h.

Example:

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
</ anal yzer >

In: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

n n

Out: "Please", "email", "john.doe@foo.com", "by", "03-09", "re", "m37-xq'

Keyword Tokenizer

This tokenizer treats the entire text field as a single token.

Factory class: solr.KeywordTokenizerFactory

Page 91 of 397

http://unicode.org/reports/tr29/#Word_Boundaries

Solr Reference Guide Jan 10, 2012

Arguments: None

Example:

<anal yzer>
<t okeni zer cl ass="sol r. Keywor dTokeni zer Factory"/ >
</ anal yzer >

In: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

Out: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

Letter Tokenizer

This tokenizer creates tokens from strings of contiguous letters, discarding all non-letter
characters.

Factory class: solr.LetterTokenizerFactory
Arguments: None

Example:

<anal yzer >
<t okeni zer class="solr. LetterTokeni zerFactory"/>
</ anal yzer >

In: "I can't."

out: ||Ill, "Can", llt“

Lower Case Tokenizer

Tokenizes the input stream by delimiting at non-letters and then converting all letters to lowercase.
Whitespace and non-letters are discarded.

Factory class: sol r. Lower CaseTokeni zer Fact ory
Arguments: None

Example:

<anal yzer >
<t okeni zer cl ass="sol r. Lower CaseTokeni zer Fact ory"/ >
</ anal yzer >

Page 92 of 397

Solr Reference Guide Jan 10, 2012

In: "I just LOVE my iPhone!"

Out: "i", "just", "love", "my", "iphone"

N-Gram Tokenizer

Reads the field text and generates n-gram tokens of sizes in the given range.

Factory class: sol r. NG aniTokeni zer Fact ory

Arguments:

minGramSize: (integer, default 1) The minimum n-gram size, must be > 0.

maxGramSize: (integer, default 2) The maximum n-gram size, must be >= maxGramSize.
Example:

Default behavior. Note that this tokenizer operates over the whole field. It does not break the field
at whitespace. As a result, the space character is included in the encoding.

<anal yzer>
<t okeni zer cl ass="sol r. NG anfTokeni zer Factory"/>
</ anal yzer >

In: "hey man"

n n n n n n n n

out: ||h", "e", llyll, n ll, "m||, |la , n", "he", "ey , y , m ,

ma", "an"

Example:

With an n-gram size range of 4 to 5:

<anal yzer >
<t okeni zer cl ass="sol r. NG anmTokeni zer Factory" mnmi nG anfSi ze="4" maxG anSi ze="5"/>
</ anal yzer >

In: "bicycle"

Out: "bicy", "icyc", "cycl", "ycle", "bicyc", "icycl", "cycle"

Edge N-Gram Tokenizer

Reads the field text and generates edge n-gram tokens of sizes in the given range.

Factory class: sol r. EdgeNGr aniTokeni zer Fact ory

Page 93 of 397

Solr Reference Guide Jan 10, 2012

Arguments:
minGramSize: (integer, default 1) The minimum n-gram size, must be > 0.
maxGramSize: (integer, default 1) The maximum n-gram size, must be >= maxGramSize.

side: ("front" or "back", default "front") Whether to compute the n-grams from the beginning
(front) of the text or from the end (back).

Example:

Default behavior (min and max default to 1):

<anal yzer>
<t okeni zer cl ass="sol r. EdgeNG anifokeni zer Fact ory"/ >
</ anal yzer >

In: "babaloo"
Out: "b"
Example:

Edge n-gram range of 2to 5

<anal yzer >
<t okeni zer cl ass="sol r. EdgeNG anTTokeni zer Fact ory" m nG anfSi ze="2" maxG anSi ze="5"/>
</ anal yzer >

In: "babaloo"
Out:"ba", "bab", "baba", "babal"
Example:

Edge n-gram range of 2 to 5, from the back side:

<anal yzer >

<t okeni zer cl ass="sol r. EdgeNG aniTokeni zer Fact ory" m nG anfSi ze="2" maxG& anti ze="5"
si de="back"/ >
</ anal yzer >

In: "babaloo"

Out: "o00", "loo", "aloo", "baloo"

Page 94 of 397

Solr Reference Guide Jan 10, 2012

ICU Tokenizer

This tokenizer processes multilingual text and tokenizes it appropriately based on its script
attribute.

Factory class: solr.ICUTokenizerFactory
Arguments: None

Example:

<anal yzer >
<t okeni zer cl ass="sol r. | CUTokeni zer Factory"/>
</ anal yzer >

In: "Testing

Out: "Testing", "", "",

Path Hierarchy Tokenizer

This tokenizer creates synonyms from file path hierarchies.
Factory class: solr.PathHierarchyTokenizerFactory
Arguments:

delimiter: (character, no default) You can specify the file path delimiter and replace it with a
delimiter you provide. This can be useful for working with backslash delimiters.

replace: (character, no default) Specifies the delimiter character Solr uses in the tokenized output.

Example:

<fiel dType nane="text_path" class="sol r. Text Fi el d" positionl ncrenent Gap="100">
<anal yzer>
<t okeni zer cl ass="solr. Pat hHi erarchyTokeni zer Factory" delimter="\" replace="/"/>
</ anal yzer >
</fieldType>

In: "c:\usr\local\apache"

Out: "c:", "c:/usr", "c:/usr/local", "c:/usr/local/apache"

Regular Expression Pattern Tokenizer

Page 95 of 397

Solr Reference Guide Jan 10, 2012

This tokenizer uses a Java regular expression to break the input text stream into tokens. The
expression provided by the pattern argument can be interpreted either as a delimiter that
separates tokens, or to match patterns that should be extracted from the text as tokens.

See the Javadocs for java.util.regex.Pattern for more information on Java regular expression
syntax.

Factory class: sol r. Patt ernTokeni zer Factory
Arguments:
pattern: (Required) The regular expression, as defined by in java. util.regex. Pattern.

group: (Optional, default -1) Specifies which regex group to extract as the token(s).The value -1
means the regex should be treated as a delimiter that separates tokens.Non-negative group
numbers (>= 0) indicate that character sequences matching that regex group should be converted
to tokens. Group zero refers to the entire regex, groups greater than zero refer to parenthesized
sub-expressions of the regex, counted from left to right.

Example:

A comma separated list. Tokens are separated by a sequence of zero or more spaces, a comma,
and zero or more spaces.

<anal yzer>
<t okeni zer class="solr. PatternTokeni zer Factory" pattern="\s*, \s*"/>
</ anal yzer >

In: "fee,fie, foe , fum, foo"
out: |Ifee", Ilfie", ||f0e|I, Ilfum", Ilfooll
Example:

Extract simple, capitalized words. A sequence of at least one capital letter followed by zero or more
letters of either case is extracted as a token.

<anal yzer>

<t okeni zer class="solr. PatternTokeni zer Factory" pattern="\[A-Z\]\[A-Za-z\]"
group="0"/>
</ anal yzer >

In: "Hello. My name is Inigo Montoya. You killed my father. Prepare to die."

Out: "Hello", "My", "Inigo", "Montoya". "You", "Prepare"

Page 96 of 397

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

Solr Reference Guide Jan 10, 2012

Example:

Extract part numbers which are preceded by "SKU", "Part" or "Part Number", case sensitive, with
an optional semi-colon separator. Part numbers must be all humeric digits, with an optional
hyphen. Regex capture groups are numbered by counting left parenthesis from left to right. Group
3 is the subexpression "[0-9-]+", which matches one or more digits or hyphens.

<anal yzer >

<t okeni zer cl ass="solr. PatternTokeni zer Fact ory"
pattern="(SKUl Part (\ sNunber)?): 2\ s(\[0-9-\]+)" group="3"/>
</ anal yzer >

In: "SKU: 1234, Part Number 5678, Part: 126-987"

Out: "1234", "5678", "126-987"

UAX29 URL Email Tokenizer

This tokenizer splits the text field into tokens, treating whitespace and punctuation as delimiters.
Delimiter characters are discarded, with the following exceptions:

® Periods (dots) that are not followed by whitespace are kept as part of the token.

® Words are split at hyphens, unless there is a number in the word, in which case the token is
not split and the numbers and hyphen(s) are preserved.

® Recognizes top-level (.com) Internet domain names; email addresses; file:://,
http(s)://,and ftp:// addresses; IPv4 and IPv6 addresses; and preserves them as a
single token.

The UAX29 URL Email Tokenizer supports Unicode standard annex UAX#29 word boundaries with
the following token types: <ALPHANUM>, <NUM>, URL, EMAI L, <SOUTHEAST_ASI AN>, <| DEOGRAPHI C>,
and <H RAGANA>.

Factory class: solr.UAX29URLEmailTokenizerFactory
Arguments:

maxTokenLength: (integer, default 255) Solr ignores tokens that exceed the number of characters
specified by maxTokenLengt h.

Example:

Page 97 of 397

http://unicode.org/reports/tr29/#Word_Boundaries

Solr Reference Guide Jan 10, 2012

<anal yzer >
<t okeni zer cl ass="sol r. UAX29URLEni | Tokeni zer Fact ory"/ >
</ anal yzer >

In: "Visit http://accarol.com/contact.htm?from=external&a=10 or e-mail
bob.cratchet@accarol.com"

Out: "Visit", "http://accarol.com/contact.htm?from=external&a=10", "or", "email",
"bob.cratchet@accarol.com"

White Space Tokenizer

Simple tokenizer that splits the text stream on whitespace and returns sequences of
non-whitespace characters as tokens. Note that any punctuation wil/l be included in the
tokenization.

Factory class: sol r. Wi t espaceTokeni zer Fact ory
Arguments: None

Example:

<anal yzer>
<t okeni zer cl ass="sol r. \WitespaceTokeni zer Factory"/>
</ anal yzer >

In: "To be, or what?"

out: |ITOIII Ilbe,“I Ilorlll IlWhat?ll

Page 98 of 397

http://accarol.com/contact.htm?from=external&a=10

Solr Reference Guide Jan 10, 2012

Filter Descriptions

You configure each filter with a <fi |t er > element in schena. xnl as a child of <anal yzer >,
following the <t okeni zer > element. Filter definitions should follow a tokenizer or another filter
definition because they take a TokenSt r eamas input. For example.

<fiel dType nane="text" class="solr. TextField">
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>..
</ anal yzer >
</fieldType>

The class attribute names a factory class that will instantiate a filter object as needed. Filter factory
classes must implement the or g. apache. sol r. anal ysi s. TokenFi | t er Fact ory interface. Like
tokenizers, filters are also instances of TokenStream and thus are producers of tokens. Unlike
tokenizers, filters also consume tokens from a TokenStream. This allows you to mix and match
filters, in any order you prefer, downstream of a tokenizer.

Arguments may be passed to tokenizer factories to modify their behavior by setting attributes on
the <fil t er> element. For example:

<fiel dType nane="semi col onDel i m ted" class="solr. T TextField">
<anal yzer type="query">
<t okeni zer cl ass="solr. PatternTokeni zer Factory" pattern="; " />
<filter class="solr.LengthFilterFactory" *m n="2" max="7"/>
</ anal yzer >
</fieldType>

The following sections describe the filter factories that are included in this release of Solr.

For more information about Solr's filters, see
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters.

Page 99 of 397

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Solr Reference Guide Jan 10, 2012

Filters discussed in this section:

ASCII Folding Filter

Classic Filter

Common Grams Filter
Collation Key Filter

Edge N-Gram Filter

English Minimal Stem Filter
Hunspell Stem Filter
Hyphenated Words Filter
ICU Folding Filter

ICU Normalizer 2 Filter
ICU Transform Filter

Keep Words Filter

KStem Filter

Length Filter

Lower Case Filter

N-Gram Filter

Numeric Payload Token Filter
Pattern Replace Filter
Phonetic Filter

Porter Stem Filter

Position Filter Factory
Remove Duplicates Token Filter
Reversed Wildcard Filter
Shingle Filter

Snowball Porter Stemmer Filter
Standard Filter

Stop Filter

Synonym Filter

Token Offset Payload Filter
Trim Filter

Type As Payload Filter
Word Delimiter Filter

ASCII Folding Filter

This filter converts alphabetic, numeric, and symbolic Unicode characters which are not in the Basic
Latin Unicode block (the first 127 ASCII characters) to their ASCII equivalents, if one exists. This
filter converts characters from the following Unicode blocks:

Page 100 of 397

Solr Reference Guide Jan 10, 2012

C1 Controls and Latin-1 Supplement (PDF)
Latin Extended-A (PDF)

Latin Extended-B (PDF)

Latin Extended Additional (PDF)

Latin Extended-C (PDF)

Latin Extended-D (PDF)

IPA Extensions (PDF)

Phonetic Extensions (PDF)

Phonetic Extensions Supplement (PDF)
General Punctuation (PDF)
Superscripts and Subscripts (PDF)
Enclosed Alphanumerics (PDF)
Dingbats (PDF)

Supplemental Punctuation (PDF)
Alphabetic Presentation Forms (PDF)
Halfwidth and Fullwidth Forms (PDF)

Factory class: solr.ASCIIFilterFactory
Arguments: None

Example:

<anal yzer >
<filter class="solr.ASCI|IFilterFactory"/>
</ anal yzer >

In: "@" (Unicode character 00E1)

Out: "3" (ASCII character 160)

Classic Filter

This filter takes the output of the Classic Tokenizer and strips periods from acronyms and "'s" from
possessives.

Factory class: solr.ClassicFilterFactory
Arguments: None

Example:

Page 101 of 397

http://www.unicode.org/charts/PDF/U0080.pdf
http://www.unicode.org/charts/PDF/U0100.pdf
http://www.unicode.org/charts/PDF/U0180.pdf
http://www.unicode.org/charts/PDF/U1E00.pdf
http://www.unicode.org/charts/PDF/U2C60.pdf
http://www.unicode.org/charts/PDF/UA720.pdf
http://www.unicode.org/charts/PDF/U0250.pdf
http://www.unicode.org/charts/PDF/U1D00.pdf
http://www.unicode.org/charts/PDF/U1D80.pdf
http://www.unicode.org/charts/PDF/U2000.pdf
http://www.unicode.org/charts/PDF/U2070.pdf
http://www.unicode.org/charts/PDF/U2460.pdf
http://www.unicode.org/charts/PDF/U2700.pdf
http://www.unicode.org/charts/PDF/U2E00.pdf
http://www.unicode.org/charts/PDF/UFB00.pdf
http://www.unicode.org/charts/PDF/UFF00.pdf

Solr Reference Guide Jan 10, 2012

<anal yzer >
<t okeni zer cl ass="solr. d assi cTokeni zer Factory"/>
<filter class="solr.d assicFilterFactory"/>

</ anal yzer >

In: "[.B.M. cat's can't"
Tokenizer to Filter: "I.B.M", "cat's", "can't"

Out: "IBM", "cat", "can't"

Common Grams Filter

This filter creates word shingles by combining common tokens such as stop words with regular
tokens. This is useful for creating phrase queries containing common words, such as "the cat." Solr
normally ignores stop words in queried phrases, so searching for "the cat" would return all matches
for the word "cat."

Factory class: solr.CommonGramsFilterFactory
Arguments:

words: (a common word file in .txt format) Provide the name of a common word file, such as
st opwor ds. t xt .

ignoreCase: (boolean) If true, the filter ignores the case of words when comparing them to the
common word file.

Example:

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.CommonG ansFilterFactory" words="stopwords. txt"
i gnor eCase="true"/>
</ anal yzer >

In: "the Cat"
Tokenizer to Filter: "the", "Cat"

Out: "the_cat"

Collation Key Filter

See Unicode Collation

Page 102 of 397

Solr Reference Guide Jan 10, 2012

Edge N-Gram Filter

This filter generates edge n-gram tokens of sizes within the given range.
Factory class: solr.EdgeNGramFilterFactory

Arguments:

m nG anSi ze: (integer, default 1) The minimum gram size.

maxG anSi ze: (integer, default 1) The maximum gram size.

Example:

Default behavior.

<anal yzer>
<t okeni zer class="solr. StandardTokeni zer Factory"/>
<filter class="solr.EdgeNG anFilterFactory"/>

</ anal yzer >

In: "four score and twenty"

Tokenizer to Filter: "four", "score", "and", "twenty"
Out: "f", "s", "a", "t"

Example:

A range of 1 to 4.

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.EdgeNG anFilterFactory" m nG anSi ze="1" naxG anti ze="4"/ >
</ anal yzer >

In: "four score"

Tokenizer to Filter: "four", "score"

out: ||fll, llfoll, llfou", llfour", "S", SC , SCOI, llscorll
Example:

A range of 4 to 6.

Page 103 of 397

Solr Reference Guide Jan 10, 2012

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.EdgeNG anFilterFactory" m nG antSi ze="4" naxG anfti ze="6"/>
</ anal yzer >

In: "four score and twenty"

" n n n

Tokenizer to Filter: "four", "score", "and", "twenty"

Out: "four", "sco", "scor"

English Minimal Stem Filter

This filter stems plural English words to their singular form.
Factory class: solr.EnglishMinimalStemFilterFactory
Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/ >
<filter class="solr.EnglishMninal StenfFilterFactory"/>
</ anal yzer >

In: "dogs cats"

Tokenizer to Filter: "dogs", "cats"

Out: "dog", "cat"

Hunspell Stem Filter

The Hunspell Stem Filter provides support for several languages. You must provide the dictionary (
.di ¢) and rules (. af f) files for each language you wish to use with the Hunspell Stem Filter. You
can download those language files here. Be aware that your results will vary widely based on the
quality of the provided dictionary and rules files. For example, some languages have only a
minimal word list with no morphological information. On the other hand, for languages that have
no stemmer but do have an extensive dictionary file, the Hunspell stemmer may be a good choice.

Factory class: solr.HunspellStemFilterFactory
Arguments: None

Example:

Page 104 of 397

http://wiki.apache.org/solr/Hunspell
http://wiki.services.openoffice.org/wiki/Dictionaries

Solr Reference Guide

Jan 10, 2012

<anal yzer type="index">

di cti onary="en_GB. di c"

affix="en_GB. aff"

i gnoreCase="true" />
</ anal yzer >

<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr.Hunspell StentilterFactory"

In: "jump jumping jumped"
Tokenizer to Filter: "jump"”, "jumping”, "jumped"

Out: "jump”, "jump”, "jump"

Hyphenated Words Filter

This filter reconstructs hyphenated words that have been tokenized as two tokens because of a line
break or other intervening whitespace in the field test. If a token ends with a hyphen, it is joined
with the following token and the hyphen is discarded. Note that for this filter to work properly, the
upstream tokenizer must not remove trailing hyphen characters. This filter is generally only useful

at index time.
Factory class: solr.HyphenatedWordsFilterFactory
Arguments: None

Example:

<anal yzer type="index">

</ anal yzer >

<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="sol r.Hyphenat edWrdsFilterFactory"/>

In: "A hyphen- ated word"
Tokenizer to Filter: "A", "hyphen-", "ated", "word"

Out: "A", "hyphenated", "word"

ICU Folding Filter

This filter is a custom Unicode normalization form that applies the foldings specified in Unicode
Technical Report 30 in addition to the NFKC_Casef ol d normalization form as described in ICU
Normalizer 2 Filter. This filter is a better substitute for the combined behavior of the ASCII Folding

Filter, Lower Case Filter, and ICU Normalizer 2 Filter.

Page 105 of 397

http://www.unicode.org/reports/tr30/tr30-4.html
http://www.unicode.org/reports/tr30/tr30-4.html

Solr Reference Guide Jan 10, 2012

To use this filter, see sol r/ contri b/ anal ysi s- ext ras/ READVE. t xt for instructions on which jars
you need to add to your sol r_hone/lib.

Factory class: solr.ICUFoldingFilterFactory
Arguments: None

Example:

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.|CUFol dingFilterFactory"/>

</ anal yzer >

For detailed information on this normalization form, see
http://www.unicode.org/reports/tr30/tr30-4.html.

ICU Normalizer 2 Filter

This filter factory normalizes text according to one of five Unicode Normalization Forms as
described in Unicode Standard Annex #15:

® NFC: (name="nfc" mode="compose") Normalization Form C, canonical decomposition

® NFD: (name="nfc" mode="decompose") Normalization Form D, canonical decomposition,
followed by canonical composition

® NFKC: (name="nfkc" mode="compose") Normalization Form KC, compatibility decomposition

® NFKD: (name="nfkc" mode="decompose") Normalization Form KD, compatibility
decomposition, followed by canonical composition

® NFKC_Casefold: (name="nfkc_cf" mode="compose") Normalization Form KC, with additional
Unicode case folding. Using the ICU Normalizer 2 Filter is a better-performing substitution for
the Lower Case Filter and NFKC normalization.

Factory class: solr.ICUNormalizer2FilterFactory
Arguments:
name: (string) The name of the normalization form; nf ¢, nf d, nf kc, nf kd, nf kc_cf

mode: (string) The mode of Unicode character composition and decomposition; conpose or
deconpose

Example:

Page 106 of 397

http://www.unicode.org/reports/tr30/tr30-4.html
http://unicode.org/reports/tr15/

Solr Reference Guide Jan 10, 2012

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.|CUNormalizer2FilterFactory"/>
</ anal yzer >

For detailed information about these Unicode Normalization Forms, see
http://unicode.org/reports/tri5/.

To use this filter, see sol r/ contri b/ anal ysi s- extras/ README. t xt for instructions on which jars
you need to add to your sol r_hone/lib.

ICU Transform Filter

This filter applies ICU Tranforms to text. This filter supports only ICU System Transforms. Custom
rule sets are not supported.

Factory class: solr.ICUTransformFilterFactory
Arguments:

id: (string) The identifier for the ICU System Transform you wish to apply with this filter. For a full
list of ICU System Transforms, see
http://demo.icu-project.org/icu-bin/translit?”TEMPLATE_FILE=data/translit_rule_main.html.

Example:

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.|CUTransfornFilterFactory" id="Traditional-Sinplified"'/>
</ anal yzer >

For detailed information about ICU Transforms, see
http://userguide.icu-project.org/transforms/general.

To use this filter, see sol r/ contri b/ anal ysi s- extras/ README. t xt for instructions on which jars
you need to add to your sol r_hone/ i b.

Keep Words Filter

This filter discards all tokens except those that are listed in the given word list. This is the inverse
of the Stop Words Filter. This filter can be useful for building specialized indices for a constrained
set of terms.

Factory class: solr.KeepWordFilterFactory

Page 107 of 397

http://unicode.org/reports/tr15/
http://userguide.icu-project.org/transforms/general
http://demo.icu-project.org/icu-bin/translit?TEMPLATE_FILE=data/translit_rule_main.html
http://userguide.icu-project.org/transforms/general

Solr Reference Guide

Jan 10, 2012

Arguments:

wor ds: (required) Path of a text file containing the list of keep words, one per line. Blank lines and
lines that begin with "#" are ignored. This may be an absolute path, or a simple filename in the

Solr config directory.

i gnor eCase: (true/false) If true then comparisons are done case-insensitively. If this argument is
true, then the words file is assumed to contain only lowercase words. The default is false.

Example:

Where keepwor ds. t xt contains:
happy

funny

silly

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

</ anal yzer >

<filter class="solr.KeepWrdFilterFactory" words="keepwords.txt"/>

In: "Happy, sad or funny"
Tokenizer to Filter: "Happy", "sad", "or", "funny"
Out: "funny"

Example:

Same keepwor ds. t xt , case insensitive:

<anal yzer >

<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>

<filter class="solr.KeepWrdFilterFactory" words="keepwords.txt"
</ anal yzer >

i gnor eCase="true"/>

In: "Happy, sad or funny"

Tokenizer to Filter: "Happy", "sad", "or", "funny"

Out: "Happy", "funny"

Example:

Page 108 of 397

Solr Reference Guide

Jan 10, 2012

Using LowerCaseFilterFactory before filtering for keep words, no i gnor eCase flag.

<anal yzer >

<filter class="solr.LowerCaseFilterFactory"/>

</ anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.KeepWrdFilterFactory" words="keepwords.txt"/>

In: "Happy, sad or funny"

Tokenizer to Filter: "Happy", "sad", "or", "funny"

n n

Filter to Filter: "happy", "sad", "or", "funny"

Out: "happy", "funny"

KStem Filter

KStem is an alternative to the Porter Stem Filter for developers looking for a less aggressive
stemmer. KStem was written by Bob Krovetz, ported to Lucene by Sergio Guzman-Lara (UMASS

Ambherst). This stemmer is only appropriate for English language text.

Factory class: solr.KStemFilterFactory
Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Fact ory
<filter class="solr.KStentilterFactory"/>

</ anal yzer >

">

In: "jump jumping jumped"

n n n n

Tokenizer to Filter: "jump", "jumping”, "jumped"

" ns n n

Out: "jump", "jump", "jump"

Length Filter

This filter passes tokens whose length falls within the min/max limit specified. All other tokens are

discarded.

Factory class: solr.LengthFilterFactory

Page 109 of 397

Solr Reference Guide Jan 10, 2012

Arguments:
m n: (integer, required) Minimum token length. Tokens shorter than this are discarded.

max: (integer, required, must be >= min) Maximum token length. Tokens longer than this are
discarded.

Example:

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.LengthFilterFactory" mn="3" nax="7"/>
</ anal yzer >

In: "turn right at Albuguerque"
Tokenizer to Filter: "turn", "right", "at", "Albuquerque"

Out: "turn”, "right"

Lower Case Filter

Converts any uppercase letters in a token to the equivalent lowercase token. All other characters
are left unchanged.

Factory class: solr.LowerCaseFilterFactory
Arguments: None

Example:

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>

</ anal yzer >

In: "Down With CamelCase"
Tokenizer to Filter: "Down", "With", "CamelCase"

Out: "down", "with", "camelcase"

N-Gram Filter

Generates n-gram tokens of sizes in the given range.

Factory class: solr.NGramFilterFactory

Page 110 of 397

Solr Reference Guide Jan 10, 2012

Arguments:

m nG anSi ze: (integer, default 1) The minimum gram size.
maxG anSi ze: (integer, default 2) The maximum gram size.
Example:

Default behavior.

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.NG antilterFactory"/>

</ anal yzer >

In: "four score"
Tokenizer to Filter: "four", "score"

n n n n_n n_.n n_.n n.n n.n n n n n n " n

Out: "f*, "o", "u", "r", "fo", "ou", "ur", "s", "c", "o", "r", "e", "sc", "co", "or",

re
Example:

A range of 1 to 4.

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.NG anFilterFactory" *m nG anSi ze="1" maxG anfSi ze="4"/ >
</ anal yzer >

In: "four score"
Tokenizer to Filter: "four", "score"

n n n

out: ||fll, llfoll, "fou", llfour", llsll, SC , SCOII "scorll
Example:

A range of 3 to 5.

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.NG anFilterFactory" *m nG anti ze="3" maxG anf5i ze="5"/ >
</ anal yzer >

In: "four score"

Page 111 of 397

Solr Reference Guide Jan 10, 2012

Tokenizer to Filter: "four", "score"

Out: "fou", "our", "four", "sco", "cor", "ore", "scor", "core", "score"

Numeric Payload Token Filter

This filter adds a numeric floating point payload value to tokens that match a given type. Refer to
the Javadoc for the or g. apache. | ucene. anal ysi s. Token class for more information about token
types and payloads.

Factory class: solr.NumericPayloadTokenFilterFactory
Arguments:
payl oad: (required) A floating point value that will be added to all matching tokens.

typeMat ch: (required) A token type name string. Tokens with a matching type name will have their
payload set to the above floating point value.

Example:

<anal yzer>

<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>

<filter class="solr.NunericPayl oadTokenFilterFactory" payl oad="0. 75"
t ypeMat ch="word"/ >
</ anal yzer >

In: "bing bang boom"
Tokenizer to Filter: "bing", "bang", "boom"

Out: "bing"[0.75], "bang"[0.75], "boom"[0.75]

Pattern Replace Filter

This filter applies a regular expression to each token and, for those that match, substitutes the
given replacement string in place of the matched pattern. Tokens which do not match are passed
though unchanged.

Factory class: solr.PatternReplaceFilter
Arguments:

pattern: (required) The regular expression to test against each token, as per
java.util.regex. Pattern.

Page 112 of 397

Solr Reference Guide Jan 10, 2012

repl acenent : (required) A string to substitute in place of the matched pattern. This string may
contain references to capture groups in the regex pattern. See the Javadoc for
java.util.regex.Matcher.

repl ace: ("all" or "first", default "all") Indicates whether all occurrences of the pattern in the token
should be replaced, or only the first.

Example:

Simple string replace:

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.PatternReplaceFilter" pattern="cat" replacenent="dog"/>
</ anal yzer >

In: "cat concatenate catycat"

Tokenizer to Filter: "cat", "concatenate", "catycat"
Out: "dog", "condogenate", "dogydog"

Example:

String replacement, first occurrence only:

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.PatternRepl aceFilter" pattern="cat" repl acenent="dog"
*replace="first"/>
</ anal yzer >

In: "cat concatenate catycat"
Tokenizer to Filter: "cat", "concatenate", "catycat"
Out: "dog", "condogenate", "dogycat"

Example:

More complex pattern with capture group reference in the replacement. Tokens that start with
non-numeric characters and end with digits will have an underscore inserted before the numbers.
Otherwise the token is passed through.

Page 113 of 397

Solr Reference Guide Jan 10, 2012

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.PatternReplaceFilter" pattern="(\D+)(\d+)$" replacenent="$1_$2"/>
</ anal yzer >

In: "cat foo1234 9987 blah1234foo"
Tokenizer to Filter: "cat", "foo1234", "9987", "blah1234fo0"

Out: "cat", "foo_1234", "9987", "blah1234foo"

Phonetic Filter

This filter creates tokens using one of the phonetic encoding algorithms in the
or g. apache. cormons. codec.language package.

Factory class: solr.PhoneticFilterFactory
Arguments:

encoder : (required) The name of the encoder to use. The encoder name must be one of the
following (case insensitive):

"DoubleMetaphone”, "Metaphone", "Soundex", "RefinedSoundex", "Caverphone", or "
ColognePhonetic"

i nj ect : (true/false) If true (the default), then new phonetic tokens are added to the stream.
Otherwise, tokens are replaced with the phonetic equivalent. Setting this to false will enable
phonetic matching, but the exact spelling of the target word may not match.

maxCodelLengt h: (integer) The maximum length of the code to be generated by the Metaphone or
Double Metaphone encoders.

Example:

Default behavior for DoubleMetaphone encoding.

<anal yzer>

<t okeni zer class="solr. StandardTokeni zer Factory"/>

<filter class="solr.PhoneticFilterFactory" encoder="Doubl eMet aphone"/ >
</ anal yzer >

In: "four score and twenty"

Tokenizer to Filter: "four"(1), "score"(2), "and"(3), "twenty"(4)

Page 114 of 397

http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/DoubleMetaphone.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/Metaphone.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/Soundex.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/RefinedSoundex.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/Caverphone.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/ColognePhonetic.html

Solr Reference Guide Jan 10, 2012

Out: "four"(1), "FR"(1), "score"(2), "SKR"(2), "and"(3), "ANT"(3), "twenty"(4), "TNT"(4)

The phonetic tokens have a position increment of 0, which indicates that they are at the same
position as the token they were derived from (immediately preceding).

Example:

Discard original token.

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.PhoneticFilterFactory" encoder="Doubl eMet aphone"
*inject="fal se"/>
</ anal yzer >

In: "four score and twenty"

Tokenizer to Filter: "four"(1), "score"(2), "and"(3), "twenty"(4)
Out: "FR"(1), "SKR"(2), "ANT"(3), "TWNT"(4)

Example:

Default Soundex encoder.

<anal yzer >

<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>

<filter class="solr.PhoneticFilterFactory" *encoder="Soundex"/>
</ anal yzer >

In: "four score and twenty"
Tokenizer to Filter: "four"(1), "score"(2), "and"(3), "twenty"(4)

out: "four"(1), "F600"(1), "score"(2), "S600"(2), "and"(3), "A530"(3), "twenty"(4), "T530"(4)

Porter Stem Filter

This filter applies the Porter Stemming Algorithm for English. The results are similar to using the
Snowball Porter Stemmer with the | anguage="Engl i sh" argument. But this stemmer is coded
directly in Java and is not based on Snowball. Nor does it accept a list of protected words. This
stemmer is only appropriate for English language text.

Factory class: solr.PorterStemFilterFactory

Arguments: None

Page 115 of 397

Solr Reference Guide Jan 10, 2012

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/ >
<filter class="solr.PorterStenFilterFactory"/>

</ anal yzer >

In: "jump jumping jumped"
Tokenizer to Filter: "jump"”, "jumping”, "jumped"

n n

Out: "jump”, "jump”, "jump"

Position Filter Factory

This filter sets the position increment values of all tokens in a token stream except the first, which
retains its original position increment value.

Factory class: solr.PositionIncrementFilterFactory
Arguments:

posi ti onl ncrenent : (integer, default = 0) The position increment value to apply to all tokens in a
token stream except the first.

Example:

<anal yzer>

<t okeni zer class="sol r. Wi tespaceTokeni zer Factory"/>

<filter class="solr.PositionFilterFactory" positionlncrenent="1"/>
</ anal yzer >

In: "hello world"
Tokenizer to Filter: "hello", "world"

Out: "hello" (token position 1), "world" (token position 3)

Remove Duplicates Token Filter

The filter removes duplicate tokens in the stream. Tokens are considered to be duplicates if they
have the same text and position values.

Factory class: solr.RemoveDuplicatesTokenFilterFactory

Arguments: None

Page 116 of 397

Solr Reference Guide Jan 10, 2012

Example:

This is an artificial example that uses the Synonym Filter to generate duplicate symbols, which are
then removed. The file t est syns. t xt contains the following:

blurt => foo, fooblort => bar, bar

<anal yzer >
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
<filter class="solr.SynonynFilterFactory" synonynms="testsyns.txt"/>
<filter class="solr.RenmoveDuplicatesTokenFilterFactory"/>

</ anal yzer >

In: "blurt blort"
Tokenizer to Filter: "blurt"(1), "blurt"(2)
Tokenizer to Filter: "foo"(1), "foo"(1), "bar"(2), "bar"(2)

Out: "foo"(1), "bar"(2)

Reversed Wildcard Filter

This filter reverses tokens to provide faster leading wildcard and prefix queries. Tokens without
wildcards are not reversed.
Factory class: solr.ReveresedWildcardFilterFactory

Arguments:

wi t hOri gi nal (boolean) If true, the filter produces both original and reversed tokens at the same
positions. If false, produces only reversed tokens.

maxPosAst eri sk (integer, default = 2) The maximum position of the asterisk wildcard ('*") that
triggers the reversal of the query term. Terms with asterisks at positions above this value are not
reversed.

maxPosQuest i on (integer, default = 1) The maximum position of the question mark wildcard ('?")
that triggers the reversal of query term. To reverse only pure suffix queries (queries with a single
leading asterisk), set this to 0 and maxPosAst eri sk to 1.

maxFracti onAst eri sk (float, default = 0.0) An additional parameter that triggers the reversal if
asterisk ('*') position is less than this fraction of the query token length.

m nTrai | i ng (integer, default = 2) The minimum number of trailing characters in a query token
after the last wildcard character. For good performance this should be set to a value larger than 1.

Page 117 of 397

Solr Reference Guide Jan 10, 2012

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr.ReversedW | dcardFilterFactory" w thOiginal ="true"

</ anal yzer >

In: "*foo *bar"
Tokenizer to Filter: "*foo", "*bar"

Out: "oof*", "rab*"

Shingle Filter

This filter constructs shingles, which are token n-grams, from the token stream. It combines runs
of tokens into a single token.

Factory class: solr.ShingleFilterFactory
Arguments:
maxShi ngl eSi ze: (integer, must be >= 2, default 2) The maximum number of tokens per shingle.

out put Uni gr ans: (true/false) If true (the default), then each individual token is also included at its
original position.

Example:

Default behavior.

<anal yzer>
<t okeni zer class="solr. StandardTokeni zer Factory"/>
<filter class="solr.ShingleFilterFactory"/>

</ anal yzer >

In: "To be, or what?"

Tokenizer to Filter: "To"(1), "be"(2), "or"(3), "what"(4)

Out: "To"(1), "To be"(1), "be"(2), "be or"(2), "or"(3), "or what"(3), "what"(4)
Example:

A shingle size of four, do not include original token.

Page 118 of 397

Solr Reference Guide Jan 10, 2012

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.ShingleFilterFactory" nmaxShingl eSi ze="4" out put Uni granms="fal se"/>
</ anal yzer >

In: "To be, or not to be."
Tokenizer to Filter: "To"(1), "be"(2), "or"(3), "not"(4), "to"(5), "be"(6)

Out: "To be"(1), "To be or"(1), "To be or not"(1), "be or"(2), "be or not"(2), "be or not to"(2), "or
not"(3), "or not to"(3), "or not to be"(3), "not to"(4), "not to be"(4), "to be"(5)

Snowball Porter Stemmer Filter

This filter factory instantiates a language-specific stemmer generated by Snowball. Snowball is a
software package that generates pattern-based word stemmers. This type of stemmer is not as
accurate as a table-based stemmer, but is faster and less complex. Table-driven stemmers are
labor intensive to create and maintain and so are typically commercial products.

This release of Solr contains Snowball stemmers for Armenian, Basque, Catalan, Danish, Dutch,
English, Finnish, French, German, Hungarian, Italian, Norwegian, Portuguese, Romanian, Russian,
Spanish, Swedish and Turkish. For more information on Snowball, visit
http://snowball.tartarus.org/.

Factory class: solr.SnowballPorterFilterFactory
Arguments:

| anguage: (default "English") The name of a language, used to select the appropriate Porter
stemmer to use. Case is significant. This string is used to select a package name in the
"org.tartarus.snowball.ext" class hierarchy.

pr ot ect ed: Path of a text file containing a list of protected words, one per line. Protected words
will not be stemmed. Blank lines and lines that begin with "#" are ignored. This may be an
absolute path, or a simple file name in the Solr config directory.

Example:

Default behavior:

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.Snowbal | PorterFilterFactory"/>
</ anal yzer >

Page 119 of 397

http://snowball.tartarus.org/

Solr Reference Guide Jan 10, 2012

In: "flip flipped flipping"
Tokenizer to Filter: "flip", "flipped", "flipping"
Out: "flip", "flip", "flip"

Example:

French stemmer, English words:

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.Snowbal | PorterFilterFactory" |anguage="French"/>
</ anal yzer >

In: "flip flipped flipping"
Tokenizer to Filter: "flip", "flipped", "flipping"
Out: "flip", "flipped", "flipping"

Example:

Spanish stemmer, Spanish words:

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.Snowbal | PorterFilterFactory" |anguage="Spanish"/>
</ anal yzer >

In: "cante canta"
n n

Tokenizer to Filter: "cante", "canta"

Out: "cant", "cant"

Standard Filter

This filter removes dots from acronyms and the substring "'s" from the end of tokens. This filter
depends on the tokens being tagged with the appropriate term-type to recognize acronyms and
words with apostrophes.

Factory class: solr.StandardFilterFactory
Arguments: None

Example:

Page 120 of 397

Solr Reference Guide Jan 10, 2012

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.StandardFilterFactory"/>

</ anal yzer >

In: "Bob's I.0.U."
Tokenizer to Filter: "Bob's", "I.0.U."

Out: "Bob". "IOU"

Stop Filter

This filter discards, or stops analysis of, tokens that are on the given stop words list. A standard
stop words list is included in the Solr config directory, named stopwords.txt, which is appropriate
for typical English language text.

Factory class: solr.StopFilterFactory
Arguments:

wor ds: (optional) The path of a file that contains a list of stop words, one per line. Blank lines and
lines that begin with "#" are ignored. This may be an absolute path, or path relative to the Solr
config directory.

i gnor eCase: (true/false, default false) Ignore case when testing for stop words. If true, the stop
list should contain lowercase words.

enabl ePosi ti onl ncrenent s: (true/false, default false) When true, if a token is stopped
(discarded) then the position of the following token is incremented.

Example:

Case-sensitive matching, capitalized words not stopped. Token positions skip stopped words.

<anal yzer>

<t okeni zer class="solr. StandardTokeni zer Factory"/>

<filter class="solr.StopFilterFactory" words="stopwords.txt"/>
</ anal yzer >

In: "To be or what?"
Tokenizer to Filter: "To"(1), "be"(2), "or"(3), "what"(4)

Out: "To"(1), "what"(2)

Page 121 of 397

Solr Reference Guide Jan 10, 2012

Example:

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.StopFilterFactory" words="stopwords.txt" ignoreCase="true"/>
</ anal yzer >

In: "To be or what?"

Tokenizer to Filter: "To"(1), "be"(2), "or"(3), "what"(4)
Out: "what"(1)

Example:

Position increment enabled, original positions retained. No tokens at positions of stopped words.

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.StopFilterFactory" words="stopwords.txt" ignoreCase="true"
enabl ePosi ti onl ncrenents="true"/ >
</ anal yzer >

In: "You are a star"
Tokenizer to Filter: "You"(1), "are"(2), "a"(3), "star"(4)

Out: "You"(1), "star"(4)

Synonym Filter

This filter does synonym mapping. Each token is looked up in the list of synonyms and if a match is
found, then the synonym is emitted in place of the token. The position value of the new tokens are
set such they all occur at the same position as the original token.

Factory class: solr.SynonymfFilterFactory
Arguments:

synonyns: (required) The path of a file that contains a list of synonyms, one per line. Blank lines
and lines that begin with "#" are ignored. This may be an absolute path, or path relative to the
Solr config directory.There are two ways to specify synonym nappi ngs:

® A comma-separated list of words. If the token matches any of the words, then all the words
in the list are substituted, which will include the original token.

Page 122 of 397

Solr Reference Guide Jan 10, 2012

® Two comma-separated lists of words with the symbol "=>" between them. If the token
matches any word on the left, then the list on the right is substituted. The original token will
not be included unless it is also in the list on the right.

For the following examples, assume the following synonyns. t xt file:

couch, sof a, di van

teh => the

huge, gi nor nous, hunungous => | arge

smal | => tiny,teeny, weeny
Example:

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.SynonynFilterFactory" synonyns="nysynonyns.txt"/>
</ anal yzer >

In: "teh small couch"
Tokenizer to Filter: "teh"(1), "small"(2), "couch"(3)
Out: "the"(1), "tiny"(2), "teeny"(2), "weeny"(2), "couch"(3), "sofa"(3), "divan"(3)

Example:

<anal yzer>

<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/ >

<filter class="solr.SynonynFilterFactory" synonyns="nysynonyns.txt"/>
</ anal yzer >

In: "teh ginormous, humungous sofa"
Tokenizer to Filter: "teh"(1), "ginormous"(2), "humungous"(3), "sofa"(4)

Out: "the"(1), "large"(2), "large"(3), "couch"(4), "sofa"(4), "divan"(4)

Token Offset Payload Filter

This filter adds the numeric character offsets of the token as a payload value for that token.
Factory class: solr.TokenOffsetPayloadTokenFilterFactory
Arguments: None

Example:

Page 123 of 397

Solr Reference Guide Jan 10, 2012

<anal yzer >
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr.TokenO fset Payl oadTokenFilterFactory"/>
</ anal yzer >

In: "bing bang boom"

Tokenizer to Filter: "bing", "bang", "boom"

Out: "bing"[0,4], "bang"[5,9], "boom"[10,14]

Trim Filter

This filter trims leading and/or trailing whitespace from tokens. Most tokenizers break tokens at
whitespace, so this filter is most often used for special situations.

Factory class: solr.TrimFilterFactory
Arguments:

updat e f set s: (true/false, default false) If true, the token's start/end offsets are adjusted to
account for any whitespace that was removed.

Example:

The PatternTokenizerFactory configuration used here splits the input on simple commas, it does not
remove whitespace.

<anal yzer>
<t okeni zer class="solr. PatternTokeni zer Factory" pattern=","/>
<filter class="solr.TrinFilterFactory"/>

</ anal yzer >

In: "one, two , three ,four "
Tokenizer to Filter: "one", " two ", " three ", "four "

Out: "one", "two", "three", "four"

Type As Payload Filter

This filter adds the token's type, as an encoded byte sequence, as its payload.
Factory class: solr.TypeAsPayloadTokenFilterFactory

Arguments: None

Page 124 of 397

Solr Reference Guide Jan 10, 2012

Example:

<anal yzer>
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="sol r. TypeAsPayl oadTokenFi |l terFactory"/>
</ anal yzer >

In: "Pay Bob's I.O.U."
Tokenizer to Filter: "Pay", "Bob's", "I.0.U."

Out: "Pay"[<ALPHANUM>], "Bob's"[<APOSTROPHE>], "I.0.U."[<ACRONYM>]

Word Delimiter Filter

This filter splits tokens at word delimiters. The rules for determining delimiters are determined as
follows:

® A change in case within a word: "CamelCase" -> "Camel", "Case"This can be disabled by
setting splitOnCaseChange="0" (see below).

® A transition from alpha to numeric characters or vice versa:"Gonzo5000" >~"Gonzo™,
*5000™4500XC™> "4500", "XL" This can be disabled by setting splitOnNumerics ="0".

® Non-alphanumeric characters (discarded): "hot-spot" => "hot", "spot"

® A trailing "'s" is removed: "O'Reilly's" => "0O", "Reilly"

® Any leading or trailing delimiters are discarded: "-hot-spot" > "hot", "spot"
Factory class: solr.WordDelimiterFilterFactory
Arguments:

gener at eWbrdPar t s: (integer, default 1) If non-zero, splits words at delimiters. For
example:"CamelCase", "hot-spot" => "Camel", "Case", "hot", "spot"

gener at eNunber Part s: (integer, default 1) If non-zero, splits numeric strings at
delimiters:"1947-32" =>"1947", "32"

spl i t OnCaseChange: (integer, default 1) If 0, words are not split on camel-case
changes:"BugBlaster-XL" -> "BugBlaster", "XL"Example 1 below illustrates the default (non-zero)
splitting behavior.

splitOnNureri cs: (integer, default 1) If 0, don't split words on transitions from alpha to
numeric:"FemBot3000" -> "Fem", "Bot3000"

Page 125 of 397

Solr Reference Guide Jan 10, 2012

cat enat eWor ds: (integer, default 0) If non-zero, maximal runs of word parts will be joined:
"hot-spot-sensor's" -> "hotspotsensor”

cat enat eNunber s: (integer, default 0) If non-zero, maximal runs of humber parts will be joined:
1947-32" => "194732"

catenat eAl | : (0/1, default 0) If non-zero, runs of word and number parts will be joined:
"Zap-Master-9000" -> "ZapMaster9000"

preserveOrigi nal : (integer, default 0) If non-zero, the original token is preserved:
"Zap-Master-9000" -> "Zap-Master-9000", "Zap", "Master", "9000"

prot ect ed: (optional) The pathname of a file that contains a list of protected words that should be
passed though without splitting.

st enEngl i shPossessi ve: (integer, default 1) If 1, strips the possessive "'s" from each subword.
Example:

Default behavior. The whitespace tokenizer is used here to preserve non-alphanumeric characters.

<anal yzer>
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr.WrdDelimterFilterFactory"/>

</ anal yzer >

In: "hot-spot RoboBlaster/9000 100XL"

Tokenizer to Filter: "hot-spot”, "RoboBlaster/9000", "100XL"
Out: "hot", "spot", "Robo", "Blaster", "9000", "100", "XL"
Example:

Do not split on case changes, and do not generate number parts. Note that by not generating
number parts, tokens containing only numeric parts are ultimately discarded.

<anal yzer>

<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>

<filter class="solr.WrdDelimterFilterFactory" generateNunberParts="0"
spl i t OnCaseChange="0"/ >
</ anal yzer >

In: "hot-spot RoboBlaster/9000 100-42"

Tokenizer to Filter: "hot-spot"”, "RoboBlaster/9000", "100-42"

Page 126 of 397

Solr Reference Guide Jan 10, 2012

Out: "hot", "spot", "RoboBlaster”, "9000"
Example:

Concatenate word parts and number parts, but not word and number parts that occur in the same
token.

<anal yzer>

<t okeni zer cl ass="sol r. \WitespaceTokeni zer Factory"/>

<filter class="solr.WrdDelimterFilterFactory" catenateWrds="1"
cat enat eNunmber s="1"/>
</ anal yzer >

In: "hot-spot 100+42 XL40"

Tokenizer to Filter: "hot-spot"(1), "100+42"(2), "XL40"(3)

Out: "hot"(1), "spot"(2), "hotspot"(2), "100"(3), "42"(4), "10042"(4), "XL"(5), "40"(6)
Example:

Concatenate all. Word and/or number parts are joined together.

<anal yzer >

<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>

<filter class="solr.WrdDelinmterFilterFactory" catenateAl|="1"/>
</ anal yzer >

In: "XL-4000/ES"

Tokenizer to Filter: "XL-4000/ES"(1)

Out: "XL"(1), "4000"(2), "ES"(3), "XL4000ES"(3)
Example:

Using a protected words list that contains "AstroBlaster" and "XL-5000" (among others).

<anal yzer >

<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>

<filter class="solr.WrdDelinmterFilterFactory" protected="protwords.txt"/>
</ anal yzer >

In: "FooBar AstroBlaster XL-5000 ==ES-34-"

Tokenizer to Filter: "FooBar", "AstroBlaster", "XL-5000", "==ES-34-"

Page 127 of 397

Solr Reference Guide Jan 10, 2012

Out: "FooBar", "FooBar", "AstroBlaster", "XL-5000", "ES", "34"

Page 128 of 397

Solr Reference Guide Jan 10, 2012

CharFilterFactories

Char Filter is a component that pre-processes input characters. Char Filters can be chained like
Token Filters and placed in front of a Tokenizer. Char Filters can add, change, or remove
characters without worrying about fault of Token offsets.

For more information about Solr's Char Filters, see
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters.

solr.MappingCharfFilterFactory

This filter creates or g. apache. | ucene. anal ysi s. Mappi ngChar Fi | t er, which can be used for
changing one character to another (for example, for normalizing é to e.)

solr.HTMLStripCharFilterFactory

This filter creates or g. apache. sol r. anal ysis. HTM.Stri pCharFi | ter . HTM.Stri pChar Fi | t er
strips HTML from the input stream and passes the result to either CharFilter or Tokenizer.

This filter:

Removes HTML/XML tags while preserving other content.

Removes attributes within tags and supports optional attribute quoting.

Removes XML processing instructions, such as: <?foo bar?>

Removes XML comments.

Removes XML elements starting with <! and ending with >

Removes contents of <script> and <style> elements.

Handles XML comments inside these elements (normal comment processing will not always
work).

® Replaces numeric character entities references like A or ;.

® The terminating ';' is optional if the entity reference is followed by whitespace.

® Replaces all named character entity references.

® is replaced with a space instead of 0xa0.

® The terminating ';' is mandatory to avoid false matches on something like "Alpha&0Omega
Corp"

The input need not be an HTML document. The filter removes only constructs that look like
HTML. If the input doesn't include anything that looks like HTML, the filter won't remove
any input.

The table below presents examples of HTML stripping.

Page 129 of 397

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Solr Reference Guide Jan 10, 2012

Input Output

ny link my link

<?xm ?>
hel | o<! --coment - - > hello

hel | o<script><-- f('<--internal--></script>); --></script> hello

if a<b then print a; if a<b then print a;
hell o <td hei ght=22 nowap align="left"> hello

a<b A Al pha&Orega a<b A Alpha&Omega Q

solrPatternReplaceCharfFilterFactory

This filter uses regular expressions to replace or change character patterns.

You can configure this filter in scherma. xm like this:

<fiel dType nane="t ext Char Norn{' cl ass="sol r. TextFi el d" positionlncrenent Gap="100" >
<anal yzer >
<charFilter class="solr.PatternRepl aceCharFilterFactory"
pattern="([nNJ[oQ\.)\s*(\d+)"
repl aceWth="$1$2"/>
<charFilter class="sol r. Mappi ngCharFilterFactory"
mappi ng="mappi ng- | SOLat i n1Accent.txt"/>
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
</ anal yzer >
</fieldType>

The table below presents examples of regex-based pattern replacement:

Input pattern replaceWith Output Description

see-ing looking (\w#+) (i ng) 1 see-ing look Removes "ing" from the
end of word.

see-ing looking (\w+)ing 1 see-ing look Same as above. 2nd
parentheses can be
omitted.

Page 130 of 397

http://www.regular-expressions.info/reference.html

Solr Reference Guide Jan 10, 2012

No.1 NO. no. [nNI[oQ {#},1 #1 NO. #543 Example of literal. Do
543 \.\s*(\d+) not forget to set a
non-period

bl ockDel i mi t er when
using periods in
patterns.

abc=1234=5678 (\w+)=(\d+)=(\d+) 3,{=},1,{= 5678=abc=1234 Change the order of the
32 groups.

Page 131 of 397

Solr Reference Guide Jan 10, 2012

Language Analysis

This section contains information about tokenizers and filters related to character set conversion or
for use with specific languages. For the European languages, tokenization is fairly straightforward.
Tokens are delimited by whitespace and/or a relatively small set of punctuation characters. In
other languages the tokenization rules are often not so simple. Some European languages may
require special tokenization rules as well, such as rules for decompounding German words.

For information about language detection at index time, see Detecting Languages During Indexing.
For more information about Solr's Language Analysis capabilities, see
http://wiki.apache.org/solr/LanguageAnalysis.

Page 132 of 397

http://wiki.apache.org/solr/LanguageAnalysis

Solr Reference Guide Jan 10, 2012

Topics discussed in this section:

KeyWordMarkerFilterFactory
StemmerOverrideFilterFactory
Dictionary Compound Word Token Filter
Unicode Collation

ISO Latin Accent Filter
Arabic

Brazilian Portuguese
Bulgarian

Chinese

Simplified Chinese
CIJK

Czech

Dutch

Finnish

French

Galician

German

Greek

Hindi

Indonesian

Italian

Lao, Myanmar, Khmer
Latvian

Persian

Polish

Portuguese

Russian

Spanish

Swedish

Thai

Turkish

KeyWordMarkerFilterFactory

Protects words from being modified by stemmers. A customized protected word list may be
specified with the "protected" attribute in the schema. Any words in the protected word list will not
be modified by any stemmer in Solr.

Page 133 of 397

Solr Reference Guide Jan 10, 2012

A sample Solr pr ot wor ds. t xt with comments can be found in the / sol r/ conf/ directory:

<fieldtype nane="nyfiel dtype" class="solr. TextField">
<anal yzer>
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr.KeywordMarkerFilterFactory" protected="protwords.txt" />
<filter class="solr.PorterStenFilterFactory" />
</ anal yzer >
</fieldtype>

StemmerOverrideFilterFactory
Overrides stemming algorithms by applying a custom mapping, then protecting these terms from

being modified by stemmers.

A customized mapping of words to stems, in a tab-separated file, can be specified to the
"dictionary" attribute in the schema. Words in this mapping will be stemmed to the stems from the
file, and will not be further changed by any stemmer.

A sample stemdict.txt with comments can be found in the Source Repository.

<fieldtype nane="nyfiel dtype" class="solr. TextFi el d">
<anal yzer >
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr.StemerOverrideFilterFactory" dictionary="stendict.txt" />
<filter class="solr.PorterStenFilterFactory" />
</ anal yzer >
</fieldtype>

Dictionary Compound Word Token Filter

This filter splits, or decompounds, compound words into individual words using a dictionary of the
component words. Each input token is passed through unchanged. If it can also be decompounded
into subwords, each subword is also added to the stream at the same logical position.

Compound words are most commonly found in Germanic languages.
Factory class: solr.DictionaryCompoundWordTokenFilterFactory
Arguments:

di cti onary: (required) The path of a file that contains a list of simple words, one per line. Blank
lines and lines that begin with "#" are ignored. This path may be an absolute path, or path relative
to the Solr config directory.

Page 134 of 397

http://svn.apache.org/repos/asf/lucene/dev/trunk/solr/core/src/test-files/solr/conf/stemdict.txt

Solr Reference Guide Jan 10, 2012

m nWor dSi ze: (integer, default 5) Any token shorter than this is not decompounded.
m nSubwor dSi ze: (integer, default 2) Subwords shorter than this are not emitted as tokens.
maxSubwor dSi ze: (integer, default 15) Subwords longer than this are not emitted as tokens.

onl yLongest Mat ch: (true/false) If true (the default), only the longest matching subwords will
generate new tokens.

Example:
Assume that ger manwor ds. t xt contains at least the following words:

dunmkopf donaudanpf schi f f

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.DictionaryConmpoundWr dTokenFilterFactory"
di cti onary="ger manwords. txt"/>
</ anal yzer >

In: "Donaudampfschiff dummkopf"
Tokenizer to Filter: "Donaudampfschiff"(1), "dummkopf"(2),

Out: "Donaudampfschiff'(1), "Donau"(1), "dampf"(1), "schiff"(1), "dummkopf"(2), "dumm"(2),
"kopf"(2)

Unicode Collation

Unicode Collation is a language-sensitive method of sorting text that also be used for advanced
search purposes.

Unicode Collation in Solr is fast, because all the work is done at index time. It uses a

Keywor dTokeni zer Fact ory to create a sort field, followed by Col | ati onKeyFi | t er Fact ory. The
Col | ati onKeyFi | t er Fact ory adds "sort keys" to the sort field at index time, so that at query
time you can sort on the sort field and your results comes back in collated order.

Sorting Text for a Specific Language

In this example, text is sorted according to the default German rules provided by Java. The rules
for sorting German in Java are defined in a package called a Java Locale.

Page 135 of 397

Solr Reference Guide Jan 10, 2012

Locales are typically defined as a combination of language and country, but you can specify just
the language if you want. For example, if you specify "de" as the language, you will get sorting
that works well for German language. If you specify "de" as the language and "CH" as the country,
you will get German sorting specifically tailored for Switzerland.

You can see a list of supported Locales here.

<l-- define a field type for German collation -->
<fiel dType nane="col | at edGERVAN' cl ass="sol r. Text Fi el d">
<anal yzer >
<t okeni zer cl ass="sol r. Keywor dTokeni zer Factory"/>
<filter class="solr.CollationKeyFilterFactory"
| anguage="de"
strength="pri mary"
/>
</ anal yzer >
</fieldType>

<l-- define a field to store the German col | ated nmanufacturer nanes -->
<field nanme="nmanuGERMAN' type="col | at edGERMAN' i ndexed="true" stored="fal se" />

<l-- copy the text to this field. we could create French, English, Spanish versions
t oo,

and sort differently for different users! --
<copyFi el d source="manu" dest="nanuGERMAN"'/ >

In the example above, we defined the strength as "primary". The strength of the collation
determines how strict the sort order will be, but it also depends upon the language. For example,
in English, "primary" strength ignores differences in case and accents.

For more information, see the Collator javadocs.

Sorting Text for Multiple Languages

There are two approaches to supporting multiple languages: if there is a small list of languages you
wish to support, consider defining collated fields for each language and using copyFi el d. However,
adding a large number of sort fields can increase disk and indexing costs. An alternative approach
is to use the Unicode def aul t collator.

The Unicode def aul t or ROCT locale has rules that are designed to work well for most languages.
To use the def aul t locale, simply define the language as the empty string. This Unicode default
sort is still significantly more advanced than the standard Solr sort.

Page 136 of 397

http://java.sun.com/j2se/1.5.0/docs/guide/intl/locale.doc.html#util-text
http://java.sun.com/j2se/1.5.0/docs/api/java/text/Collator.html

Solr Reference Guide Jan 10, 2012

<fiel dType nane="col | at edROOT" cl ass="sol r. Text Fi el d">
<anal yzer >
<t okeni zer cl ass="sol r. Keywor dTokeni zer Fact ory"/ >
<filter class="solr.CollationKeyFilterFactory"
| anguage=""
strength="pri mary"
/>
</ anal yzer >
</fieldType>

Sorting Text with Custom Rules
You can define your own set of sorting rules. Its easiest to take existing rules that are close to

what you want and customize them.

In the example below, we create a custom rule set for German called DIN 5007-2. This rule set
treats umlauts in German differently: it treats ¢ as equivalent to oe. For more information, see the
RuleBasedCollator javadocs.

This example shows how to create a custom rule set and dump it to a file:

/1 get the default rules for Germany

/1 these are called DIN 5007-1 sorting

Rul eBasedCol | at or baseCol | ator = (Rul eBasedCol | ator) Col | ator. getlnstance(new
Local e("de", "DE"));

/1 define sonme tailorings, to nake it DI N 5007-2 sorting
/1 For exanple, this makes 6 equivalent to oe

String DIN5007_2_tailorings =

"& ae , a\u0308 & AE , A\ u0308"+

"& oe , 0\u0308 & CE , O u0308"+

"& ue , u\u0308 & UE , u\u0308";

/1 concatenate the default rules to the tailorings, and dunp it to a String

Rul eBasedCol | ator tail oredCollator = new Rul eBasedCol | at or (baseCol | ator. get Rul es() +
DI N5007_2_tail orings);

String tailoredRules = tail oredCol |l ator. get Rul es();

/l wite these to a file, be sure to use UTF-8 encoding!!
IOUtils.wite(tailoredRules, new Fil eQutputStrean("/solr_hone/ conf/custonRul es. dat"),
"UTF-8");

This rule set can now be used for custom collation in Solr:

Page 137 of 397

http://java.sun.com/j2se/1.5.0/docs/api/java/text/RuleBasedCollator.html

Solr Reference Guide Jan 10, 2012

<fi el dType nane="col | at edCUSTOM' cl ass="sol r. TextFi el d">
<anal yzer >
<t okeni zer cl ass="sol r. Keywor dTokeni zer Fact ory"/ >
<filter class="solr.CollationKeyFilterFactory"
cust on¥"cust onRul es. dat "
strength="pri mary"
/>
</ anal yzer >
</fieldType>

Searching
Collation can also be used to search on a tokenized field.
In this example, we use the same custom German rules defined above on a tokenized field. As with

stemmers, although the output tokens are nonsense they are the same values and will match for
search purposes.

<fiel dType nane="col | at edCUSTOM' cl ass="sol r. Text Fi el d">
<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.CollationKeyFilterFactory"
cust on¥" cust onRul es. dat "
strengt h="pri mary"
/>
</ anal yzer >
</fieldType>

ICU Collation

For better performance, less memory usage, and support for more locales, you can add the
anal ysi s- extras contrib and use | CUCol | ati onKeyFi | t er Fact ory instead. See the javadocs for
more information.

The principles of ICU Collation are the same as those of Unicode Collation; you just specify an
RFC3066 language identifier with the locale parameter instead of specifying
| anguage+count ry+vari ant .

For example, to get German phonebook sort order:

Page 138 of 397

http://svn.apache.org/repos/asf/lucene/dev/trunk/solr/contrib/analysis-extras/src/java/org/apache/solr/analysis/ICUCollationKeyFilterFactory.java

Solr Reference Guide Jan 10, 2012

<fiel dType nane="col | atedl CU' cl ass="sol r. TextFi el d">
<anal yzer >
<t okeni zer cl ass="sol r. Keywor dTokeni zer Fact ory"/ >
<filter class="solr.|CUCol | ati onKeyFilterFactory"
| ocal e="de@ol | ati on=phonebook"
strength="pri mary"
/>
</ anal yzer >
</fieldType>

To use the | CUCol | ati onKeyFi | t er Fact ory filter, see
sol r/contrib/anal ysi s-extras/ README. t xt for instructions on which jars you need to add to
your SOLR_HOVE/ | i b.

ISO Latin Accent Filter

This filter replaces any accented characters in a token with the unaccented equivalent. This can
increase recall by causing more matches. On the other hand, it can reduce precision because
language-specific character differences may be lost.

Characters in the ISO Latin 1 (ISO-8859-1) character set are recognized and letter case will be
preserved, so that "A" becomes "A" and "&" becomes "a".

., This filter only looks for accented characters, it does not filter out other non-ASCII
characters.

Factory class: solr.ISOLatin1AccentFilterFactory
Arguments: None

Example:

<anal yzer>
<t okeni zer class="solr. StandardTokeni zer Factory"/>
<filter class="solr.|SCOLati nlAccentFilterFactory"/>
</ anal yzer >

In: "Bjérn Angstrom"

Tokenizer to Filter: "Bjorn", "Angstrém"

Out: "Bjorn", "Angstrom"

Page 139 of 397

Solr Reference Guide Jan 10, 2012

Arabic

Solr provides support for the Light-10 (PDF) stemming algorithm, and Lucene includes an example
stopword list.

This algorithm defines both character normalization and stemming, so these are split into two
filters to provide more flexibility.

Factory classes: solr.ArabicStemFilterFactory, solr.ArabicNormalizationFilterFactory
Arguments: None

Example:

<anal yzer>
<filter class="solr.Arabi cNormalizationFilterFactory"/>
<filter class="solr.ArabicStenFilterFactory"/>

</ anal yzer >

In: p 99
Tokenizer to Filter: §od, §w9d
Out: Yod Yod

Brazilian Portuguese

This is a Java filter written specifically for stemmming the Brazilian dialect of the Portuguese
language. It uses the Lucene class or g. apache. | ucene. anal ysi s. br. Brazi | i anSt enmer .
Although that stemmer can be configured to use a list of protected words (which should not be
stemmed), this factory does not accept any arguments to specify such a list.

Factory class: solr.BrazilianStemFilterFactory
Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.BrazilianStenFilterFactory"/>
</ anal yzer >

In: "praia praias"

Tokenizer to Filter: "praia", "praias"

Page 140 of 397

http://www.mtholyoke.edu/~lballest/Pubs/arab_stem05.pdf

Solr Reference Guide Jan 10, 2012

Out: "pra", "pra"

Bulgarian

Solr includes a light stemmer for Bulgarian, following this algorithm (PDF), and Lucene includes an
example stopword list.

Factory class: solr.BulgarianStemFilterFactory
Arguments: None

Example:

<anal yzer >
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.BulgarianStenFilterFactory"/>
</ anal yzer >

In: "BaHMa BaHe BaHeTO"

Tokenizer to Filter: "BaHusa", "BaHe", "Baneto"

Out: "Ban", "Ban", "BaH

Chinese

Chinese Tokenizer

The Chinese Tokenizer is deprecated as of Solr 3.4. Use the sol r. St andar dTokeni zer Fact ory
instead.

Factory class: solr.ChineseTokenizerFactory
Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. Chi neseTokeni zer Factory"/>
</ anal yzer >

In: "HRSF , R
Out: "R, "SR, " Y, o,

Chinese Filter Factory

Page 141 of 397

http://members.unine.ch/jacques.savoy/Papers/BUIR.pdf

Solr Reference Guide Jan 10, 2012

The Chinese Filter Factory is deprecated as of Solr 3.4. Use the sol r. St opFi | t er Fact ory instead.
Factory class: solr.ChineseFilterFactory
Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.ChineseFilterFactory"/>

</ anal yzer >

In: "¢R#F, and AP "
Tokenizer to Filter: "{R", "#", "and", "&", "A&", "#t", "H", ""
Out:"fR", "##", "&", "A&", "#", "&", "3"

Simplified Chinese

For Simplified Chinese, Solr provides support for Chinese sentence and word segmentation with the
sol r. Smar t Chi neseSent enceTokenFi | t er Fact ory and

sol r. Smar t Chi neseWor dTokenFi | t er Fact ory in the anal ysi s- extras contrib module. This
component includes a large dictionary and segments Chinese text into words with the Hidden
Markov Model. To use this filter, see sol r/ contri b/ anal ysi s- ext ras/ READVE. t xt for instructions
on which jars you need to add to your sol r_hone/ | b.

Factory class: solr.SmartChineseWordTokenFilterFactory

Arguments: None

Examples:

To use the default setup with fallback to English Porter stemmer for english words, use:
<anal yzer cl ass="org. apache. | ucene. anal ysi s.cn. snart. Snart Chi neseAnal yzer"/ >

Or to configure your own analysis setup, use the Smart Chi neseSent enceTokeni zer Fact ory along
with your custom filter setup. The sentence tokenizer tokenizes on sentence boundaries and the
Smar t Chi neseWr dTokenFi | t er breaks this further up into words.

Page 142 of 397

Solr Reference Guide Jan 10, 2012

<anal yzer >

<t okeni zer cl ass="sol r. Smart Chi neseSent enceTokeni zer Fact ory"/ >
<filter class="solr.Smart Chi neseWordTokenFilterFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>

<filter class="solr.PositionFilterFactory" />

</ anal yzer >

CJK

This tokenizer breaks Chinese, Japanese and Korean language text into tokens. These are not
whitespace delimited languages. The tokens generated by this tokenizer are "doubles", overlapping
pairs of CJK characters found in the field text.

Factory class: solr.CJKTokenizerFactory
Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. CJKTokeni zer Factory"/>
</ anal yzer >

In: "R, R
Out: "RIF", "B", "R, "Peh", ", P,

Czech

Solr includes a light stemmer for Czech, following this algorithm, and Lucene includes an example
stopword list.

Factory class: solr.CzechStemFilterFactory
Arguments: None

Example:

<anal yzer>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.CzechStenFilterFactory"/>
<anal yzer >

In: "prezidensti, prezidenta, prezidentského"

Page 143 of 397

https://dl.acm.org/citation.cfm?id=1598600

Solr Reference Guide Jan 10, 2012

m n

Tokenizer to Filter: "prezidensti", "prezidenta", "prezidentského"

Out: "preziden", "preziden", "preziden"

Dutch

This is a Java filter written specifically for stemmming the Dutch language. It uses the Lucene class
or g. apache. | ucene. anal ysi s. nl . Dut chSt emmrer . Although that stemmer can be configured to
use a list of protected words (which should not be stemmed), this factory does not accept any
arguments to specify such a list.

Another option for stemming Dutch words is to use the Snowball Porter Stemmer with an argument
of | anguage=""Dut ch".

Factory class: solr.DutchStemFilterFactory
Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/ >
<filter class="solr.DutchStenFilterFactory"/>

</ anal yzer >

In: "kanaal kanalen"

Tokenizer to Filter: "kanaal"”, "kanalen"

Out: "kanal", "kanal"

Finnish

Solr includes support for stemming Finnish, and Lucene includes an example stopword list.
Factory class: solr.FinnishLightStemFilterFactory

Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/ >
<filter class="solr.FinnishLightStenFilterFactory"/>
</ anal yzer >

Page 144 of 397

Solr Reference Guide Jan 10, 2012

In: "kala kalat"
Tokenizer to Filter: "kala", "kalat"

Out: "kala", "kala"

French

Elision Filter

Removes article elisions from a token stream. This filter primarily applies to the French language
and makes use of the ElisionFilter class in or g. apache. | ucene. anal ysis.fr.

Factory class: solr.ElisionFilterFactory
Arguments:

articles: (required) The pathname of a file that contains a list of articles, one per line, to be
stripped. Articles are words such as "le", which are commonly abbreviated, such as /'avion (the
plane). This file should include the abbreviated form, which precedes the apostrophe. In this case,
simply "/I".

Example:

<anal yzer >
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
<filter class="solr.ElisionFilterFactory"/>

</ anal yzer >

In: "L'histoire d'art"

Tokenizer to Filter: "L'histoire", "d'art"

Out: "histoire", "art

French Light Stem Filter

Solr includes three stemmers for French: one in the sol r. Snowbal | PorterFilterFactory, a
lighter stemmer called sol r. FrenchLi ght StenFi | t er Fact ory, and an even less aggressive
stemmer called sol r. FrenchM ni mal St enFi | t er Fact ory. Lucene includes an example stopword
list.

Factory classes: solr.FrenchLightStemFilterFactory, solr.FrenchMinimalStemFilterFactory

Arguments: None

Page 145 of 397

Solr Reference Guide Jan 10, 2012

Examples:

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.ElisionFilterFactory"/>
<filter class="solr.FrenchLightStentilterFactory"/>
</ anal yzer >

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.ElisionFilterFactory"/>
<filter class="solr.FrenchMninmal StenFilterFactory"/>
</ anal yzer >

In: "le chat, les chats"
Tokenizer to Filter: "le", "chat", "les", "chats"

out: |||e", "Chat", ll|e||, "Chat"

Galician

Solr includes a stemmer for Galician following this algorithm, and Lucene includes an example
stopword list.

Factory class: solr.GalicianStemFilterFactory
Arguments: None

Example:

<anal yzer >
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.GalicianStenFilterFactory"/>
</ anal yzer >

In: "felizmente Luzes"
Tokenizer to Filter: "felizmente", "luzes"

Out: "feliz", "luz"

German

Page 146 of 397

http://bvg.udc.es/recursos_lingua/stemming.jsp

Solr Reference Guide Jan 10, 2012

Solr includes four stemmers for German: one in the sol r. Snowbal | PorterFil ter Factory

| anguage="CGer nan", a stemmer called sol r. Ger manSt enFi | t er Fact ory, a lighter stemmer called
sol r. Ger manLi ght St enFi | t er Fact ory, and an even less aggressive stemmer called

sol r. GermanM ni nmal St enFi | t er Fact ory. Lucene includes an example stopword list.

Factory classes: solr.GermanStemFilterFactory, solr.LightGermanStemFilterFactory,
solr.MinimalGermanStempFilterFactory

Arguments: None

Examples:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/ >
<filter class="solr.GermanStenFilterFactory"/>

</ anal yzer >

<anal yzer type="index">
<t okeni zer class="solr. StandardTokeni zer Factory "/>
<filter class="sol r.GernmanLi ght StenfilterFactory"/>
</ anal yzer >

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/>
<filter class="solr.GermanM ni mal StenFilterFactory"/>
</ anal yzer >

In: "hund hunden"
Tokenizer to Filter: "hund", "hunden"

Out: "hund", "hund"

Greek

This filter converts uppercase letters in the Greek character set to the equivalent lowercase
character.

Factory class: solr.GreekLowerCaseFilterFactory
Arguments:

char set : (optional, default "UnicodeGreek") Specifies the name of the character set to use. Must
be "UnicodeGreek", "ISO" or "CP1253".

Page 147 of 397

Solr Reference Guide Jan 10, 2012

. Use of custom charsets was deprecated in Solr 1.4 and is unsupported in Solr 3.1. If you
need to index text in these encodings, please use Java's character set conversion facilities
(InputStreamReader, and so on.) during I/0O, so that Lucene can analyze this text as
Unicode instead.

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
<filter class="solr.G eekLower CaseFilterFactory"/>
</ anal yzer >

In: "EAANVIKN AnpokparTia Elliniki Dimokratia"

in n

Tokenizer to Filter: "EAAnvIkA", "AnpokparTia”, "Elliniki", "Dimokratia"

n n n n

Out: "eAAnvikn", "dnuokpaTia”, "elliniki", "dimokratia"

Hindi

Solr includes support for stemming Hindi following this algorithm (PDF), support for common
spelling differences through the sol r. Hi ndi Nor mal i zati onFi | t er Fact ory, support for encoding
differences through the sol r. I ndi cNormal i zati onFi | t er Fact ory following this algorithm, and
Lucene includes an example stopword list.

Factory classes: solr.IndicNormalizationFilterFactory, solr.HindiNormalizationFilterFactory,
solr.HindiStemFilterFactory

Arguments: None

Example:

<filter class="solr.IndicNormalizationFilterFactory"/>
<filter class="solr.H ndi NormalizationFilterFactory"/>
<filter class="solr.H ndi StenFilterFactory"/>

In: STt ST
Out: "z, "

Indonesian

Page 148 of 397

http://computing.open.ac.uk/Sites/EACLSouthAsia/Papers/p6-Ramanathan.pdf
http://ldc.upenn.edu/myl/IndianScriptsUnicode.html

Solr Reference Guide Jan 10, 2012

Solr includes support for stemming Indonesian (Bahasa Indonesia) following this algorithm (PDF),
and Lucene includes an example stopword list.

Factory class: solr.IndonesianStemFilterFactory
Arguments: None

Example:

<anal yzer>

<filter class="solr.LowerCaseFilterFactory"/>

<filter class="solr.I|ndonesianStenFilterFactory" stenDerivational ="true" />
</ anal yzer >

In: "sebagai sebagainya"

Tokenizer to Filter: "sebagai”, "sebagainya"

Out: "bagai", "bagai"

Italian

Solr includes two stemmers for Italian: one in the sol r. Snowbal | PorterFi |l t er Factory
| anguage="1talian", and a lighter stemmer called sol r.1talianLi ghtStenFilterFactory.
Lucene includes an example stopword list.

Factory class: solr.ItalianStemFilterFactory
Arguments: None

Example:

<anal yzer>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.ItalianLightStenFilterFactory"/>
</ anal yzer >

In: "propaga propagare propagamento"

n n n n

Tokenizer to Filter: "propaga", "propagare",

n

propagamento

Out: "propag", "propag", "propag"

Lao, Myanmar, Khmer

Page 149 of 397

http://www.illc.uva.nl/Publications/ResearchReports/MoL-2003-02.text.pdf

Solr Reference Guide Jan 10, 2012

Lucene provides support for segmenting these languages into syllables with the
sol r. | CUTokeni zer Fact ory in the anal ysi s- extras contrib module. To use this tokenizer, see

sol r/ contri b/ anal ysi s-extras/ READMVE. t xt f or instructions on which jars you need to add to

your sol r _hone/Iib.

Latvian

Solr includes support for stemming Latvian, and Lucene includes an example stopword list.
Factory class: solr.LatvianStemFilterFactory

Arguments: None

Example:

<fiel dType nane="text | vsten!' class="solr.TextField" positionlncrenmentGp="100">
<anal yzer>
<t okeni zer class="solr. StandardTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.LatvianStenFilterFactory"/>
</ anal yzer >
</fieldType>

In: "tirgiem tirgus"
Tokenizer to Filter: "tirgiem", "tirgus"

out: "tirg", "tirg"
Persian

Persian Filter Factories
Solr includes support for normalizing Persian, and Lucene includes an example stopword list.

Factory class: solr.PersianNormalizationFilterFactory
Arguments: None

Example:

<anal yzer >
<filter class="solr.ArabicNornalizationFilterFactory"/>
<filter class="solr.PersianNormalizationFilterFactory">

</ anal yzer >

Page 150 of 397

Solr Reference Guide Jan 10, 2012

In: " ;S ol wSol"
Tokenizer to Filter: " ,Sol", "w,S ol"

Out qu /u, llekfu

Polish

Lucene provides support for Polish stemming with the sol r. St enpel Pol i shStenFi |l ter Factory in
the contri b/ anal ysi s- ext ras module. This component includes an algorithmic stemmer with
tables for Polish. To use this filter, see sol r/ contri b/ anal ysi s- ext r as/ READVE. t xt for
instructions on which jars you need to add to your sol r _hone/ i b.

Factory class: solr.StempelPolishStemFilterFactory
Arguments: None

Example:

<anal yzer>

<filter class="solr.LowerCaseFilterFactory"/>

<filter class="solr.solr.Stenpel PolishStenfilterFactory"/>
</ anal yzer >

In: ""studenta studenci"

Tokenizer to Filter: "studenta", "studenci"

Out: "student", "student"

Portuguese

Solr includes four stemmers for Portuguese: one in the sol r. Snowbal | PorterFi |l ter Factory, an
alternative stemmer called sol r. Port ugueseSt enFi | t er Fact ory, a lighter stemmer called

sol r. PortugueseLi ght StenfFi | t er Fact ory, and an even less aggressive stemmer called

sol r. PortugueseM ni nmal St enFi | t er Fact ory. Lucene includes an example stopword list.

Factory class: solr.PortugueseStemFilterFactory, solr.PortugueselLightStemFilterFactory,
solr.PortugueseMinimalStemFilterFactory

Arguments: None

Example:

Page 151 of 397

Solr Reference Guide Jan 10, 2012

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.PortugueseStentilterFactory"/>
</ anal yzer >

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr. PortugueselLightStentilterFactory"/>
</ anal yzer >

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.PortugueseM ni nal StenFilterFactory"/>
</ anal yzer >

In: "praia praias"
Tokenizer to Filter: "praia", "praias"

out: Ilprall, llprall
Russian

Russian Letter Tokenizer

This tokenizer breaks Russian language text into tokens. It is similar to LetterTokenizer, but
additionally looks up letters in the appropriate Russian character set.

Factory class: solr.RussianLetterTokenizerFactory

Arguments:

charset : (optional, default "UnicodeRussian") The name of the character set to use. Must be
"UnicodeRussian", "KOI8" or "CP1251".

» Use of custom charsets was deprecated in Solr 1.4 and is unsupported in Solr 3.1. If you
need to index text in these encodings, please use Java's character set conversion facilities
(InputStreamReader, and so on.) during I/0O, so that Lucene can analyze this text as
Unicode instead.

Page 152 of 397

Solr Reference Guide Jan 10, 2012

Example:

<anal yzer type="index">
<t okeni zer cl ass="solr. Russi anLetter Tokeni zer Factory"/ >
</ anal yzer >

In: "3apaBcTBYynTe!. 4 He roBopo pycckoro."
Out: "3gpascteynte”, "4", "He", "rosopto"”, "pycckoro"

Russian Lower Case Filter

This filter converts uppercase letters in the Russian character set to the equivalent lowercase
character.

Factory class: solr.RussianLowerCaseFilterFactory
Arguments:

char set : (optional, default "UnicodeRussian") Specifies the name of the character set to use. Must
be "UnicodeRussian", "KOI8" or "CP1251".

Use of custom charsets was deprecated in Solr 1.4 and is unsupported in Solr 3.1. If you
need to index text in these encodings, please use Java's character set conversion facilities
(InputStreamReader, and so on.) during I/0, so that Lucene can analyze this text as
Unicode instead.

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="sol r.RussianLower CaseFilterFactory"/>
</ anal yzer >

In: "3ppaBcTtBynTe!. 1 He roBopto pycckoro."

Tokenizer to Filter: "3gpasctBynte”, "4", "He", "roBopr", "pycckoro

n nm_n n

Out: "3gpascTtBynTe”, "a", "He", "roBopr", "pycckoro"

Russian Stem Filter

Page 153 of 397

Solr Reference Guide Jan 10, 2012

Solr includes two stemmers for Russian: one in the sol r. Snowbal | PorterFil ter Factory
| anguage="Russi an", and a lighter stemmer called sol r. Russi anLi ght St enFi | t er Factory.
Lucene includes an example stopword list.

Factory class: solr.RussianLightStemFilterFactory
Arguments:

charset: (optional, default "UnicodeRussian") Specifies the name of the character set to use. Must
be "UnicodeRussian", "KOI8" or "CP1251".

» Use of custom charsets was deprecated in Solr 1.4 and is unsupported in Solr 3.4. If you
need to index text in these encodings, please use Java's character set conversion facilities
(InputStreamReader, and so on.) during I/0, so that Lucene can analyze this text as
Unicode instead.

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.RussianLower CaseFi | terFactory"/>
<filter class="solr.RussianLightStenFilterFactory"/>
</ anal yzer >

In: "Ban Banbl"

Tokenizer to Filter: "Ban", "Banbl"

Out: "Ban", "Ban

Spanish

Solr includes two stemmers for Spanish: one in the sol r. Snowbal | PorterFi |l t er Factory
| anguage="Spani sh", and a lighter stemmer called sol r. Spani shLi ght StenFi | ter Factory.
Lucene includes an example stopword list.

Factory class: solr.SpanishStemFilterFactory
Arguments: None

Example:

Page 154 of 397

Solr Reference Guide Jan 10, 2012

<anal yzer >
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="sol r. Spani shLi ght StenFi | terFactory"/>
</ anal yzer >

In: "torear toreara torearlo"

" n n n

Tokenizer to Filter: "torear", "toreara", "torearlo"

Out: "tor", "tor", "tor"

Swedish

Swedish Stem Filter

Solr includes two stemmers for Swedish: one in the sol r. Snowbal | PorterFilter Factory
| anguage="Swedi sh", and a lighter stemmer called sol r. Swedi shLi ght St enFi | t er Factory.
Lucene includes an example stopword list.

Factory class: solr.SwedishStemFilterFactory
Arguments: None

Example:

<anal yzer>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.SwedishLi ght StenFilterFactory"/>
</ anal yzer >

In: "kloke klokhet klokheten"

Tokenizer to Filter: "kloke", "klokhet", "klokheten"
Out: "klok", "klok", "klok"

Thai

This filter converts sequences of Thai characters into individual Thai words. Unlike European
languages, Thai does not use whitespace to delimit words.

Factory class: solr.ThaiWordFilterFactory
Arguments: None

Example:

Page 155 of 397

Solr Reference Guide Jan 10, 2012

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.Thai WrdFilterFactory"/>

</ anal yzer >

In: "givAudNLIEan"
Tokenizer to Filter: "s19§uduigan”
Out: "‘i?'m", "Fu", "du", " aan"”

Turkish

Solr includes support for stemming Turkish through the sol r. Snowbal | PorterFi |l t er Factory, as
well as support for case-insensitive search through the sol r. Tur ki shLower CaseFi | t er Factory,
and Lucene includes an example stopword list.

Factory class: solr.TurkishLowerCaseFilterFactory
Arguments: None

Example:

<filter class="solr. Turki shLower CaseFilterFactory"/>
<filter class="solr.Snowbal | PorterFilterFactory" |anguage="Turkish" />

Page 156 of 397

Solr Reference Guide Jan 10, 2012

Running Your Analyzer

Once you've defined a field type in schema. xm and specified the analysis steps that you want
applied to it, you should test it out to make sure that it behaves the way you expect it to. Luckily,
there is a very handy page in the Solr admin interface that lets you do just that. You can invoke
the analyzer for any text field, provide sample input, and display the resulting token stream.

For example, assume that the following field type definition has been added to schema. xnl :

<fiel dType nane="nytextfield" class="solr. TextField">
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.Hyphenat edWordsFilterFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
<anal yzer type="query">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
</fieldType>

The objective here (during indexing) is to reconstruct hyphenated words, which may have been
split across lines in the text, then to set all words to lowercase. For queries, you want to skip the
de-hyphenation step.

To test this out, point your browser at the Field Analysis page of the Solr Admin Web interface. By
default, this will be at the following URL (adjust the hosthame and/or port to match your
configuration): http://localhost:8983/solr/admin/analysis.jsp. You should see a page like this.

Page 157 of 397

http://localhost:8983/solr/admin/analysis.jsp

Solr Reference Guide Jan 10, 2012

anm Solr admin page
Jso. Solr admin page H_ + L T
@ |so~ localhost: 8983 /solr/admin/analysis.jspthighlight=on v C‘] (2§~ GooQ) @
Solr Admin (example) L.
drews-macbook:8983 . .
cwd=/Users/drewwheeler/apache-solr-3.4.0/example SolrHome=solr/./ SOI I"

HTTP caching is OFF

Field Analysis

'ﬁeld name 5] I

Field value (Index)
verbose output [
highlight matches #

Field value (Query) I

verbose output [
I Analyze

Empty Field Analysis screen.

We want to test the field type definition for "mytextfield", defined above. The drop-down labeled
"Field" has two values, "name" and "type". Choosing "type" allows you to give the value of the
name attribute in a <fi el dType> definition, "mytextfield" for this example.

You can also select "name" and provide the name of a <field> definition from schena. xm . A field
definition refers to a type definition, so this is essentially an indirect way of the selecting the field's
type.

In the "Field Value" box enter some sample text to be processed by the analyzer. The results of
each analysis stage will be displayed when you click the Analyze button. Let's test the index
analyzer by providing some sample text. We will leave the query field value empty for now. The
result we expect is that Hyphenat edWor dsFi | t er will join the hyphenated pair "Super-" and
"computer" into the single word "Supercomputer”, and then Lower CaseFi | t er will set it to
"supercomputer". Let's see what happens:

Page 158 of 397

Solr Reference Guide Jan 10, 2012

s O C
n“ st localnost:8983/solr/admin/analysis.jsp e S-san) (A (D] (B

Y [/

Field [toe 15)
Field value (Index)
verbose output #
highlight matches #

Running index-time analyzer, verbose output.

The result is two distinct tokens rather than the one we expected. What went wrong? Looking at
the first token that came out of St andar dTokeni zer, we can see the trailing hyphen has been
stripped off of "Super-". Checking the documentation for St andar dTokeni zer, we see that it treats
all punctuation characters as delimiters and discards them. What we really want in this case is a
whitespace tokenizer that will preserve the hyphen character when it breaks the text into tokens.

Let's make this change and try again:

Page 159 of 397

Solr Reference Guide Jan 10, 2012

<fiel dType nane="nytextfield" class="solr. TextField">
<anal yzer type="index">
<t okeni zer class="sol r. Wit espaceTokeni zer Factory"/>
<filter class="sol r.Hyphenat edWrdsFilterFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
<anal yzer type="query">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
</fieldType>

n“ « localhost:8983 /solrfadmin/analysis.jsp e r__‘ m EF - |

mytextfield

Super=-
computer

Using WhitespaceTokenizer, expected results.

Page 160 of 397

Solr Reference Guide

Jan 10, 2012

Re-submitting the form by clicking "Analyze" again, we see the result in the screen shot above.

That's more like it. Because the whitespace tokenizer preserved the trailing hyphen on the first
token, Hyphenat edWor dsFi | t er was able to reconstruct the hyphenated word, which then passed
it on to Lower CaseFi | t er, where capital letters are set to lowercase.

Now let's see what happens when invoking the analyzer for query processing. For query terms, we
don't want to do de-hyphenation and we do want to discard punctuation, so let's try the same
input on it. We'll copy the same text to the "Field value (Query)" box and clear the one for index
analysis. We'll also include the full, unhyphenated word as another term to make sure it is
processed to lower case as we expect. Submitting again yields these results:

ano

bi

Solr admin page

L1

Solr admin page

v (3'] {8~ startQ) E] [ﬂ'] [m

@ | <o localhost:8983 /solr/admin/analysis.jsp

Solr Admin (example)

localhost:8983

cwd=/Users/drewwheeler/apache-solr-3.4.0/example SolrtHome=solr/./

HTTP caching is OFF

Field Analysis

FEld | type
Field valu

Field valu

?l

e (Index)

verbose output #
highlight matches &

e (Query)

verbose output @

Query Analyzer
.apache.solr.analysis.StandardTokenizerFactory {luceneMatchVersion=LUCENE_34}

oy
»”
Apache "

Solr

Imytextﬁeld

Super-computer Supercomputer

Analyze

position
term text
startOffset
endOffset

type

1
Super
0
5
<ALPHANUM:>

term text
startOffset|
endOffset

type

.apache.solr.analysis.
ﬁiﬁoﬂ

1
super
0
5
<ALPHANUM:>

2 3

computer Supercomputer
6 15

14 28
<ALPHANUM>|<ALPHANUM>
LowerCaseFilterFactory {luceneMatchVersion=LUCENE_34}
2 3

computer supercomputer
6 15

14 28
<ALPHANUM>|<ALPHANUM>

Query-time analyzer, good results.

Page 161 of 397

Solr Reference Guide Jan 10, 2012

We can see that for queries the analyzer behaves the way we want it to. Punctuation is stripped
out, Hyphenat edWr dsFi | t er doesn't run, and we wind up with the three tokens we expected.

Refer to the section Running Field Analysis to Test Analyzers, Tokenizers, and TokenFilters for more
information about conducting field analysis through the Admin Web interface.

Page 162 of 397

Solr Reference Guide Jan 10, 2012

Indexing and Basic Data Operations

This section describes how Solr adds data to its index. It covers the following topics:
What Is Indexing?: An overview of Solr's indexing process.

Uploading Data with Solr Cell using Apache Tika: Information about using the Solr Cell framework
to upload data for indexing.

Uploading Data with Index Handlers: Information about using Solr's Index Handlers to upload XML
and CSV data.

Uploading Structured Data Store Data with the Data Import Handler: Information about uploading
and indexing data from a structured data store.

Detecting Languages During Indexing: Information about using language identification during the
indexing process.

UIMA Integration: Information about integrating Solr with Apache's Unstructured Information
Management Architecture (UIMA). UIMA lets you define custom pipelines of Analysis Engines that
incrementally add metadata to your documents as annotations.

Content Streams: Information about streaming content to Solr Request Handlers.

Page 163 of 397

Solr Reference Guide Jan 10, 2012

What Is Indexing?

This section describes the process of indexing: adding content to a Solr index and, if necessary,
modifying that content or deleting it. By adding content to an index, we make it searchable by Solr.

A Solr index can accept data from many different sources, including XML files, comma-separated
value (CSV) files, data extracted from tables in a database, and files in common file formats such
as Microsoft Word or PDF.

Here are the three most common ways of loading data into a Solr index:

® Using the Solr Cell framework built on Apache Tika for ingesting binary files or structured
files such as Office, Word, PDF, and other proprietary formats.

® Uploading XML files by sending HTTP requests to the Solr server from any environment
where such requests can be generated.

® Writing a custom Java application to ingest data through Solr's Java Client API (which is
described in more detail in Client APIs. See also the JavaDocs for the Solr] API:
http://lucene.apache.org/solr/api/solrj/index.html). Using the Java API may be the best
choice if you're working with an application, such as a Content Management System (CMS),
that offers a Java API.

Regardless of the method used to ingest data, there is a common basic data structure for data
being fed into a Solr index: a document containing multiple fields, each with a name and containing
content, which may be empty. One of the fields is usually designated as a unique ID field
(analogous to a primary key in a database), although the use of a unique ID field is not strictly
required by Solr.

If the field name is defined in the schema. xml file that is associated with the index, then the
analysis steps associated with that field will be applied to its content when the content is tokenized.
Fields that are not explicitly defined in the schema will either be ignored or mapped to a dynamic
field definition (see Documents, Fields, and Schema Design), if one matching the field name exists.

For more information on indexing in Solr, see the Solr Wiki.

The Solr Example Directory

The exanpl e/ directory includes a sample Solr implementation, along with sample documents for
uploading into an index. You will find the example docs in sol r _hone / exanpl e/ exanpl edocs.

The curl Utility for Transferring Files

Page 164 of 397

http://lucene.apache.org/solr/api/solrj/index.html
https://wiki.apache.org/solr/FrontPage

Solr Reference Guide Jan 10, 2012

Many of the instructions and examples in this section make use of the curl utility for transferring
content through a URL. curl| posts and retrieves data over HTTP, FTP, and many other protocols.
Most Linux distributions include a copy of curl . You'll find curl downloads for Linux, Windows, and
many other operating systems at http://curl.haxx.se/download.html|. Documentation for curl is
available here: http://curl.haxx.se/docs/manpage.html.

% Using curl or other command line tools for posting data is just fine for examples or tests,
but it's not the recommended method for achieving the best performance for updates in
production environments. You will achieve better performance with Solr Cell or or the other
methods described in this section.

Instead of curl, you can use utilities such as GNU wget (
http://www.gnu.org/software/wget/) or manage GETs and POSTS with Perl, although the
command line options will differ.

Page 165 of 397

http://curl.haxx.se/download.html
http://curl.haxx.se/docs/manpage.html
http://www.gnu.org/software/wget/

Solr Reference Guide Jan 10, 2012

Uploading Data with Solr Cell using Apache Tika

Earlier releases of Solr could easily index data that was already in XML format, but indexing
non-XML data, such as binary files or Office documents, required extra processing. Solr uses code
from the Apache Tika project to provide a framework for incorporating many different file-format
parsers such as Apache PDFBox and Apache POI into Solr itself. Working with this framework,
Solr's Ext ract i ngRequest Handl er can use Tika to support uploading binary files—including files in
popular formats such as Word and PDF—for data extraction and indexing.

When this framework was under development, it was called the Solr Content Extraction Library or
CEL; from that abbreviation came this framework's name: Solr Cell.

For more information on Solr's Extracting Request Handler, see
https://wiki.apache.org/solr/ExtractingRequestHandler.

Topics covered in this section:

Key Concepts

Trying out Tika with the Solr Example Directory

Input Parameters

Order of Operations

Configuring the Solr Extract i ngRequest Handl er

Metadata

Examples of Uploads Using the Extraction Request Handler
Sending Documents to Solr with a POST

Sending Documents to Solr with Solr Cell and Solr]

Key Concepts
When using the Solr Cell framework, it is helpful to keep the following in mind:
® Tika will automatically attempt to determine the input document type (Word, PDF, HTML) and

extract the content appropriately. If you like, you can explicitly specify a MIME type for Tika
with the st ream t ype parameter.

® Tika works by producing an XHTML stream that it feeds to a SAX ContentHandler. SAX is a
common interface implemented for many different XML parsers. For more information, see
http://www.saxproject.org/quickstart.html.

® Solr then responds to Tika's SAX events and creates the fields to index.

Page 166 of 397

http://lucene.apache.org/tika/
http://incubator.apache.org/pdfbox/
http://poi.apache.org/index.html
https://wiki.apache.org/solr/ExtractingRequestHandler
http://www.saxproject.org/quickstart.html

Solr Reference Guide Jan 10, 2012

® Tika produces metadata such as Title, Subject, and Author according to specifications such as
the DublinCore. See http://tika.apache.org/1.0/formats.html for the file types supported.

® Tika adds all the extracted text to the cont ent field.
® You can map Tika's metadata fields to Solr fields. You can also boost these fields.
® You can pass in literals for field values.

® You can apply an XPath expression to the Tika XHTML to restrict the content that is
produced.

Trying out Tika with the Solr Example Directory

You can try out the Tika framework using the example application included in Solr.

Start the Solr example server:

cd exanple -jar start.jar

In a separate window go to the docs/ directory (which contains some nice example docs), or the
site directory if you built Solr from source, and send Solr a file via HTTP POST:

cd docs

curl "http://local host: 8983/ sol r/update/extract?literal.id=docl&omm t=true'
-F "nyfile=@utorial.htm"

The URL above calls the Extraction Request Handler, uploads the file tutori al . ht Ml and assigns it
the unique ID docl. Here's a closer look at the components of this command:

® Theliteral.id=docl parameter provides the necessary unique ID for the document being
indexed.

® The comnmit=true paraneter causes Solr to perform a commit after indexing the document,
making it immediately searchable. For optimum performance when loading many documents,
don't call the commit command until you are done.

® The - F flag instructs curl to POST data using the Content-Type nul ti part/for m dat a and
supports the uploading of binary files. The @ symbol instructs curl to upload the attached
file.

Page 167 of 397

http://tika.apache.org/1.0/formats.html

Solr Reference Guide Jan 10, 2012

® The argument nyfile=@utorial . ht Ml needs a valid path, which can be absolute or relative
(for example, nyfile=@./../site/tutorial.htm if you are still in exampledocs
directory).

Now you should be able to execute a query and find that document (open the following link in your
browser): http://localhost:8983/solr/select?q=tutorial.

You may notice that although you can search on any of the text in the sample document, you may
not be able to see that text when the document is retrieved. This is simply because the "content"
field generated by Tika is mapped to the Solr field called text, which is indexed but not stored. This
operation is controlled by default map rule in the / updat e/ extract handler in sol rconfi g. xn ,
and its behavior can be easily changed or overridden. For example, to store and see all metadata
and content, execute the following:

curl
"http://1ocal host:8983/sol r/update/extract?literal.id=docl&uprefix=attr_&f map.content=att
-F "nyfile=@utorial.htm"

In this command, the uprefi x=attr_ parameter causes all generated fields that aren't defined in
the schema to be prefixed with attr_, which is a dynamic field that is stored.

The f map. content =attr _cont ent parameter overrides the default f map. cont ent =t ext causing the
content to be added to the attr_cont ent field instead.

Then run this command to query the document:
http://localhost:8983/solr/select?q=attr_content:tutorial

Input Parameters

The table below describes the parameters accepted by the Extraction Request Handler.

Parameter Description

boost.<fieldname>=< Boosts the specified field. (Boosting a field alters its importance in a

float> query response. To learn about boosting fields, see Searching.)
capture=< Captures XHTML elements with the specified name for a supplementary
Tika_XHTML_name> addition to the Solr document. This parameter can be useful for copying

chunks of the XHTML into a separate field. For instance, it could be
used to grab paragraphs (<p>) and index them into a separate field.
Note that content is still also captured into the overall "content" field.

Page 168 of 397

http://localhost:8983/solr/select?q=tutorial
http://localhost:8983/solr/select?q=attr_content:tutorial

Solr Reference Guide

Jan 10, 2012

captureAttr=true|false

commitWithin

defaultField=<
field_name>

extractOnly=true|false

extractFormat=xml|text

fmap.<source_field
>=<target_field>

literal.<fieldname>=<
value>

lowernames=true|false

resource.name=<
file_name>

uprefix=<prefix>

xpath=<
XPath_expression>

Indexes attributes of the Tika XHTML elements into separate fields,
named after the element. For example, when extracting from HTML,
Tika can return the href attributes in <a> tags as fields named "a". See
the examples below.

Add the document within the specified number of milliseconds.

If the uprefix parameter (see below) is not specified and a field cannot
be determined, the default field will be used.

Default is false. If true, returns the extracted content from Tika without
indexing the document. This literally includes the extracted XHTML as a
string in the response. When viewing manually, it may be useful to use
a response format other than XML to aid in viewing the embedded
XHTML tags.For an example, see
http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput.

Default is xml. Controls the serialization format of the extract content.
The xml format is actually XHTML, the same format that results from
passing the - x command to the Tika command line application, while
the text format is like that produced by Tika's -t command. This
parameter is valid only if extract Onl y is set to true.

Maps (moves) one field name to another. Example:
f map. cont ent =t ext causes the content field generated by Tika to be
moved to the "text" field.

Creates a field with the specified value. The data can be multivalued if
the field is multivalued.

Maps all field names to lowercase with underscores. For example,
"Content-Type" would be mapped to "content_type."

Specifies the optional name of the file. Tika can use it as a hint for
detecting a file's MIME type.

Prefixes all fields that are not defined in the schema with the given
prefix. This is very useful when combined with dynamic field definitions.
Example: upr efi x=i gnor ed_ would effectively ignore all unknown fields
generated by Tika given the example schema contains

<dynam cFi el d nane="i gnored_*" type="ignored"/>

When extracting, only return Tika XHTML content that satisfies the
XPath expression. See http://tika.apache.org/1.0/index.html for details
on the format of Tika XHTML. See also
http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput.

Page 169 of 397

http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput
http://tika.apache.org/1.0/index.html
http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput

Solr Reference Guide Jan 10, 2012

Order of Operations

Here is the order in which the Solr Cell framework, using the Extraction Request Handler and Tika,
processes its input.

1.

Tika generates fields or passes them in as literals specified by

literal.<fiel dname>=<val ue>.

If | oner nanmes=t r ue, Tika maps fields to lowercase.

Tika applies the mapping rules specified by f map. source = target parameters.

If uprefi x is specified, any unknown field names are prefixed with that value, else if
def aul t Fi el d is specified, any unknown fields are copied to the default field.

Configuring the Solr ExtractingRequestHandler

If you are not working in the supplied exanpl e/ sol r directory, you must copy all libraries from
exanpl e/ solr/libs into a |l i bs directory within your own solr directory or to a directory you've
specified in sol rconfi g. xm using the new | i bs directive. The Ext r act i ngRequest Handl er is not
incorporated into the Solr WAR file, so you have to install it separately.

Here is an example of configuring the Ext r act i ngRequest Handl er in sol rconfi g. xm .

<request Handl er name="/updat e/ extract"
cl ass="org. apache. sol r. handl er. extracti on. Extracti ngRequest Handl er ">

details.-->

Dat eUt i | . DEFAULT_DATE_FORVATS

<l st name="defaul ts">
<str name="f map. Last-Mdifi ed">l ast _nodi fi ed</str>
<str name="uprefix">i gnored_</str>
</lst>
<I--Optional. Specify a path to a tika configuration file. See the Tika docs for

<str name="tika.config">/mnmy/path/to/tika.config</str>
<l-- Optional. Specify one or nore date formats to parse. See

for default date formats -->
<l st nane="date.formts">
<str>yyyy- Mt dd</str>
</lst>
</ request Handl er >

In the defaults section, we are mapping Tika's Last-Modified Metadata attribute to a field named

| ast _nodi fi ed. We are also telling it to ignore undeclared fields. These are all overridden
parameters.

Page 170 of 397

Solr Reference Guide Jan 10, 2012

The ti ka. confi g entry points to a file containing a Tika configuration. You would only need this
entry if you have customized your Tika configuration. The Tika configuration file contains
information about parsers, MIME types, and so on.

You may also need to adjust the nul ti part Upl oadLi m t | nKB attribute as follows if you are
submitting very large documents.

<request Di spat cher handl eSel ect="true" >
<request Parsers enabl eRenot eStream ng="fal se" multipartUpl oadLi m t| nKB="20480" />

Lastly, the dat e. f or mat s allows you to specify various j ava. t ext . Si npl eDat eFor mat s date
formats for working with transforming extracted input to a Date. Solr comes configured with the
following date formats (see the Datelti |l in Solr):

yyyy-Mdd' T' HH: nm ss' Z'

yyyy- Mt dd' T' HH: nm ss

yyyy- MM dd

yyyy- Mt dd hh: mm ss

yyyy- Mt dd HH mm ss

EEE MW d hh: mm ss z yyyy
EEE, dd MW yyyy HH nm ss zzz
EEEE, dd- MW yy HH. mm ss zzz
EEE MMM d HH: mm ss yyyy

Multi-Core Configuration
For a multi-core configuration, specify sharedLi b="1ib' in <sol r/ > in exanpl e/ sol r/solr.xm in

order for Solr to find the JAR files in exanpl e/ sol r/1i b.

For more information about Solr cores, see The Well-Configured Solr Instance.

Metadata

As mentioned before, Tika produces metadata about the document. Metadata describes different
aspects of a document, such as the author's name, the number of pages, the file size, and so on.
The metadata produced depends on the type of document submitted. For instance, PDFs have
different metadata than Word documents do.

In addition to Tika's metadata, Solr adds the following metadata (defined in
Ext racti ngMet adat aConst ants):

Solr Metadata Description

Page 171 of 397

Solr Reference Guide Jan 10, 2012

stream_name The name of the Content Stream as uploaded to Solr. Depending on how
the file is uploaded, this may or may not be set

stream_source_info Any source info about the stream. (See the section on Content Streams
later in this section.)

stream_size The size of the stream in bytes.

stream_content_type The content type of the stream, if available.

We recommend that you try using the extract Onl y option to discover which values Solr is
setting for these metadata elements.

Examples of Uploads Using the Extraction Request Handler

Capture and Mapping
The command below captures <di v> tags separately, and then maps all the instances of that field
to a dynamic field named foo_t .

curl "http://local host: 8983/ sol r/update/extract?literal.id=doc2&captureAttr=true
&def aul t Fi el d=t ext & map. di v=f oo_t &apture=div* -F "tutorial=@utorial.pdf"

Capture, Mapping, and Boosting
The command below captures <di v> tags separately, maps the field to a dynamic field named
foo_t, then boosts foo_t by 3.

curl "http://1ocal host: 8983/ sol r/update/extract?literal.id=doc3&captureAttr=true
&def aul t Fi el d=t ext &apt ur e=di v&f map. di v=f oo_t &oost . foo_t =3"
-F "tutorial=@utorial.pdf"

Using Literals to Define Your Own Metadata

To add in your own metadata, pass in the literal parameter along with the file:

curl "http://local host: 8983/ sol r/update/extract?literal.id=doc4&captureAttr=true
&def aul t Fi el d=t ext &apt ur e=di v&f map. di v=f oo_t &oost . foo_t =3& i teral . bl ah_s=Bah"
-F "tutorial=@utorial.pdf"

Page 172 of 397

Solr Reference Guide Jan 10, 2012

XPath

The example below passes in an XPath expression to restrict the XHTML returned by Tika:

curl "http://local host: 8983/ sol r/update/extract?literal.id=doc5&captureAttr=true
&def aul t Fi el d=t ext &apt ur e=di v&f map. di v=f oo_t &oost.foo_t=3& iteral.id=id

& pat h=/ xht m : ht M / xht m : body/ xht m : di v/ descendant : node() "

-F "tutorial =@utorial.pdf"

Extracting Data without Indexing It

Solr allows you to extract data without indexing. You might want to do this if you're using Solr
solely as an extraction server or if you're interested in testing Solr extraction.

The example below sets the extract Onl y=true par anet er to extract data without indexing it.

curl "http://local host: 8983/ sol r/ updat e/ ext ract ?&extract Onl y=true"
--data-binary @utorial.htm
-H "Content-type:text/htm"

The output includes XML generated by Tika (and further escaped by Solr's XML) using a different
output format to make it more readable:

curl "http://local host: 8983/ sol r/ updat e/ ext ract ?&extract Onl y=t r ue&wt =r uby& ndent =t r ue"
--data-binary @utorial.htm
-H "Content-type:text/htm"

Sending Documents to Solr with a POST

The example below streams the file as the body of the POST, which does not, then, provide
information to Solr about the name of the file.

curl "http://local host: 8983/ sol r/update/extract?literal.id=doc5&defaul tFiel d=text"
--data-binary @utorial.htm
-H ' Content-type:text/htm"

Sending Documents to Solr with Solr Cell and Solr]

Solr] is a Java client that you can use to add documents to the index, update the index, or query
the index. You'll find more information on Solr] in Client APIs.

Page 173 of 397

Solr Reference Guide Jan 10, 2012

Here's an example of using Solr Cell and Solr] to add documents to a Solr index.

First, let's use Solr] to create a new SolrServer, then we'll construct a request containing a
ContentStream (essentially a wrapper around a file) and sent it to Solr:

public class SolrcCel |l Request Denp \ {
public static void main (String\[\] args){color} throws | OException,
Sol r Ser ver Exception \{
Sol r Server server = new ComonsHttpSol r Server ("http://1ocal host:8983/solr");
Cont ent St r eamJpdat eRequest req = new Cont ent St r eanJpdat eRequest ("/ updat e/ extract");
req. addFi | e(new Fil e("apache-solr/site/features. pdf"));
req. set Par an(Extract i ngPar ans. EXTRACT_ONLY, "true");
NarmedLi st & t; Cbj ect > result = server.request(req);
Systemout.println("Result: " + result);

This operation streams the file f eat ur es. pdf into the Solr index.

The sample code above calls the extract command, but you can easily substitute other commands
that are supported by Solr Cell. The key class to use is the Cont ent St r eamJpdat eRequest , which
makes sure the ContentStreams are set properly. Solr] takes care of the rest.

Note that the Cont ent St r eanmJpdat eRequest is not just specific to Solr Cell. You can send CSV to

the CSV Update handler and to any other Request Handler that works with Content Streams for
updates.

Page 174 of 397

Solr Reference Guide Jan 10, 2012

Uploading Data with Index Handlers

Index Handlers are Update Handlers designed to add, delete and update documents to the index.
Solr includes several of these to allow indexing documents in XML, CSV and JSON.

The example URLs given here reflect the handler configuration in the supplied sol rconfi g. xm . If
the name associated with the handler is changed then the URLs will need to be modified. It is quite
possible to access the same handler using more than one name, which can be useful if you wish to
specify different sets of default options.

Index Handlers covered in this section:

XMLUpdateRequestHandler for XML-formatted Data
XSLTRequestHandler to Transform XML Content
CSVRequestHandler for CSV Content

Using the JISONRequestHandler for JSON Content
Indexing Using Solr]

XMLUpdateRequestHandler for XML-formatted Data

Configuration

The default configuration file has the update request handler configured by default.

<r equest Handl er nane="/update" cl ass="sol r. Xm Updat eRequest Handl er" />

Adding Documents

Documents are added to the index by sending an XML message to the update handler.
The XML schema recognized by the update handler is very straightforward:

® The <add> element introduces one more more documents to be added.
® The <doc> element introduces the fields making up a document.
® The <fi el d> element presents the content for a specific field.

For example:

Page 175 of 397

Solr Reference Guide Jan 10, 2012

<add>
<doc>
<field name="aut hors">Patrick Eagar</field>
<field nane="subj ect">Sports</field>
<field name="dd">796. 35</fi el d>
<field nane="nunpages">128</fi el d>
<field nane="desc"></fiel d>
<field name="price">12. 40</fi el d>
<field nane="title" boost="2.0">Sumrer of the all-rounder: Test and chanpi onship
icket in England 1982</fiel d>
<field nane="i sbn">0002166313</fi el d>
<field name="year pub">1982</fi el d>
<field name="publisher">Collins</field>
</ doc>
<doc boost="2.5">

(2]
=

</ doc>
</ add>

If the document schema defines a unique key, then an / updat e operation silently replaces a
document in the index with the same unique key, unless the <add> element sets the al | owDups
attribute to t rue. If no unique key has been defined, indexing performance is somewhat faster, as
no search has to be made for an existing document.

Each element has certain optional attributes which may be specified.

Command Command Description Optional Parameter Description
Parameter
<add> Introduces one or more commitWithin= Add the document within the specified
documents to be added to number number of milliseconds
the index.
<doc> Introduces the definition of boost=float Default is 1.0. Sets a boost value for
a specific document. the document.To learn more about

boosting, see Searching.

<field> Defines a field within a boost=float Default is 1.0. Sets a boost value for
document. the field.

Other optional parameters for <add>, including al | owDups, overw i t ePendi ng, and
overw iteCommitted, are now deprecated.

Page 176 of 397

Solr Reference Guide Jan 10, 2012

Commit and Optimize Operations

The <conmi t > operation writes all documents loaded since the last commit to one or more segment
files on the disk. Before a commit has been issued, newly indexed content is not visible to
searches. The commit operation opens a new searcher, and triggers any event listeners that have
been configured.

Commits may be issued explicitly with a <conmi t/ > message, and can also be triggered from
<aut oconmi t > parameters in sol rconfi g. xni .

The <opti m ze> operation requests Solr to merge internal data structures in order to improve
search performance. For a large index, optimization will take some time to complete, but by
merging many small segment files into a larger one, search performance will improve. If you are
using Solr's replication mechanism to distribute searches across many systems, be aware that after
an optimize, a complete index will need to be transferred. In contrast, post-commit transfers are
usually much smaller.

The <conmi t > and <opti m ze> elements accept these optional attributes:

Optional Description
Attribute

maxSegments Default is 1. Optimizes the index to include no more than this number of
segments.

waitFlush Default is true. Blocks until index changes are flushed to disk.

waitSearcher Default is true. Blocks until a new searcher is opened and registered as the
main query searcher, making the changes visible.

expungeDeletes Default is false. Merges segments and removes deleted documents.

Here are examples of <commit> and <optimize> using optional attributes:

<commit waitFlush="fal se" waitSearcher="fal se"/>
<commit waitFlush="fal se" waitSearcher="fal se" expungeDel etes="true"/>
<optim ze waitFlush="fal se" waitSearcher="fal se"/>

Delete Operations

Documents can be deleted from the index in two ways. "Delete by ID" deletes the document with
the specified ID, and can be used only if a UniquelD field has been defined in the schema. "Delete
by Query" deletes all documents matching a specified query. A single delete message can contain
multiple delete operations.

Page 177 of 397

Solr Reference Guide Jan 10, 2012

<del et e>
<i d>0002166313</i d>
<i d>0031745983</i d>
<quer y>subj ect : sport </ query>
<quer y>publ i sher: pengui n</ query>
</ del et e>

Rollback Operations

The rollback command rolls back all add and deletes made to the index since the last commit. It
neither calls any event listeners nor creates a new searcher. Its syntax is simple: <rol | back/ >.

Using curl to Perform Updates with the Update Request Handler.

You can use the curl utility to perform any of the above commands, using its - - dat a- bi nary
option to append the XML message to the curl command, and generating a HTTP POST request.
For example:

curl http://1ocal host: 8983/ update -H "Content-Type: text/xm" --data-binary
<add>
<doc>
<field name="aut hors">Patrick Eagar</field>
<field nane="subj ect">Sports</fiel d>
<field name="dd">796. 35</fiel d>
<field nanme="i sbn">0002166313</fi el d>
<field nane="year pub">1982</fi el d>
<field name="publisher">Collins</field>
</ doc>
</ add>

For posting XML messages contained in a file, you can use the alternative form:

curl http://1ocal host: 8983/ update -H "Content-Type: text/xm"
--data-binary @wyfile.xm

Short requests can also be sent using a HTTP GET command, URL-encoding the request, as in the
following. Note the escaping of "<" and ">":

curl http://1ocal host: 8983/ updat e?st r eam body=%8Ccommi t / ¥3E

Responses from Solr take the form shown here:

Page 178 of 397

Solr Reference Guide Jan 10, 2012

<?xm version="1.0" encodi ng="UTF- 8" ?>
<r esponse>
<l st name="r esponseHeader" >
<int name="status">0</int>
<int name="Qrli ne">127</int >
</lst>
</ response>

The status field will be non-zero in case of failure. The servlet container will generate an
appropriate HTML-formatted message in the case of an error at the HTTP layer.

A Simple Cross-Platform Posting Tool

For demo purposes, the file exanpl e/ exanpl edocs/ post . j ar includes a cross-platform Java tool
for POST-ing XML documents. Open a window and run:

java -jar post.jar <list of files with messages>

By default, this will contact the server at | ocal host : 8983. The "-help" option outputs the following
information on its usage:

Si npl ePost Tool : version 1.2

This is a simple command line tool for POSTing raw XML to a Solr port. XML data can be read from
files specified as command line args; as raw commandline arg strings; or via STDIN.

Examples:

java -Ddata=files -jar post.jar *.xn
java -Ddata=args -jar post.jar '<del ete><id>42</id></del et e>'
java -Ddata=stdin -jar post.jar < hd.xnl

Other options controlled by System Properties include the Solr URL to POST to, and whether a
commit should be executed. These are the defaults for all System Properties.

-Ddata=fil es
-Durl=[http://1ocal host: 8983/ sol r/update| http://| ocal host: 8983/ sol r/ updat e]
-Dcommi t =yes

For more information about the XML Update Request Handler, see
https://wiki.apache.org/solr/UpdateXmlIMessages.

Page 179 of 397

https://wiki.apache.org/solr/UpdateXmlMessages

Solr Reference Guide Jan 10, 2012

XSLTRequestHandler to Transform XML Content

Configuration

The default configuration file has the update request handler configured by default, although the
"lazy load" flag is set.

The XSLTRequestHandler allows you to index any XML data with the XML <t r > command. You must
have an XSLT stylesheet in the solr/conf/xslt directory that can transform the incoming data to the
expected <add><doc/ ></ add> format.

<request Handl er name="/update/xslt" startup="1Iazy"
cl ass="sol r. Xsl t Updat eRequest Handl er "/ >

Here is an example XSLT stylesheet:

<xsl : styl esheet xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Transform' versi on="1.0">
<xsl :tenplate match="/">
<add>
<xsl : appl y-tenpl ates sel ect="/randonf docunent"/ >
</ add>
</ xsl:tenpl at e>

<xsl:tenpl ate match="docunent" >

<doc boost="5.5">
<xsl :appl y-tenpl ates select="*"/>
</ doc>
</ xsl :tenpl at e>

<xsl :tenpl ate mat ch="node" >
<field nanme="{@ane}">
<xsl:if test="@nhance!=""">
<xsl :attri bute name="boost" ><xsl| : val ue- of sel ect =" @nhance"/></xsl:attri bute>

</ xsl:if>
<xsl : val ue- of sel ect="@al ue"/>
</field>

</ xsl:tenpl at e>

</ xsl : styl esheet >

CSVRequestHandler for CSV Content

Page 180 of 397

http://xmlstar.sourceforge.net/doc/UG/ch04s02.html

Solr Reference Guide Jan 10, 2012

Configuration

The default configuration file has the update request handler configured by default, although the
"lazy load" flag is set.

<request Handl er name="/updat e/ csv" cl ass="sol r. CSVRequest Handl er" startup="1azy" />

Parameters

The CSV handler allows the specification of many parameters in the URL in the form: f.
paranmeter . optional _fieldnane = val ue.

The table below describes the parameters for the update handler.

Parameter Usage Global Example
(g) or
Per
Field
()
separator Character used as field separator; defaultis g,(f: separator=%
Il," See
split)
trim If true, remove leading and trailing g,f f.isbn.trim=true
whitespace from values. Default=false. trim=false
header Set to true if first line of input contains field g

names. These will be used if the
fieldnames parameter is absent.

fieldnames Comma separated list of field names touse g fieldnames=isbn,price,title
when adding documents.

skip Comma separated list of field names to g skip=uninteresting,shoesize
skip.
skipLines Number of lines to discard in the input g skipLines=5

stream before the CSV data starts, including
the header, if present. Default=0.

Page 181 of 397

Solr Reference Guide

Jan 10, 2012

encapsulator

escape

keepEmpty

map

split

overwrite

commit

The character optionally used to surround
values to preserve characters such as the
CSV separator or whitespace. This standard
CSV format handles the encapsulator itself
appearing in an encapsulated value by
doubling the encapsulator.

The character used for escaping CSV
separators or other reserved characters. If
an escape is specified, the encapsulator is
not used unless also explicitly specified
since most formats use either encapsulation
or escaping, not both

Keep and index zero length (empty) fields.
Default=false.

Map one value to another. Format is
value:replacement (which can be empty.)

If true, split a field into multiple values by a
separate parser.

If true (the default), check for and overwrite
duplicate documents, based on the
uniqueKey field declared in the Solr
schema. If you know the documents you
are indexing do not contain any duplicates
then you may see a considerable speed up
setting this to false.

Issues a commit after the data has been
ingested.

commitWithin Add the document within the specified

number of milliseconds.

g,(f:
see

split)

a.f

a.f

For more information on the CSV Update Request Handler, see
https://wiki.apache.org/solr/UpdateCSV.

encapsulator="

escape=\

f.price.keepEmpty=true

map=left:right
f.subject.map=history:bunk

commitWithin=10000

Using the JSONRequestHandler for JSON Content

JSON formatted update requests may be sent to Solr using the / sol r/ updat e/ j son URL. All of the
normal methods for uploading content are supported.

Page 182 of 397

https://wiki.apache.org/solr/UpdateCSV

Solr Reference Guide Jan 10, 2012

Configuration

The default configuration file has the update request handler configured by default, although the
"lazy load" flag is set.

<request Handl er name="/update/json" class="sol r.JsonUpdat eRequest Handl er"
startup="Ilazy" />

Examples

There is a sample JSON file at exanpl e/ exanpl edocs/ books. j son that you can use to add
documents to the Solr example server.

cd exanpl e/ exanpl edocs
curl "http://local host: 8983/ sol r/ update/json?conm t=true
--data-bi nary @ooks.json -H ' Content-type: application/json

Adding conmi t =t r ue to the URL makes the documents immediately searchable.
You should now be able to query for the newly added documents:

http://1 ocal host: 8983/ sol r/sel ect ?g=titl e: nonst er s&t =j son&i ndent =t r ue returns:

Page 183 of 397

Solr Reference Guide Jan 10, 2012

"responseHeader": {
"status":0,
"Qlinme": 2,
"parans": {
"indent":"true",
"w":"json",
"gq":"title:nmonsters"}},
"response": {"nunfFound": 1,"start": 0, "docs": [
{
"id":"978-1423103349",
"author":"Ri ck Ri ordan",
"series_t":"Percy Jackson and the d ynpi ans",
"sequence_i": 2,
"genre_s":"fantasy",
"inStock":true,
"price":6.49,
"pages_i ": 304,
"title":
"The Sea of Monsters"],
"cat":["book", "paperback"]}]

Update Commands

The JSON update handler accepts all of the update commands that the XML update handler
supports, through a straightforward mapping. Multiple commands may be contained in one
message:

Page 184 of 397

Solr Reference Guide Jan 10, 2012

{
"add": {
"doc": {
"id": "DOCL"
"my_boosted_field": { /* use a map Wi th boost/value for a boosted field */
"boost": 2.3,
"val ue": "test"
I8
"my_multivalued_field": ["aaa", "bbb"] /* use an array for a nulti-valued field
*/
}
I8
"add": {
"comm t Wthin": 5000, /* commit this document within 5 seconds */
"overwite": fal se, /* don't check for existing documents with the same
uni queKey */
"boost": 3.45, /* a docunent boost */
"doc": {
"far: "vi1",
"far: "v2"
}
},
"commit": {},
"optimze": { "waitFlush":false, "waitSearcher":false },
"delete": { "id":"ID" }, /[* delete by ID */
"delete": { "query":"QUERY" } /* delete by query */
}

% Comments are not allowed JSON, but duplicate names are.

As with other update handlers, parameters such as conmit, conmit Wthin, opti m ze, and
overw ite may be specified in the URL instead of in the body of the message.

For more information about the JSON Update Request Handler, see
https://wiki.apache.org/solr/UpdateJSON.

Indexing Using Solir]

Use of the the Solr] client library is covered in Client APIs.

Page 185 of 397

https://wiki.apache.org/solr/UpdateJSON

Solr Reference Guide Jan 10, 2012

Uploading Structured Data Store Data with the Data
Import Handler

Many search applications store the content to be indexed in a structured data store, such as a
relational database. The Data Import Handler (DIH) provides a mechanism for importing content
from a data store and indexing it. In addition to relational databases, DIH can index content from
HTTP based data sources such as RSS and ATOM feeds, e-mail repositories, and structured XML
where an XPath processor is used to generate fields.

» The DatalmportHandler jars are no longer included in the Solr WAR. You should add them
to Solr's lib directory, or reference them via the <l i b> directive in sol rconfi g. xnl .

For more information about the Data Import Handler, see
https://wiki.apache.org/solr/DatalmportHandler.

Topics covered in this section:

Concepts and Terminology

Configuration

Data Import Handler Commands

Data Sources

Entity Processors

Transformers

Special Commands for the Data Import Handler
The Data Import Handler Development Console

Concepts and Terminology

Descriptions of the Data Import Handler use several familiar terms, such as entity and processor,
in specific ways, as explained in the table below.

Term Definition

Datasource As its name suggests, a datasource defines the location of the data of interest. For
a database, it's a DSN. For an HTTP datasource, it's the base URL.

Page 186 of 397

https://wiki.apache.org/solr/DataImportHandler

Solr Reference Guide Jan 10, 2012

Entity Conceptually, an entity is processed to generate a set of documents, containing
multiple fields, which (after optionally being transformed in various ways) are sent
to Solr for indexing. For a RDBMS data source, an entity is a view or table, which
would be processed by one or more SQL statements to generate a set of rows
(documents) with one or more columns (fields).

Processor An entity processor does the work of extracting content from a data source,
transforming it, and adding it to the index. Custom entity processors can be written
to extend or replace the ones supplied.

Transformer Each set of fields fetched by the entity may optionally be transformed. This process
can modify the fields, create new fields, or generate multiple rows/documents form
a single row. There are several built-in transformers in the DIH, which perform
functions such as modifying dates and stripping HTML. It is possible to write custom
transformers using the publicly available interface.

Configuration

The Data Import Handler has to be registered in sol r confi g. xm . For example:

<r equest Handl er name="/dat ai nport"
cl ass="org. apache. sol r. handl er. dat ai nport . Dat al npor t Handl er" >
<l st name="defaul ts">
<str name="config">/path/to/ ny/Dl Hconfigfile.xm </str>
</lst>
</ request Handl er >

You can have multiple DIH configuration files. Each file would require a separate definition in the
sol rconfig. xm file, specifying a path to the file.

The DIH configuration file contains specifications for the data source, how to fetch data, what data
to fetch, and how to process it to generate the Solr documents to be posted to the index.

There is a sample DIH application distributed with Solr in the directory example/example-DIH. This
accesses a small hsqldb database. Details of how to run this example can be found in the
README.txt file. Its DIH configuration can be found in the file

exanpl e/ exanpl e- DI H sol r/ db/ conf / db- dat a- confi g. xm .

Page 187 of 397

Solr Reference Guide Jan 10, 2012

1.m item item_category

PK |id PK | item_id
PK | category id

featurd

name
itermn_id manu
description weight
price
popularity
includes

category
PK |id 1..m

description

An annotated configuration file, based on the sample, is shown below. It extracts fields from the
four tables defining a simple product database, with this schema.

<dat aConfi g>

<l-- The first elenent is the dataSource, in this case an HSQ.DB dat abase.

The path to the JDBC driver and the JDBC URL and |l ogin credentials are all
speci fied here.

O her permissible attributes include whether or not to autoconmit to Solr,the
bat chsi ze

used in the JDBC connection, a 'readOnly' flag -->

<dat aSour ce
driver="org. hsqgl db. j dbcDriver"
url ="j dbc: hsqgl db: . / exanpl e- DI H hsql db/ ex"
user ="sa"
passwor d="nypass" />

<l-- a '"docurment' elenent follows, containing nultiple "entity' elenents.
Note that 'entity' elenents can be nested, and this allows the entity
relationships in the sanple database to be mrrored here, so that we can
generate a denornalized Solr record which may include multiple features
for one item for instance -->

<!--The possible attributes for the entity el enent are described bel ow.
Entity el enents may contain one or nore 'field elenments, which map
the data source field names to Solr fields, and optionally specify
per-field transformations -->

Page 188 of 397

Solr Reference Guide Jan 10, 2012

<docunent nane="products">

<l-- this entity is the '"root' entity. -->

<entity name="itenl pk="I1D"
query="select * fromitent
deltaQuery="select id fromitemwhere | ast_nodified >
"$\{datainporter.last_index_tinme\}'">
<field colum="ID" nanme="id" />

<I-- nmultiple Solr fields are generated froma single colum in the table -->

<field col um="NAME"' nane="nane" />
<field col um="NAME" nane="nanmeSort" />
<field col um="NAME" nane="al phaNaneSort" />

<l-- This entity is nested and reflects the one-to-many rel ati onship between an item
and its multiple features.

Note the use of variables; $\{itemID} is the value of the colum '"ID for the
current item

("item referring to the entity nane) -->

<entity nane="feature" pk="1TEM |D"
query="sel ect DESCRI PTI ON from FEATURE where ITEM ID="$\{itemID}""
del taQuery="sel ect I TEM ID from FEATURE where | ast_nodified >
"$\{datai nporter.last_index_tine\}""
parent Del t aQuery="select ID fromitemwhere |D=$\{feature. | TEMID}">
<field name="features" col um="DESCRI PTI ON' />
</entity>
<entity name="item category" pk="ITEM |D, CATEGORY_I D"
query="sel ect CATEGORY_ID fromitemcategory where | TEMID="$\{itemID}""
del taQuery="sel ect | TEM | D, CATEGORY_ID fromitemcategory where |last_nodified
> "$\{datainporter.last_index_tinme\}""
parent Del t aQuery="select ID fromitemwhere |ID=$\{itemcategory. | TEMID}">
<entity name="category" pk="I1D"
query="sel ect DESCRI PTION from category where ID =
"$\{item category. CATEGORY_ID\}" "
del taQuery="select ID fromcategory where | ast_nodified >
"$\{datai nporter.last_index_tinme\}""
parent Del t aQuery="sel ect | TEM ID, CATEGORY_ID fromitem category where
CATEGORY_I D=$\{category.ID\}">
field col um="description" nane="cat" />
</entity>
</entity>
</entity>
</ docunent >

Page 189 of 397

Solr Reference Guide Jan 10, 2012

Data Import Handler Commands

DIH commands are sent to Solr via an HTTP request. The following operations are supported.

Command Description

abort Aborts an ongoing operation. The URL is
htt p://<host >: <port >/ sol r/ dat ai nport ?command=abort .

delta-import For incremental imports and change detection. The command is of the form
http://<host>: <port>/sol r/datai nport ?conmand=del t a-i nport . It supports
the same clean, commit, optimize and debug parameters as full-import
command.

full-inport A Full Import operation can be started with a URL of the form
htt p: // <host >: <port >/ sol r/ dat ai nport ?2conmand=f ul | -i nport . The
command returns immediately. The operation will be started in a new thread
and the status attribute in the response should be shown as busy. The operation
may take some time depending on the size of dataset. Queries to Solr are not
blocked during full-imports.
When a full-import command is executed, it stores the start time of the
operation in a file located at conf/ dat ai nport. properties. This stored
timestamp is used when a delta-import operation is executed.
For a list of parameters that can be passed to this command, see below.

rel oad-confi g If the configuration file has been changed and you wish to reload it without
restarting Solr, run the command
htt p://<host >: <port >/ sol r/ dat ai nport ?conmand=r el oad- confi g.

st at us The URL is htt p: // <host >: <port >/ sol r/ dat ai nport ?conmand=st at us. It
returns statistics on the number of documents created, deleted, queries run,
rows fetched, status, and so on.

Parameters for the full-import Command

The ful | -i nport command accepts the following parameters:

Parameter Description
clean Default is true. Tells whether to clean up the index before the indexing is started.

commit Default is true. Tells whether to commit after the operation.

Page 190 of 397

Solr Reference Guide Jan 10, 2012

debug Default is false Runs the command in debug mode. It is used by the interactive
development mode. Note that in debug mode, documents are never committed
automatically. If you want to run debug mode and commit the results too, add
conmi t =t rue as a request parameter.

entity The name of an entity directly under the <docunent > tag in the configuration file.
Use this to execute one or more entities selectively. Multiple "entity" parameters can
be passed on to run multiple entities at once. If nothing is passed, all entities are
executed.

optimize Default is true. Tells Solr whether to optimize after the operation.

Data Sources

A data source specifies the origin of data and its type. Somewhat confusingly, some data sources
are configured within the associated entity processor. Data sources can also be specified in

sol rconfi g. xm , which is useful when you have multiple environments (for example,
development, QA, and production) differing only in their data sources.

You can create a custom data source by writing a class that extends
or g. apache. sol r. handl er. dat ai nport . Dat aSour ce.

The mandatory attributes for a data source definition are its name and type. The name identifies
the data source to an Entity element.

The types of data sources available are described below.

ContentStreambDataSource

This takes the POST data as the data source. This can be used with any EntityProcessor that uses a
Dat aSour ce<Reader >.

FieldReaderDataSource

This can be used where a database field contains XML which you wish to process using the
XpathEntityProcessor. You would set up a configuration with both JDBC and FieldReader data
sources, and two entities, as follows:

Page 191 of 397

Solr Reference Guide Jan 10, 2012

<dat aSource name = "al" driver="org. hsqgl db.jdbcDriver" ... [>
<dat aSour ce name="a2" type=Fi el dReader Dat aSour ce" />

<l-- processor for database -->

<entity nanme ="el" dataSource="al" processor="SQEntityProcessor"” pk="docid"
query="select * fromtl1 ...">

<!-- nested XpathEntity; the field in the parent which is to be used for
Xpath is set in the "datafield attribute inplace of the "url" attribute -->

<entity nanme="e2"
dat aSour ce="a2"
processor =" XPat hEnti t yProcessor"

dat aFi el d="el. fi el dToUseFor XPat h"

<l-- Xpath configuration follows -->

</entity>
</entity>

FileDataSource

This can be used like an URLDataSource, but is used to fetch content from files on disk. The only

difference from URLDataSource, when accessing disk files, is how a pathname is specified. The
signature is as follows:

public class Fil eDataSource extends Dat aSource<Reader >

This data source accepts these optional attributes.

Optional Description

Attribute

basePath The base path relative to which the value is evaluated if it is not absolute.

encoding If the files are to be read in an encoding that is not same as the platform
encoding.

JdbcDataSource

This is the default datasource. It's used with the SQLEntityProcessor. See the example in the
FieldReaderDataSource section for details on configuration.

Page 192 of 397

Solr Reference Guide Jan 10, 2012

URLDataSource

This data source is often used with XPathEntityProcessor to fetch content from an underlying
file:// orhttp:// location. The signature is as follows:

public class URLDat aSource extends DataSource<Reader >

Here's an example:

<dat aSour ce nane="a"
t ype=" URLDat aSour ce"
baseUr| ="http://host:port/"
encodi ng=" UTF- 8"
connecti onTi neout =" 5000"
r eadTi neout =" 10000"/ >

The URLDataSource type accepts these optional parameters:

Optional Description
Parameter
baseURL Specifies a new baseURL for pathnames. You can use this to specify

host/port changes between Dev/QA/Prod environments. Using this attribute
isolates the changes to be made to the sol rconfi g. xm

connectionTimeout Specifies the length of time in milliseconds after which the connection should
time out. The default value is 5000ms.

encoding By default the encoding in the response header is used. You can use this
property to override the default encoding.

readTimeout Specifies the length of time in milliseconds after which a read operation
should time out. The default value is 10000ms.

Entity Processors
Entity processors extract data, transform it, and add it to a Solr index. Examples of entities include
views or tables in a data store.

Each processor has its own set of attributes, described in its own section below. In addition, there
are non-specific attributes common to all entities which may be specified.

Attribute Use

Page 193 of 397

Solr Reference Guide

Jan 10, 2012

datasource

name

pk

processor

onError

prelmportDeleteQuery

postImportDeleteQuery

rootEntity

transformer

The name of a dataSource. Used if there are multiple datasources,
specified, in which case each one must have a name.

Required. The unique name used to identify an entity.

The primary key for the entity. It is optional, and required only when
using delta-imports. It has no relation to the uniqueKey defined in
schenma. xn but they can both be the same. It is mandatory if you do
delta-imports and then refers to the column name in

${ dat ai nporter. del ta. <col utm- name>} which is used as the primary
key.

Default is SQLEntityProcessor. Required only if the datasource is not
RDBMS.

Permissible values are (abort|skip|continue) . The default value is
'‘abort'. 'Skip' skips the current document. 'Continue' ignores the error
and processing continues.

Before a full-import command, use this query this to cleanup the index
instead of using '*:*'. This is honored only on an entity that is an
immediate sub-child of <docurent >.

Similar to the above, but executed after the import has completed.

By default the entities immediately under the <docunent > are root
entities. If this attribute is set to false, the entity directly falling under
that entity will be treated as the root entity (and so on). For every row
returned by the root entity, a document is created in Solr.

Optional. One or more transformers to be applied on this entity.

The SQL Entity Processor

The SqlEntityProcessor is the default processor. The associated data source should be a JDBC URL.

The entity attributes specific to this processor are shown in the table below.

Attribute Use
query Required. The SQL query used to select rows.
deltaQuery SQL query used if the operation is delta-import. This query selects the

primary keys of the rows which will be parts of the delta-update. The pks will
be available to the deltalmportQuery through the variable
${ dat ai nporter. del t a. <col um- name>}.

Page 194 of 397

Solr Reference Guide Jan 10, 2012

parentDeltaQuery SQL query used if the operation is delta-import.
deletedPkQuery SQL query used if the operation is delta-import.

deltalmportQuery SQL query used if the operation is delta-import. If this is not present, DIH
tries to construct the import query by(after identifying the delta) modifying
the 'query' (this is error prone). There is a namespace
${ dat ai nporter. del t a. <col um- nanme>} which can be used in this query. For
example, sel ect * fromtbl where i d=${datai nporter.delta.id}.

The XPathEntityProcessor

This processor is used when indexing XML formatted data. The data source is typically
URLDataSource or FileDataSource. Xpath can also be used with the FileListEntityProcessor
described below, to generate a document from each file.

The entity attributes unique to this processor are shown below.

Attribute Use

Processor Required. Must be set to "XpathEntityProcessor".

url Required. HTTP URL or file location.

stream Optional: Set to true for a large file or download.

forEach Required unless you define useSol r AddSchema. The Xpath expression which

demarcates each record. This will be used to set up the processing loop.

xsl Optional: Its value (a URL or filesystem path) is the nhame of a resource used
as a preprocessor for applying the XSL transformation.

useSolrAddSchema Set this to true if the content is in the form of the standard Solr update XML
schema.

flatten Optional: If set true, then text from under all the tags is extracted into one

field.

Each field element in the entity can have the following attributes as well as the default ones.

Attribute Use

xpath Required. The XPath expression which will extract the content from the record for
this field. Only a subset of Xpath syntax is supported.

commonfField Optional. If true, then when this field is encountered in a record it will be copied to
future records when creating a Solr document.

Page 195 of 397

Solr Reference Guide Jan 10, 2012

Example:

Page 196 of 397

Solr Reference Guide

Jan 10, 2012

<!-- slashdot RSS Feed --->
<dat aConfi g>
<dat aSour ce type="Htt pDat aSource" />
<docunent >
<entity nane="sl ashdot"
pk="1i nk"
url ="http://rss. sl ashdot . org/ Sl ashdot /sl ashdot "
processor =" XPat hEnti t yProcessor"

<l-- forEach sets up a processing loop ; here there are two expressions-->

f or Each="/ RDF/ channel | /RDF/itent
t ransf or mer =" Dat eFor mat Tr ansf or mer " >
<field col um="source"
xpat h="/ RDF/ channel /title"
comonFi el d="true" />
<field col um="source-|ink"
xpat h="/ RDF/ channel / | i nk"
conmonFi el d="t rue"/ >
<field col um="subject"
xpat h="/ RDF/ channel / subj ect"
comonFi el d="true" />
<field colum="title"
xpath="/RDF/itemtitle" />
<field col um="1ink"
xpat h="/RDF/itenl|link" />
<field colum="description”
xpat h="/RDF/ i t em description" />
<field colum="creator"
xpat h="/RDF/itenfcreator" />
<field colum="item subject”
xpat h="/RDF/i t enf subj ect" />
<field col um="date"
xpat h="/ RDF/ i t enl dat e"
dat eTi meFor mat ="yyyy- Mt dd' T' hh: mm ss" />
<field col um="sl ash-departnent"
xpat h="/ RDF/i t enl department" />
<field col um="sl ash-secti on"
xpat h="/RDF/ it enif section" />
<field col um="sl ash-coment s"
xpat h="/ RDF/ i t eml conment s" />
</entity>
</ docunent >
</ dat aConfi g>

http://wiki.apache.org/solr/MailEntityProcessor

Page 197 of 397

http://wiki.apache.org/solr/MailEntityProcessor

Solr Reference Guide Jan 10, 2012

The FileListEntityProcessor

This processor is basically a wrapper, and is designed to generate a set of files satisfying conditions
specified in the attributes which can then be passed to another processor, such as the
XPathEntityProcessor. The entity information for this processor would be nested within the
FileListEnitity entry. It generates four implicit fields: fi | eAbsol utePat h, fil eSi ze,
fileLastMdified, fil eName which can be used in the nested processor. This processor does not

use a data source.

The attributes specific to this processor are described in the table below:

Attribute
fileName
basedir
recursive
excludes

newerThan

olderThan

rootEntity

dataSource

Use

Required. A regular expression pattern to identify files to be included.
Required. The base directory (absolute path).

Whether to search directories recursively. Default is 'false'.

A regular expression pattern to identify files which will be excluded.

A date in the format yyyy- MM ddHH: nm ss or a date math expression (NOW - 2YEARS
).
A date, using the same formats as newerThan.

This should be set to false. This ensures that each row (filepath) emitted by this
processor is considered to be a document.

Must be set to null.

The example below shows the combination of the FileListEntityProcessor with another processor
which will generate a set of fields from each file found.

Page 198 of 397

Solr Reference Guide Jan 10, 2012

<dat aConfi g>
<dat aSource type="Fil eDat aSour ce"/ ><docunent >

<I-- this outer processor generates a list of files satisfying the conditions
specified in the attributes -->
<entity nane="f" processor="FilelistEntityProcessor"

fileName=".*xm"
newer Than="" NOW 30DAYS' "
recursive="true"
rootEntity="fal se"
dat aSource="nul | "
baseDi r ="/ ny/ docunent/directory">

<I-- this processor extracts content using Xpath fromeach file found -->

<entity name="nested" processor="XPathEntityProcessor"
forEach="/rootel ement” url ="${f.fil eAbsol utePath}" >
<field col um="name" xpath="/rootel erent/nanme"/>
<field col um="nunber" xpath="/rootel enent/nunber"/>
</entity>
</entity>
</ docunent >
</ dat aConfi g>

LineEntityProcessor

This EntityProcessor reads all content from the data source on a line by line basis and returns a
field called r awLi ne for each line read. The content is not parsed in any way; however, you may
add transformers to manipulate the data within the r awLi ne field, or to create other additional
fields.

The lines read can be filtered by two regular expressions specified with the accept Li neRegex and
om t Li neRegex attributes. The table below describes the LineEntityProcessor's attributes:

Attribute Description

url A required attribute that specifies the location of the input file in a way that is
compatible with the configured data source. If this value is relative and you are
using FileDataSource or URLDataSource, it assumed to be relative to baseloc.

acceptLineRegex An optional attribute that if present discards any line which does not match the
regExp.

omitLineRegex An optional attribute that is applied after any acceptLineRegex and that
discards any line which matches this regExp.

Page 199 of 397

Solr Reference Guide Jan 10, 2012

For example:

<entity nane="jc"
processor ="Li neEntityProcessor"”
accept Li neRegex="".*\ . xnm $"
om t Li neRegex="/ obsol et e"
url="file:///Volunmes/ts/files.lis"
root Entity="fal se"
dat aSour ce="nmyURI r eader 1"
transf or ner =" RegexTr ansf or ner, Dat eFor mat Tr ansf or ner "
>

While there are use cases where you might need to create a Solr document for each line read from
a file, it is expected that in most cases that the lines read by this processor will consist of a
pathname, which in turn will be consumed by another EntityProcessor, such as
XPathEntityProcessor.

PlainTextEntityProcessor

This EntityProcessor reads all content from the data source into an single implicit field called
pl ai nText . The content is not parsed in any way, however you may add transformers to
manipulate the data within the pl ai nText as needed, or to create other additional fields.

For example:

<entity processor="Pl ai nText EntityProcessor" name="x" url="http://abc.conm a.txt"
dat aSour ce="dat a- sour ce- nane" >

<l-- copies the text to a field called "text' in Solr-->
<field colum="pl ai nText" name="text"/>
</entity>

Ensure that the dataSource is of type Dat aSour ce<Reader > (Fi | eDat aSour ce, URLDat aSour ce).

Transformers

Transformers manipulate the fields in a document returned by an entity. A transformer can create
new fields or modify existing ones. You must tell the entity which transformers your import
operation will be using, by adding an attribute containing a comma separated list to the <entity>
element.

<entity name="abcde"
transforner="org. apache.solr...., ny.own.transformer,..." />

Page 200 of 397

http://wiki.apache.org/solr/PathEntityProcessor

Solr Reference Guide Jan 10, 2012

Specific transformation rules are then added to the attributes of a <fi el d> element, as shown in
the examples below. The transformers are applied in the order in which they are specified in the
transformer attribute.

The Data Import Handler contains several built-in transformers. You can also write your own
custom transformers, as described in the Solr Wiki (see
http://wiki.apache.org/solr/DIHCustomTransformer). The ScriptTransformer (described below)
offers an alternative method for writing your own transformers.

Solr includes the following built-in transformers:

Transformer Name Use

ClobTransformer Used to create a String out of a Clob type in database.
DateFormatTransformer Parse date/time instances.

HTMLStripTransformer Strip HTML from a field.

LogTransformer Used to log data to log files or a console.

NumberFormatTransformer Uses the NumberFormat class in java to parse a string into a

number.
RegexTransformer Use regular expressions to manipulate fields.
ScriptTransformer Write transformers in Javascript or any other scripting language

supported by Java. Requires Java 6.

TemplateTransformer Transform a field using a template.

These transformers are described below.

ClobTransformer

You can use the ClobTransformer to create a string out of a CLOB in a database. A CLOB is a
character large object: a collection of character data typically stored in a separate location that is
referenced in the database. See http://en.wikipedia.org/wiki/Character_large_object. Here's an
example of invoking the ClobTransformer.

<entity name="e" transformer="C obTransforner" ..>
<field col um="hugeText Fi el d* cl ob="true" />

</entity>

The ClobTransformer accepts these attributes:

Page 201 of 397

http://wiki.apache.org/solr/DIHCustomTransformer
http://en.wikipedia.org/wiki/Character_large_object

Solr Reference Guide Jan 10, 2012

Attribute Description

Boolean value to signal if ClobTransformer should process this field or not. If this

clob
attribute is omitted, then the corresponding field is not transformed.

sourceColName The source column to be used as input. If this is absent source and target are

same

The DateFormatTransformer

This transformer converts dates from one format to another. This would be useful, for example, in
a situation where you wanted to convert a field with a fully specified date/time into a less precise

date format, for use in faceting.

DateFormatTransformer applies only on the fields with an attribute dat eTi meFor mat . Other fields

are not modified.

This transformer recognizes the following attributes:

Attribute Description

dateTimeFormat The format used for parsing this field. This must comply with the syntax of the
JavaSimpleDateFormat class.

sourceColName The column on which the dateFormat is to be applied. If this is absent source
and target are same.

Here is example code that returns the date rounded up to the month "2007-JUL":

<entity name="en" pk="id" transforner="DateTi neTransforner" ...

<field col um="date"
sour ceCol Nanme="f ul | dat e"
dat eTi neFor mat ="yyyy- MU'/ >
</entity>

The HTMLStripTransformer
You can use this transformer to strip HTML out of a field. For example:

<entity nane="e" transformer="HTM.StripTransformer" ..>
<field colum="htm Text" stripHTM.="true" />

</entity>

Page 202 of 397

http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

Solr Reference Guide Jan 10, 2012

There is one attribute for this transformer, stri pHTM., which is a boolean value (true/false) to
signal if the HTMLStripTransformer should process the field or not.

The LogTransformer

You can use this transformer to log data to the console or log files. For example:

<entity ...
transforner="LogTr ansf or mer "
| ogTenpl ate="The nane is $\{e.nane\}" | ogLevel ="debug" >

</entity>

Unlike other transformers, the LogTransformer does not apply to any field, so the attributes are
applied on the entity itself.

The NumberFormatTransformer

Use this transformer to parse a humber from a string, converting it into the specified format, and
optionally using a different locale.

NumberFormatTransformer will be applied only to fields with an attribute f or mat St yl e.

This transformer recognizes the following attributes:

Attribute Description

formatStyle The format used for parsing this field. The value of the attribute must be one of
(nunber | percent | i nt eger| currency). This uses the semantics of the Java
NumberFormat class.

sourceColName The column on which the NumberFormat is to be applied. This is attribute is
absent. The source column and the target column are the same.

locale The locale to be used for parsing the strings. If this is absent, the system's
default locale is used. It must be specified as language-country. For example,
en- US.

For example:

Page 203 of 397

Solr Reference Guide Jan 10, 2012

<entity nane="en" pk="id" transforner="NunberFormat Transforner" ...>

<l-- treat this field as UK pounds -->

<field name="price_uk"
col um="pri ce"
format Styl e="currency”
| ocal e="en- K" />
</entity>

The RegexTransformer

The regex transformer helps in extracting or manipulating values from fields (from the source)
using Regular Expressions. The actual class name is

or g. apache. sol r. handl er. dat ai nport. RegexTr ansf or ner . But as it belongs to the default
package the package-name can be omitted.

The table below describes the attributes recognized by the regex transformer.

Attribute Description

regex The regular expression that is used to match against the column or
sourceColName's value(s). If replaceWith is absent, each regex group is taken
as a value and a list of values is returned.

sourceColName The column on which the regex is to be applied. If not present, then the source
and target are identical.

splitBy Used to split a string. It returns a list of values.

groupNames A comma separated list of field column names, used where the regex contains
groups and each group is to be saved to a different field. If some groups are not
to be named leave a space between commas.

replaceWith Used along with regex . It is equivalent to the method new
String(<sourceCol Val >).replaceAl | (<regex>, <replaceWth>).

Here is an example of configuring the regex transformer:

Page 204 of 397

Solr Reference Guide Jan 10, 2012

<entity nane="foo" transforner="RegexTransforner"
query="select full _name , emailids fromfoo"/>
/>
<field colum="full _nanme"/>
<field colum="firstName" regex="M (\w*)\b.*" sourceCol Nane="ful | _nane"/ >
<field colum="1ast Nane" regex="M.*?\b(\w*)" sourceCol Nane="ful |l _nane"/>

<!-- another way of doing the sane -->
<field colum="full Name" regex="M (\w)\b(.*)" groupNanes="first Nane, | ast Nane"/ >

<field colum="mailld" splitBy="," sourceCol Name="enailids"/>
</entity>

In this example, regex and sourceColName are custom attributes used by the transformer. The
transformer reads the field f ul | _nanme from the resultset and transforms it to two new target fields,
firstNanme and | ast Nane. Even though the query returned only one column, full _nane, in the
result set, the Solr document gets two extra fields fi r st Name and | ast Nane which are "derived"
fields. These new fields are only created if the regexp matches.

The emailids field in the table can be a comma-separated value. It ends up producing one or more
email IDs, and we expect the mai | | d to be a multivalued field in Solr.

Note that this transformer can either be used to split a string into tokens based on a splitBy
pattern, or to perform a string substitution as per replaceWith, or it can assign groups within a
pattern to a list of groupNames. It decides what it is to do based upon the above attributes
splitBy, repl aceWth and gr oupNanes which are looked for in order. This first one found is acted
upon and other unrelated attributes are ignored.

The ScriptTransformer

The script transformer allows arbitrary transformer functions to be written in any scripting
language supported by Java, such as Javascript, JRuby, Jython, Groovy, or BeanShell. Javascript is
integrated into Java 6; you'll need to integrate other languages yourself.

Each function you write must accept a row variable (which corresponds to a Java
Map<St ri ng, Obj ect >, thus permitting get, put, renove operations). Thus you can modify the value
of an existing field or add new fields. The return value of the function is the returned object.

The script is inserted into the DIH configuration file file at the top level and is called once for each
row.

Here is a simple example.

Page 205 of 397

Solr Reference Guide

Jan 10, 2012

<dat aconfi g>

to Centigrade -->

<script>
<CDATA

nul 1) { tenpc = (tempf - 32.0)*5.0/9.0
row. put ('tenp_c', tenp_c);
}

return row,

}

>
</script>
<document >

</entity>
</ docunent >
</ dat aConfi g>

<I-- sinple script to generate a new row, converting a tenperature from Fahrenheit

function f2c(row) { var tenpf, tenpc;

<l-- the function is specified as an entity attribute -->

<entity name="el" pk="id" transforner="script:f2c" query="select * fromX"'>

tenpf = row get('tenmp_f'); if (tenpf I=

The TemplateTransformer

You can use the template transformer to construct or modify a field value, perhaps using the value
of other fields. You can insert extra text into the template.

<field colum="full_address"

</entity>

<entity name="en" pk="id" transforner="Tenpl ateTransformer" ...>
<I-- generate a full address fromfields containing the component parts -->

tenpl ate="%$en.\{street\}, $en\{city\}, $en\{zip\}" />

Special Commands for the Data Import Handler

You can pass special commands to the DIH by adding any of the variables listed below to any row

returned by any component:

Variable Description

Page 206 of 397

Solr Reference Guide Jan 10, 2012

$skipDoc Skip the current document; that is, do not add it to Solr. The value can be
the string true| f al se.

$skipRow Skip the current row. The document will be added with rows from other
entities. The value can be the string true| f al se

$docBoost Boost the current document. The boost value can be a number or the
t oSt ri ng conversion of a number.

$deleteDocByld Delete a document from Solr with this ID. The value has to be the
uni queKey value of the document.

$deleteDocByQuery Delete documents from Solr using this query. The value must be a Solr
Query.

The Data Import Handler Development Console

The Data Import Handler includes a browser-based console to help with development. You can
access the console at this address: http:// _host : port _/sol r/adm n/ dat ai nport.jsp.

The screenshot below shows the DIH Development Console.

Page 207 of 397

Solr Reference Guide

Jan 10, 2012

Mozilla

J. http:/ /localhos...ler=/dataimport u_+ L

Firefox

-

4 . localhost:8983 /solr/db/admin/dataimport.jsp?handler=/dataimport v S~ stanQ E n' m'

DatalmportHandler
Development Console

Handler: /dataimport CHANGE HANDLER
full-import 3| Verbose Commit Clean Start|
8 =) =] 0
data config xml | Debug Mow

/ex" user="sa" />
<document>

<entity name="item" query="select * from item"
deltaQuery="select id from item where last)

""""""""" <field column="NAME" name="name" />
<field column="NAME" name="nameSort" />

<field column="NAME" name="alphaNameSort" />
<entity name="feature"
guery="select DESCRIPTION from FEATURE 1
ITEM ID='S{item.ID}'"

time} " "
1Query="select ID from item wl

par
ID=${feature.ITEM ID}">
<field name="features" column="DESCRIPTION"

</entity>

<entity name="item category"
query="select CATEGORY_ID from item cat
ITEM_ID='${item.ID}'"

ID=%{item_category.ITEM ID}
<entity name="category"
guery="select DESCRIPTION from cate
'${item category.CATEGORY_ ID}'"

| Ful-import || Deftaimport | | Status || Reload-config | | Abort |

I Documents Count
I Full Imgert With Cleaning

RETURN TO ADMIN PAGE

L 4k

The Data Import Handler Console

100db-data-config xmlstatusidle6813702011-10-20 09:35:45Indexing
icompleted. Added/Updated: 16 documents. Deleted 0
jdocuments.2011-10-20 09:35:462011-10-20 09:35:46160:0:0.832This
response format is experimental. It is likely to change in the future.

The console features two panels: the left-hand panel holds input (a dat aconfi g. xnd file in the
conf/ directory), and the right-hand panel shows output.

When you click the Debug Now button, the
documents created.

console runs the configuration and shows the

You can configure the start and rows parameters to debug a specific range of documents: for
example, documents 115 to 118 as shown in the figure below.

Page 208 of 397

Solr Reference Guide

Jan 10, 2012

eno Mozilla Firefox
J. http:/ /localhos...ler=/dataimport [+ l

v (3'] (_5' StartirQ) @

| . localhost:8983/solr/db/admin/dataimport.jsp?handler=/dataimport

DatalmportHandler Development Console

Handler: /dataimport CHANGE HANDLER
— —
[full-import |4 Verbose Commit Clean Start Row No. of Rows
= =) O 115 118
data config xml | Debug Now
<dataConfig> e

<document>
<entity name="item" query="select * from item"

<field column="NAME"
<field column="NAME"
<field column="NAME"

<entity name="feature"
query="select DESCRIPTION from FEATURE where
ITEM_ID='§{item.ID}'"

ID=§{feature.ITEM ID}">
<field name="features" column="DESCRIPTION" />
</entity> W

<entity name="item category"
query="select CATEGORY ID from item category where
ITEM_ID='§{item.ID}'"
deltaQu "select ITEM_ID, CATEGORY ID from item category
.last_index time}'"
"select ID from item where

ID=${item_category.I'l‘-E-:'bi-

<entity name="category" -

query="select DESCRIPTION from category where ID = v
'${item_category.CATEGORY_ID}'"

| Ful-import | | Defta-import || Status || Reload-config || Abort |

I Documents Count
I Full Imgert With Cleaning

RETURN TO ADMIN PAGE,

Limiting Output to a Specific Set of Rows

This XML file does not appear to have
any style information associated with it.
The document tree is shown below.

— <response>
— <lIst name="responseHeader">
<int name="status">0</int>
<int name="QTime">10</int>
</lst>
— <lIst name="initArgs">
— <lIst name="defaults">
<str name="config">db-
data-config xml</str>
</Ist>
</lst>
<sir name="command">full-
import</str>
<str name="mode">debug</str>
<arr name="documents"/>
<lst name="verbose-output"/>
<str name="status">idle</str>
<str
name="importResponse">Configuratior
Re-loaded sucessfully</str>
— <lIst name="statusMessages">
<str name="Total Requests made to
DataSource">1</str>
<sir name="Total Rows
Fetched">0</str>
<str name="Total Documents
Skipped">0</str>
<str name="Full Dump
Started">2011-10-20 09:42:03</str>
<str name="Total Documents
Processed">0</str>
<str name="Time taken
">0:0:0.4</str>
</Ist>

m
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

-

Choose the "verbose" option, as shown in the figure below, to see details about the intermediate
steps in a response: the original data the query emitted, the data that went into the transformer,
and the data that the transformer then produced.

Page 209 of 397

Solr Reference Guide

Jan 10, 2012

ano Mozilla Firefox

J. http:/ /localhos.. ler=/dataimport H +

-

| B iocalhost:8983/solr/db/admin/dataimport.jspzhandler=/dataimport

v C‘] (_S v Szar:if'GQaQ\) @

DatalmportHandler Development Console

Handler: /dataimport CHANGE HANDLER
| full-import | % Verbose Commit Clean Start Row No. of Rows
“ g a 115 118
Debug Now
T
|
<document> |
<entity name="item" query="select * from item" |
deltaQuery="select id from item where last modified > |
'${dataimporter.last_index time}'"> |
<field column="NAME" name="name" /> |
<field column="NAME" name: |
<field column="NAME" name: |
<entity name="feature" I
query="select DESCRIPTION from FEATURE where |
ITEM ID='${item.ID}"" I
deltaQuery="select ITEM ID from FEATURE where last_modified |
> '${dataimporter.last_index time}'" |
arentDeltaQuery="select ID from item where |
ID=$5{feature.ITEM ID}"> |
<field name="features" column="DESCRIPTION" /> |
</entity> !
<entity name="item_ category"
query="select CATEGORY_ID from item category where
ITEM ID="§{item.ID}""
deltaQu "select ITEM_ID, CATEGORY_ID from item category
where last _modified > '§{¢ r.last_index time}'"
ALE ry="sgelect ID from item where
ID=%{item category.ITEM ID}">
<entity name="category" 2
guery="gelect DESCRIPTION from category where ID = v
'${item category.CATEGORY ID}'"

| Fullk-import || Dettasimport || Status | | Reload-config || Abort |

I Documents Count
I Full Import With Cleaning

RETURN TO ADMIN PAGE

Verbose mode shows details about intermediate steps

This XML file does not appear to have any style
information associated with it. The document tree is

shown below.

— <response=>

— <lIst name="responscHeader">
<int name="status">0</int>
<int name="QTime">6</int>

</lst>
— <lst name="initArgs">

— <Ist name="defaults">
<str name="config">db-
data-config xml</str>

</Ist>
</lst>

<str name="command">full-import</str>
<str name="mode">debug</str>
<arr name="documents"/>
- <lIst name="verbose-output”>
<Ist name="cntity:item"/>

</Ist>

<str name="status">idle</str>
<str name="importResponse">Configuration
Re-loaded sucessfully</str>
— <lst name="statusMessages">
<str name="Total Requests made to

DataSource">1</str>

<str name="Total Rows Fetched">0</str>
<str name="Total Documents

Skipped">0</str>

<str name="Full Dump Started">2011-10-20

09:43:13</str>

<str name="Total Documents

Processed">0</str>

<str name="Time taken ">0:0:0.3</str>

</Ist>

— <str name="WARNING">

-~
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

v

This response format is experimental. It is likely

to change in the future.

¥

If an exception occurred during the run, the console's right-hand panel shows the stacktrace.

. Fields produced by the entities or transformers may not be visible in documents if the
fields are either not present in the scherma. xm of there is an explicit <f i el d> declaration.

Page 210 of 397

Solr Reference Guide Jan 10, 2012

Detecting Languages During Indexing

Solr can identify languages and map text to language-specific fields during indexing using the
I angi d UpdateRequestProcessor. Solr supports two implementations of this feature:

® Tika's language detection feature: http://tika.apache.org/0.10/detection.html
® |angDetect language detection: http://code.google.com/p/language-detection/

You can see a comparison between the two implementations here:
http://blog.mikemccandless.com/2011/10/accuracy-and-performance-of-googles.html. In general,
the LangDetect implementation supports more languages with higher performance.

For specific information on each of these language identification implementations, including a list of
supported languages for each, see the relevant project websites. For more information about the

| angi d UpdateRequestProcessor, see the Solr wiki: http://wiki.apache.org/solr/LanguageDetection.
For more information about language analysis in Solr, see Language Analysis.

Configuring Language Detection

You can configure the | angi d UpdateRequestProcessor in sol r confi g. xm . Both implementations
take the same parameters, which are described in the following section. At a minimum, you must
specify the fields for language identification and a field for the resulting language code.

Configuring Tika Language Detection

Here is an example of a minimal Tika | angi d configuration in sol rconfi g. xm :

<processor
cl ass="org. apache. sol r. updat e. processor . Ti kaLanguagel denti fi er Updat ePr ocessor Fact ory" >
<l st name="defaul ts">
<str nane="langid.fl">title, subject,text, keywords</str>
<str name="|angi d. | angFi el d" >l anguage_s</str>
</|st>
</ processor >

Configuring LangDetect Language Detection

Here is an example of a minimal LangDetect | angi d configuration in sol rconfi g. xm :

Page 211 of 397

http://tika.apache.org/0.10/detection.html
http://code.google.com/p/language-detection/
http://blog.mikemccandless.com/2011/10/accuracy-and-performance-of-googles.html
http://wiki.apache.org/solr/LanguageDetection

Solr Reference Guide

Jan 10, 2012

<processor

</lst>
</ processor >

cl ass="org. apache. sol r. updat e. processor. LangDet ect Languagel denti fi er Updat ePr ocessor Factorj

<l st name="defaul ts">
<str name="langid.fl">title, subject,text, keywords</str>
<str nanme="langi d. | angFi el d" >l anguage_s</str>

langid Parameters

As previously mentioned, both implementations of the | angi d UpdateRequestProcessor take the

same parameters.

Parameter

langid

langid.fl

langid.langField

langid.langsField

langid.overwrite

Type

Boolean

string

string

multivalued
string

Boolean

Default Required Description

true

none

none

none

false

no

yes

yes

no

no

Enables and disables language
detection.

A comma- or space-delimited list of
fields to be processed by | angi d.

Specifies the field for the returned
language code.

Specifies the field for a list of returned
language codes. If you use

| angi d. map. i ndi vi dual , each
detected language will be added to
this field.

Specifies whether the content of the

| angFi el d and | angsFi el d fields will
be overwritten if they already contain
values.

Page 212 of 397

Solr Reference Guide

Jan 10, 2012

langid.threshold

langid.whitelist

langid.map

langid.map.fl

langid.map.keepOrig

langid.map.individual

float

string

Boolean

string

Boolean

Boolean

langid.map.individual.fl string

0.5

none

false

none

false

false

none

no

no

no

no

no

no

no

Specifies a threshold value between 0
and 1 that the language identification
score must reach before | angi d
accepts it. With longer text fields, a
high threshold such at 0.8 will give
good results. For shorter text fields,
you may need to lower the threshold
for language identification, though
you will be risking somewhat lower
quality results. We recommend
experimenting with your data to tune
your results.

Specifies a list of allowed language
identification codes. Use this in
combination with | angi d. map to
ensure that you only index documents
into fields that are in your schema.

Enables field name mapping. If true,
Solr will map field names for all fields
listed in | angi d. fl.

A comma-separated list of fields for
| angi d. map that is different than the
fields specified in | angi d. f1 .

If true, Solr will copy the field during
the field name mapping process,
leaving the original field in place.

If true, Solr will detect and map
languages for each field individually.

A comma-separated list of fields for
use with | angi d. map. i ndi vi dual
that is different than the fields
specified in l angi d. f1 .

Page 213 of 397

Solr Reference Guide

Jan 10, 2012

langid.fallbackFields

langid.fallback

langid.map.lcmap

langid.map.pattern

langid.map.replace

langid.enforceSchema

string none
string none
string none
Java none
regular
expression

Java none
replace

Boolean true

no

no

no

no

no

no

If no language is detected that meets
the | angi d. t hr eshol d score, or if the
detected language is not on the

| angi d. whi t el i st, this field specifies
language codes to be used as fallback
values. If no appropriate fallback
languages are found, Solr will use the
language code specified in

| angi d. f al | back.

Specifies a language code to use if no
language is detected or specified in
| angi d. f al | backFi el ds.

A space-separated list specifying a
language code map. For example, you
might use this to make Chinese,
Japanese, and Korean language fields
to a CJK field in your schema, or to
map American and British English
fields to a single EN field.

By default, fields are mapped as
<field>_<language>. To change this
pattern, you can specify a Java
regular expression in this parameter.

By default, fields are mapped as
<field>_<language>. To change this
pattern, you can specify a Java
replace in this parameter.

If false, the | angi d processor does
not validate field names against your
schema. This may be useful if you
plan to rename or delete fields later in
the UpdateChain.

Page 214 of 397

Solr Reference Guide Jan 10, 2012

UIMA Integration

You can integrate the Apache Unstructured Information Management Architecture (UIMA) with
Solr. UIMA lets you define custom pipelines of Analysis Engines that incrementally add metadata to
your documents as annotations.

For more information about Solr UIMA integration, see https://wiki.apache.org/solr/SolrUIMA.

Configuring UIMA

The SolrUIMA UpdateRequestProcessor is a custom update request processor that takes documents
being indexed, sends them to a UIMA pipeline, and then returns the documents enriched with the
specified metadata. To configure UIMA for Solr, follow these steps:

1. Copy apache-sol r-ui ma-3. x. 0. jar (under/apache-solr-3.x.0/dist/) and its libraries
(under contri b/ uima/lib) to a Solr libraries directory, or set <l i b/ > tags in
sol rconfi g. xnml appropriately to point to those jar files:

<lib dir="../../contrib/uima/lib" />
<lib dir="../../dist/" regex="apache-solr-uim-\d.*\.jar" />

2. Modify schema. xm , adding your desired metadata fields specifying proper values for type,
indexed, stored, and multiValued options. For example:

<field nane="I| anguage" type="string" indexed="true" stored="true"
requi red="fal se"/>

<field nane="concept" type="string" indexed="true" stored="true"
mul ti Val ued="true" required="fal se"/>

<field nane="sentence" type="text" indexed="true" stored="true"
mul ti Val ued="true" required="fal se" />

3. Add the following snippet to sol rconfi g. xm :

<updat eRequest Pr ocessor Chai n nane="ui ma" >
<processor
cl ass="org. apache. sol r. ui ma. processor . U MAUpdat eRequest Processor Fact ory" >
<l st name="ui maConfi g">
<l st name="runti mePar anmet ers">
<str name="keywor d_api key" >VAL|I D_ALCHEMYAPI| _KEY</ str >
<str nanme="concept _api key" >VALI D_ALCHEMYAPI _KEY</str>
<str name="|ang_api key" >VALI D_ALCHEMYAPI _KEY</str>
<str name="cat _api key">VALI D_ALCHEMYAPI| _KEY</ st r>
<str name="entities_api key">VALI D_ALCHEMYAPI _KEY</str >
<str nanme="oc_licensel D'>VALI D OPENCALAI S_KEY</ str >
</lst>

Page 215 of 397

https://uima.apache.org/
https://wiki.apache.org/solr/SolrUIMA

Solr Reference Guide Jan 10, 2012

<l--

name="anal ysi séngi ne" >/ or g/ apache/ ui ma/ desc/ Overri di ngPar ansExt Ser vi cesAE. xm </ str>

<str

Set to true if you want to continue indexing even if text processing fails.
Default is false. That is, Solr throws RuntinmeException and

never indexed docunments entirely in your session. -->
<bool nane="ignoreErrors">true</bool >
<l-- This is optional. It is used for |ogging when text processing fails

If logField is not specified, uniqueKey will be used as | ogField.
<str name="| ogFi el d">i d</str>
-->
<l st name="anal yzeFi el ds" >
<bool name="nerge">fal se</bool >
<arr name="fields">
<str>text</str>
</arr>
</lst>
<l st nanme="fi el dvappi ngs" >
<l st name="type">
<str name="nane">org. apache. ui ma. al cheny. ts. concept. Concept FS</ str>
<l st name="mappi ng" >
<str name="feature">text</str>
<str name="fiel d">concept</str>
</lst>
</lst>
<l st name="type">
<str name="nane">org. apache. ui ma. al cheny. ts. | anguage. LanguageFS</ str >
<l st name="mappi ng" >
<str nanme="feature">l anguage</str>
<str name="fiel d">l anguage</str>
</lst>
</lst>
<l st name="type">
<str nanme="nane">or g. apache. ui ma. Sent enceAnnot ati on</ str>
<l st name="mappi ng" >
<str name="feature">coveredText</str>
<str name="fiel d"'>sentence</str>
</lst>
</lst>
</lst>
</lst>

</ processor >

<processor class="solr.LogUpdat eProcessor Factory" />

<processor class="solr.RunUpdat eProcessor Factory" />
</ updat eRequest Pr ocessor Chai n>

Page 216 of 397

Solr Reference Guide Jan 10, 2012

~ VALI D_ALCHEMYAPI _KEY is your AlchemyAPI Access Key. You need to register an
AlchemyAPI Access key to use AlchemyAPI services:
http://www.alchemyapi.com/api/register.html.

VALI D_OPENCALAI S_KEY is your Calais Service Key. You need to register a Calais
Service key to use the Calais services: http://www.opencalais.com/apikey.

anal ysi sEngi ne must contain an AE descriptor inside the specified path in the
classpath.

anal yzeFi el ds must contain the input fields that need to be analyzed by UIMA. If
nmer ge=t r ue then their content will be merged and analyzed only once.

Field mapping describes which features of which types should go in a field.

4. In your sol rconfig. xm replace the existing default UpdateRequestHandler or create a new
UpdateRequestHandler:

<request Handl er nane="/update" cl ass="sol r. Xm Updat eRequest Handl er " >
<l st name="defaul ts">
<str name="updat e. processor" >ui ma</str>
</lst>
</ request Handl er >

Once you are done with the configuration your documents will be automatically enriched with the
specified fields when you index them.

Page 217 of 397

http://www.alchemyapi.com/api/register.html
http://www.opencalais.com/apikey

Solr Reference Guide Jan 10, 2012

Content Streams

When Solr RequestHandlers are accessed using path based URLs, the Sol r Quer yRequest object
containing the parameters of the request may also contain a list of ContentStreams containing bulk
data for the request. (The name SolrQueryRequest is a bit misleading: it is involved in all requests,
regardless of whether it is a query request or an update request.)

Stream Sources

Currently RequestHandlers can get content streams in a variety of ways:

® For multipart file uploads, each file is passed as a stream.

® For POST requests where the content-type is not appl i cati on/ x- ww f or m ur | encoded, the
raw POST body is passed as a stream.

® The contents of parameter st r eam body is passed as a stream.

® If remote streaming is enabled, the contents of each stream url and streamfile
parameters are fetched and passed as a stream.

If the contentType is appl i cati on/ x- www f or m ur | encoded, the full POST body is parsed as
parameters and included in the Solr parameters.

By default, curl sends a cont ent Type="appl i cati on/ x- ww+ f or m ur| encoded" header. If you
need to test a SolrContentHeader content stream, you will need to set the content type with the
"-H" flag. For example:

curl $URL -H 'Content-type:text/xm; charset=utf-8" --data-binary @f

RemoteStreaming

Remote streaming allows you to send the contents of a URL as a stream to a given
SolrRequestHandler. You could use remote streaming to send a remote or local file to an update
plugin. For security reasons, remote streaming is disabled in the sol rconfi g. xm included in the
example directory.

If you enable streaming, be aware that this allows anyone to send a request to any URL or
local file. If dump is enabled, it will allow anyone to view any file on your system.

<!--Make sure your system has authentication before enabling renpote streamning!-->
<request Par sers enabl eRenpt eStreani ng="true" nul tipart Upl oadLi m t| nKB="2048" />

Page 218 of 397

Solr Reference Guide Jan 10, 2012

Debugging Requests

The example sol rconfi g. xm includes a "dump" RequestHandler:

<r equest Handl er nanme="/debug/ dunp" cl ass="sol r. DunpRequest Handl er" />

This handler simply outputs the contents of the SolrQueryRequest using the specified writer type
wt . This is a useful tool to help understand what streams are available to to the RequestHandlers.

Page 219 of 397

Solr Reference Guide Jan 10, 2012

Searching

This section describes how Solr works with search requests. It covers the following topics:
Overview of Searching in Solr: Conceptual information about searching with Solr.
Relevance: Conceptual information about relevance in search results.

Query Syntax and Parsing: A brief conceptual overview of query syntax and parsing.

The DisMax Query Parser: Detailed information about Solr's DisMax query parser.

The Extended DisMax Query Parser: Detailed information about Solr's Extended DisMax (eDisMax)
Query Parser.

The Standard Query Parser: Detailed information about the standard Lucene query parser.
Common Query Parameters: Detailed information about the common query parameters in Solr.

Local Parameters in Queries: Detailed information about arguments specific to a particular query
parameter.

Function Queries: Detailed information about parameters for generating relevancy scores using
values from one or more numeric fields.

Highlighting: Detailed information about Solr's highlighting utilities.

MorelLikeThis: Detailed information about Solr's similar results query component.

Faceting: Detailed information about categorizing search results based on indexed terms.
Result Grouping: Detailed information about grouping results based on common field values.
Spell Checking: Detailed information about Solr's spelling checker.

Suggester: Detailed information about Suggester, Solr's powerful autosuggest component.
Spatial Search: Detailed information about Solr's spatial search capabilities.

The Terms Component: Detailed information about accessing indexed terms and the documents
that include them.

The Term Vector Component: Detailed information about returning term information about specific
documents.

Page 220 of 397

Solr Reference Guide Jan 10, 2012

The Stats Component: Detailed information about returning information from numeric fields within
a document set.

Response Writers: Detailed information about configuring and using Solr's response writers.

Page 221 of 397

Solr Reference Guide Jan 10, 2012

Overview of Searching in Solr

Solr offers a rich, flexible set of features for search. To understand the extent of this flexibility, it's
helpful to begin with an overview of the steps and components involved in a Solr search.

When a user runs a search in Solr, the search query is processed by a request handler. A request
handler is a Solr plug-in that defines the logic to be used when Solr processes a request. Solr
supports a variety of request handlers. Some are designed for processing search queries, while
others manage tasks such as index replication.

Search applications select a particular request handler by default. In addition, applications can be
configured to allow users to override the default selection in preference of a different request
handler.

To process a search query, a request handler calls a query parser, which interprets the terms and
parameters of a query. Different query parsers support different syntax. The default query parser
is the DisMax query parser. Solr also includes an earlier "standard" (Lucene) query parser, and an
Extended DisMax (eDisMax) query parser. The standard query parser's syntax allows for greater
precision in searches, but the DisMax query parser is much more tolerant of errors. The DisMax
query parser is designed to provide an experience similar to that of popular search engines such as
Google, which rarely display syntax errors to users. The Extended DisMax query parser is an
improved version of DisMax that handles the full Lucene query syntax while still tolerating syntax
errors. It also includes several additional features.

In addition, there are common query parameters that are accepted by all query parsers.
Input to a query parser can include:

® search strings—that is, terms to search for in the index

® parameters for fine-tuning the query by increasing the importance of particular strings or
fields, by applying Boolean logic among the search terms, or by excluding content from the
search results

® parameters for controlling the presentation of the query response, such as specifying the
order in which results are to be presented or limiting the response to particular fields of the
search application's schema.

Search parameters may also specify a query filter. As part of a search response, a query filter
runs a query against the entire index and caches the results. Because Solr allocates a separate
cache for filter queries, the strategic use of filter queries can improve search performance. (Despite
their similar names, query filters are not related to analysis filters. Query filters perform queries at
search time against data already in the index, while analysis filters, such as Tokenizers, parse
content for indexing, following specified rules).

Page 222 of 397

Solr Reference Guide Jan 10, 2012

A search query can request that certain terms be highlighted in the search response; that is, the
selected terms will be displayed in colored boxes so that they "jump out" on the screen of search
results. Highlighting can make it easier to find relevant passages in long documents returned in a
search. Solr supports multi-term highlighting. Solr includes a rich set of search parameters for
controlling how terms are highlighted.

Search responses can also be configured to include snippets (document excerpts) featuring
highlighted text. Popular search engines such as Google and Yahoo! return snippets in their search
results: 3-4 lines of text offering a description of a search result.

To help users zero in on the content they're looking for, Solr supports two special ways of grouping
search results to aid further exploration: faceting and clustering.

Faceting is the arrangement of search results into categories (which are based on indexed terms).
Within each category, Solr reports on the number of hits for relevant term, which is called a facet
constraint. Faceting makes it easy for users to explore search results on sites such as movie sites
and product review sites, where there are many categories and many items within a category.

The image below shows an example of faceting from the CNET Web site, which was the first site to
use Solr.

Digital cameras The facet count or
constraint count shows

Manufactureris a
facet a way of how many resuits
categonzing the \lpﬂ,w your results match each value
results
M:lnulaclursr Hesdu:lun Zoom ranga More

Canon, Sony, and |—* . i R e
Mikaon are
constraints, or
facet values

L] & @ t

you setected: | $400.- 3500 | RO@ | removeast @ _— Regular search results list]
The breadcrumb |~ e s
trail shows what 17 results H_f-f# [1
constraints have
already been Show 10 [» resulls perpage Sortby | Review dale |« COMPARE SELECTED
aﬁ!ﬁﬁii?ﬁnﬂﬂf @ Canon EOS Rebel X5 (silver, with 18-55mm $459 to 5699
e e |E-I'|5-' at 16 stores D

Faceting makes use of fields defined when the search applications were indexed. In the example
above, these fields include categories of information that are useful for describing digital cameras:
manufacturer, resolution, and zoom range.

Page 223 of 397

Solr Reference Guide Jan 10, 2012

Clustering groups search results by similarities discovered when a search is executed, rather than
when content is indexed. The results of clustering often lack the neat hierarchical organization
found in faceted search results, but clustering can be useful nonetheless. It can reveal unexpected
commonalities among search results, and it can help users rule out content that isn't pertinent to
what they're really searching for.

Solr also supports a feature called MoreLikeThis, which enables users to submit new queries that
focus on particular terms returned in an earlier query. MoreLikeThis queries can make use of
faceting or clustering to provide additional aid to users.

A Solr component called a response writer manages the final presentation of the query response.
Solr includes a variety of response writers, including an XML Response Writer and a JSON Response
Writer.

The diagram below summarizes some key elements of the search process.

qt: szlects a RequestHandlar for a query using /szlect [by default, the DisMax RequestHandler is usad)

Request
defType: selacts a query parser for the quary
Handler {by default, uses whatever has been configurad

for the RequestHandler)

-

Response
Writer

Query

gf: selectswhich fields to query
in the index (by default, all
fields are quariad)

Parser

wi: selacts a response writer for formatting
the query responss

fa: filters the query by applying an additional query
to the Initial query's results: caches the results

Index

rows: specifiesthe

number of rows start: specifies an offset

to be digplayed {by defaultd) into

atone time the query results whers
the returned response
should begin

The Velocity Search Ul

Solr includes an example search UI based on the VelocityResponseWriter (also known as Solritas)
than demonstrates several useful features, such as searching, faceting, highlighting, autocomplete,
and geospatial searching.

You can access the Velocity Search UI here: http://1 ocal host: 8983/ sol r/ br owse

Page 224 of 397

https://wiki.apache.org/solr/VelocityResponseWriter

Solr Reference Guide

Jan 10, 2012

Solritas

J . Solritas

L+

-

v || (1§~ startingpaQ) EJ B- B-

N
W

Solr

Examples: Simple Spalial

1\

Solr Admin [T

Find:

Field Facets

cat
Electronics (14)
Memory (3)
Connector (2)
Graphics Card (2)
Hard Drive (2)
Monitor (2)
Search (2)
Software (2)
Camera (1)
Copier (1)
Multifunction Printer (1)
Music (1)
Printer (1)
Scanner (1)

manu_exact
Apache Software
Foundation (2)
Belkin (2)
Canon Inc. (2)

Corsair Microsystems Inc.

(2)

A-DATA Technology Inc. (1)

ASUS Gomputer Ine. (1)
AT| Technologies (1)
Apple Computer Ine. (1)
Dell, Inc. (1)

Maxtor Corp. (1)

Samsung Electronics Co.
Lid. (1)

ViewSonic Corp. (1)

R

mBoost by Price

17 results found in 98 ms Page 1 of 2

Test with some GB18030 ct
Price: $0.00

Features: No accents here i&E—T"3h88 This is a feature (translated) &3 3 PFE{RHE M This document is very shiny (translated)
In Stock: true

More Like This

Samsung SpinPoint P120 SP2514N - hard drive - 250 GB - ATA-133 More Like This

Price: $92.00 ‘
Features: 7200RPM, 8MB cache, IDE Ultra ATA-133 NoiseGuard, SilentSeek technology, Fluid Dynamic Bearing (FDB)
motor Coele
In Stock: true Larger Mao
Maxtor DiamondMax 11 - hard drive - 500 GB - SATA-300 More Like This E
Price: $350.00 5 ﬁﬂ
z
Features: SATA 3.0Gb/s, NCQ 8.5ms seek 16MB cache M
(5a051C)
In Stock: true -
Larger Map
Belkin Mobile Power Cord for iPod w/ Dock More Like This E
Price: $19.95 = ﬁﬂ
z
Features: car power adapter, white o
Cogen.
In Stock: false -
Larger Map
iPod & iPod Mini USB 2.0 Cable More Like This s)

Price: $11.50
Features: car power adapter for iPod. white

ssﬂ!’B"““ ‘
551ESan

The Velocity Search UI

For more information about the Velocity Search UI, see
https://wiki.apache.org/solr/VelocityResponseWriter.

SR

N

Page 225 of 397

https://wiki.apache.org/solr/VelocityResponseWriter

Solr Reference Guide Jan 10, 2012

Relevance

Relevance is the degree to which a query response satisfies a user who is searching for
information.

The relevance of a query response depends on the context in which the query was performed. A
single search application may be used in different contexts by users with different needs and
expectations. For example, a search engine of climate data might be used by a university
researcher studying long-term climate trends, a farmer interested in calculating the likely date of
the last frost of spring, a civil engineer interested in rainfall patterns and the frequency of floods,
and a college student planning a vacation to a region and wondering what to pack. Because the
motivations of these users vary, the relevance of any particular response to a query will vary as
well.

How comprehensive should query responses be? Like relevance in general, the answer to this
question depends on the context of a search. The cost of not finding a particular document in
response to a query is high in some contexts, such as a legal e-discovery search in response to a
subpoena, and quite low in others, such as a search for a cake recipe on a Web site with dozens or
hundreds of cake recipes. When configuring Solr, you should weigh comprehensiveness against
other factors such as timeliness and ease-of-use.

The e-discovery and recipe examples demonstrate the importance of two concepts related to
relevance:

® Precision is the percentage of documents in the returned results that are relevant.
® Recall is the percentage of relevant results returned out of all relevant results in the system.
Obtaining perfect recall is trivial: simply return every document in the collection for every

query.

Returning to the examples above, it's important for an e-discovery search application to have
100% recall returning all the documents that are relevant to a subpoena. It's far less important
that a recipe application offer this degree of precision, however. In some cases, returning too many
results in casual contexts could overwhelm users. In some contexts, returning fewer results that
have a higher likelihood of relevance may be the best approach.

Using the concepts of precision and recall, it's possible to quantify relevance across users and
queries for a collection of documents. A perfect system would have 100% precision and 100%
recall for every user and every query. In other words, it would retrieve all the relevant documents
and nothing else. In practical terms, when talking about precision and recall in real systems, it is
common to focus on precision and recall at a certain number of results, the most common (and
useful) being ten results.

Page 226 of 397

Solr Reference Guide Jan 10, 2012

Through faceting, query filters, and other search components, a Solr application can be configured
with the flexibility to help users fine-tune their searches in order to return the most relevant results
for users. That is, Solr can be configured to balance precision and recall to meet the needs of a
particular user community.

The configuration of a Solr application should take into account:

® the needs of the application's various users (which can include ease of use and speed of
response, in addition to strictly informational needs)

® the categories that are meaningful to these users in their various contexts (e.g., dates,
product categories, or regions)

® any inherent relevance of documents (e.g., it might make sense to ensure that an official
product description or FAQ is always returned near the top of the search results)

® whether or not the age of documents matters significantly (in some contexts, the most
recent documents might always be the most important)

Keeping all these factors in mind, it's often helpful in the planning stages of a Solr deployment to
sketch out the types of responses you think the search application should return for sample
queries. Once the application is up and running, you can employ a series of testing methodologies,
such as focus groups, in-house testing, TREC tests and A/B testing to fine tune the configuration of
the application to best meet the needs of its users.

For more information about relevance, see Grant Ingersoll's tech article Debugging Search
Application Relevance Issues which is available on the Lucid Imagination Web site.

Page 227 of 397

http://trec.nist.gov
http://www.lucidimagination.com/Community/Hear-from-the-Experts/Articles/Search-Application-Relevance-Issues
http://www.lucidimagination.com/Community/Hear-from-the-Experts/Articles/Search-Application-Relevance-Issues

Solr Reference Guide Jan 10, 2012

Query Syntax and Parsing

Solr supports several query parsers, offering search application designers great flexibility in
controlling how queries are parsed.

This section explains how to specify the query parser to be used. It also describes the syntax and
features supported by the main query parsers included with Solr: the Standard Query Parser, the
DisMax query parser, and the Extended DisMax (eDisMax) query parser.

For more detailed information about the many query parsers available in Solr, see
https://wiki.apache.org/solr/SolrQuerySyntax.

Common Query Parameters

The table below summarizes Solr's common query parameters, which are supported by the
Standard, DisMax, and eDisMax Request Handlers.

Lucid Imagination strongly recommends that any future SolrRequestHandlers support these
parameters, as well.

Parameter
defType

sort

start

rows

fq
fl

debugQuery

explainOther

Description
Selects the query parser to be used to process the query.

Sorts the response to a query in either ascending or descending order based on the
response's score or another specified characteristic.

Specifies an offset (by default, 0) into the responses at which Solr should begin
displaying content.

Controls how many rows of responses are displayed at a time (default value: 10)
Applies a filter query to the search results.
Limits the query's responses to a listed set of fields.

Causes Solr to include additional debugging information in the response, including
"explain" information for each of the documents returned. Note that this parameter
takes effect if it is present, regardless of its setting.

Allows clients to specify a Lucene query to identify a set of documents. If
non-blank, the explain info of each document which matches this query, relative to
the main query (specified by the q parameter) will be returned along with the rest
of the debugging information.

Page 228 of 397

https://wiki.apache.org/solr/SolrQuerySyntax

Solr Reference Guide Jan 10, 2012

timeAllowed Defines the time allowed for the query to be processed. If the time elapses before
the query response is complete, partial information may be returned.

omitHeader Excludes the header from the returned results, if set to true. The header contains
information about the request, such as the time the request took to complete. The
default is false.

wt Specifies the Response Writer to be used to format the query response.
cache=false By default, Solr caches the results of all queries and filter queries. Set
cache=f al se to disable caching of the results of a query.

The following sections describe these parameters in detail.

The defType Parameter

The defType parameter selects the query parser that Solr should use to process the request. For
example:

def Type=di smax
In Solr 1.3 and later, the query parser is set to dismax by default.

The sort Parameter

The sort parameter arranges search results in either ascending (asc) or descending (desc) order.
The parameter can be used with either numerical or alphabetical content.

Solr can sort query responses according to document scores or the value of any indexed field with
a single value (that is, any field whose attributes in schema. xm include nul ti Val ued="f al se" and
i ndexed="true"), provided that:

® the field is non-tokenized (that is, the field has no analyzer and its contents have been been
parsed into tokens, which would make the sorting inconsistent), or

® the field uses an analyzer (such as the KeywordTokenizer) that produces only a single term.

If you want to be able to sort on a field whose contents you want to tokenize to facilitate
searching, use the <copyFi el d> directive in the schema. xm file to clone the field. Then search on
the field and sort on its clone.

The table explains how Solr responds to various settings of the sort parameter.

Example of a Result
sort
Parameter

Page 229 of 397

Solr Reference Guide Jan 10, 2012

If the sort parameter is omitted, sorting is performed as though the parameter
were set to score desc.

score desc Sorts in descending order from the highest score to the lowest score.

price asc Sorts in ascending order of the price field

inStock desc, Sorts by the contents of the i nSt ock field in descending order, then within
price asc those results sorts in ascending order by the contents of the price field.

Regarding the sort parameter's arguments:

® A sort ordering must include a field name (or scor e as a pseudo field), followed by
whitespace (escaped as + or %20 in URL strings), followed by a sort direction (asc or desc).

® Multiple sort orderings can be separated by a comma, using this syntax: sort=<fi el d name>
<direction>[,<field nane> <direction>]...

The start Parameter

When specified, the st art parameter specifies an offset into a query's result set and instructs Solr
to begin displaying results from this offset.

The default value is "0". In other words, by default, Solr returns results without an offset,
beginning where the results themselves begin.

Setting the st art parameter to some other number, such as 3, causes Solr to skip over the
preceding records and start at the document identified by the offset.

You can use the start parameter this way for paging. For example, if the r ows parameter is set to
10, you could display three successive pages of results by setting start to 0, then re-issuing the
same query and setting start to 10, then issuing the query again and setting start to 20.

The rows Parameter

You can use the rows parameter to paginate results from a query. The parameter specifies the
maximum number of documents from the complete result set that Solr should return to the client
at one time.

The default value is 10. That is, by default, Solr returns 10 documents at a time in response to a
query.

The fq (Filter Query) Parameter

Page 230 of 397

Solr Reference Guide Jan 10, 2012

The f g parameter defines a query that can be used to restrict the superset of documents that can
be returned, without influencing score. It can be very useful for speeding up complex queries, since
the queries specified with f g are cached independently of the main query. When a later query uses
the same filter, there's a cache hit, and filter results are returned quickly from the cache.

When using the f g parameter, keep in mind the following:

® The f g parameter can be specified multiple times in a query. Documents will only be included
in the result if they are in the intersection of the document sets resulting from each instance
of the parameter. In the example below, only documents which have a popularity greater
then 10 and have a section of 0 will match.

fqg=popularity:\[10 TO *\]
& fg=section: 0

® Filter queries can involve complicated Boolean queries. The above example could also be
written as a single fq with two mandatory clauses like so:

fqg=+popularity:\[10 TO *\] +section:0

® The document sets from each filter query are cached independently. Thus, concerning the
previous examples: use a single f q containing two mandatory clauses if those clauses appear
together often, and use two separate f q parameters if they are relatively independent. (To
learn about tuning cache sizes and making sure a filter cache actually exists, see The
Well-Configured Solr Instance.)

® As with all parameters: special characters in an URL need to be properly escaped and
encoded as hex values. Online tools are available to help you with URL-encoding. For
example: http://meyerweb.com/eric/tools/dencoder/.

The fl (Field List) Parameter

The f1 parameter limits the information included in a query response to a specified list of fields.
The fields need to have been indexed as stored for this parameter to work correctly.

The field list can be specified as a space-separated or comma-separated list of field names. The
string "score" can be used to indicate that the score of each document for the particular query
should be returned as a field. The wildcard character "*" selects all the stored fields in a document.

Field List Result

id name price Return only the id, name, and price fields.

Page 231 of 397

http://meyerweb.com/eric/tools/dencoder/

Solr Reference Guide Jan 10, 2012

id,name,price Return only the id, name, and price fields.

id name, Return only the id, name, and price fields.

price

id score Return the id field and the score.

* Return all the fields in each document. This is the default value of the fl
parameter.

* score Return all the fields in each document, along with each field's score.

As noted in the table above, the default value is "*".

The debugQuery Parameter

If the debugQuery parameter is present (regardless of its value), then additional debugging
information will be included in the response, including "explain" info for each of the documents
returned. (The "explain" info tells you why your query matched and indicates which parts of the
query contributed to the overall score.) This debugging info is meant for human consumption. Its
XML format could change in future Solr releases.

The default behavior is not to include debugging information.

The explainOther Parameter

The expl ai nQt her parameter specifies a Lucene query in order to identify a set of documents. If
this parameter is included and is set to a non-blank value, the query will return debugging
information, along with the "explain info" of each document that matches the Lucene query,
relative to the main query (which is specified by the g parameter). For example:

g=supervil | i ans&lebugQuer y=on&expl ai nQ her =i d: j ugger naut

The query above allows you to examine the scoring explain info of the top matching documents,
compare it to the explain info for documents matching i d: j ugger naut , and determine why the
rankings are not as you expect.

The default value of this parameter is blank, which causes no extra "explain info" to be returned.

The timeAllowed Parameter

This parameter specifies the amount of time, in milliseconds, allowed for a search to complete. If
this time expires before the search is complete, any partial results will be returned.

The omitHeader Parameter

This parameter may be set to either true or false.

Page 232 of 397

Solr Reference Guide Jan 10, 2012

If set to true, this parameter excludes the header from the returned results. The header contains
information about the request, such as the time it took to complete. The default value for this
parameter is false.

The wt Parameter

The wt parameter selects the Response Writer that Solr should use to format the query's response.
For detailed descriptions of Response Writers, see Response Writers.

The cache=false Parameter

Solr caches the results of all queries and filter queries by default. To disable result caching, set the
cache=f al se parameter.

You can also use the cost option to control the order in which non-cached filter queries are
evaluated. This allows you to order less expensive non-cached filters before expensive non-cached
filters.

For very high cost filters, if cache=f al se and cost >=100 and the query implements the

Post Fi | t er interface, a Collector will be requested from that query and used to filter documents
after they have matched the main query and all other filter queries. There can be multiple post
filters; they are also ordered by cost.

For example:

/1 normal function range query used as a filter, all natching docunents generated up
front and cached
fg={!frange | =10 u=100} mul (popul arity, price)

/1 function range query run in parallel with the main query like a traditional |ucene
filter
fg={!frange | =10 u=100 cache=fal se} nul (popul arity, price)

/1 function range query checked after each docunent that already nmatches the query and
all other filters.

CGood for really expensive function queries.
fg={!frange | =10 u=100 cache=fal se cost =100} mul (popul arity, price)

The Standard Query Parser

Before Solr 1.3, the Standard Request Handler called the standard query parser as the default
query parser. In versions since Solr 1.3, the Standard Request Handler calls the DisMax query
parser as the default query parser. You can configure Solr to call the standard query parser
instead, if you like.

Page 233 of 397

Solr Reference Guide Jan 10, 2012

The advantage of the standard query parser is that it enables users to specify very precise queries.
The disadvantage is that it is less tolerant of syntax errors than the DisMax query parser. The
DisMax query parser is designed to throw as few errors as possible.

Topics covered in this section:

Standard Query Parser Parameters

The Standard Query Parser's Response

Specifying Terms for the Standard Query Parser

Specifying Fields in a Query to the Standard Query Parser

Boolean Operators Supported by the Standard Query Parser

Grouping Terms to Form Subqueries

Differences between Lucene Query Parser and the Solr Standard Query Parser

Standard Query Parser Parameters

In addition to the Common Query Parameters, Faceting Parameters, Highlighting Parameters, and
MorelLikeThis Parameters, the standard query parser supports the parameters described in the
table below.

Parameter Description
q Defines a query using standard query syntax. This parameter is mandatory.

g.op Specifies the default operator for query expressions, overriding the default operator
specified in the schema. xnl file. Possible values are "AND" or "OR".

df Specifies a default field, overriding the definition of a default field in the schena. xni
file.

Default parameter values are specified in sol rconfi g. xnl , or overridden by query-time values in
the request.

The Standard Query Parser's Response

By default, the response from the standard query parser contains one <r esul t > block, which is
unnamed. If the debugQuery parameter is used, then an additional <l st > block will be returned,
using the name "debug". This will contain useful debugging info, including the original query string,
the parsed query string, and explain info for each document in the <result> block. If the

expl ai nO: her parameter is also used, then additional explain info will be provided for all the
documents matching that query.

Sample Responses

Page 234 of 397

Solr Reference Guide Jan 10, 2012

This section presents examples of responses from the standard query parser.

The URL below submits a simple query and requests the XML Response Writer to use indentation to
make the XML response more readable.

http://yourhost.tld: 9999/ sol r/ sel ect ?q=i d: SP2514N&ver si on=2. 1& ndent =1

Results:

<?xm version="1.0" encodi ng="UTF-8"?>
<r esponse>
<r esponseHeader ><st at us>0</ st at us><QTi ne>1</ QTi me></ r esponseHeader >
<result numfFound="1" start="0">
<doc>
<arr nanme="cat"><str>el ectroni cs</str><str>hard drive</str></arr>
<arr nane="features"><str>7200RPM 8MB cache, IDE Utra ATA-133</str>
<str>Noi seCuard, SilentSeek technol ogy, Fluid Dynam c Bearing (FDB)
not or </ str></arr>
<str nane="id">SP2514N</str>
<bool name="inSt ock">true</bool >
<str name="manu">Samsung El ectronics Co. Ltd.</str>
<str nanme="nane">Sanmsung Spi nPoi nt P120 SP2514N - hard drive - 250 GB - ATA-133</str>
<i nt name="popul arity">6</int>
<fl oat nane="price">92. 0</fl oat >
<str name="sku">SP2514N</str>
</ doc>
</result>
</ response>

Here's an example of a query with a limited field list.

http://yourhost.tld: 9999/ sol r/ sel ect ?g=i d: SP2514N&ver si on=2. 1& ndent =1&f | =i d+nane

Results:

Page 235 of 397

Solr Reference Guide Jan 10, 2012

<?xm version="1.0" encodi ng="UTF- 8" ?>
<response>
<r esponseHeader ><st at us>0</ st at us><QTi me>2</ QTi me></ r esponseHeader >
<result numfFound="1" start="0">
<doc>
<str name="id">SP2514N</str>
<str name="nane" >Sansung Spi nPoi nt P120 SP2514N - hard drive - 250 GB - ATA-133</str>
</ doc>
</result>
</ response>

Specifying Terms for the Standard Query Parser

A query to the standard query parser is broken up into terms and operators. There are two types of
terms: single terms and phrases.

® A single term is a single word such as "test" or "hello"
® A phrase is a group of words surrounded by double quotes such as "hello dolly"

Multiple terms can be combined together with Boolean operators to form more complex queries (as
described below).

It is important that the analyzer used for queries parses terms and phrases in a way that is
consistent with the way the analyzer used for indexing parses terms and phrases;
otherwise, searches may produce unexpected results.

Term Modifiers

Solr supports a variety of term modifiers that add flexibility or precision, as needed, to searches.
These modifiers include wildcard characters, characters for making a search "fuzzy" or more
general, and so on. The sections below describe these modifiers in detail.

Wildcard Searches

Solr's standard query parser supports single and multiple character wildcard searches within single
terms. Wildcard characters can be applied to single terms, but not to search phrases.

Wildcard Search Type Special Example

Character
Single character (matches a single ? The search string t e?t would match both
character) test and text.

Page 236 of 397

Solr Reference Guide Jan 10, 2012

Multiple characters (matches zero or * The wildcard search:
more sequential characters)
tes*

would match test, testing, and tester.

You can also use wildcard characters in the
middle of a term. For example:

te*t

would match test and text.

* est

would match pest and test.

% As of Solr 1.4, you can use a * or ? symbol as the first character of a search with the
standard query parser.

Fuzzy Searches

Solr's standard query parser supports fuzzy searches based on the Levenshtein Distance or Edit
Distance algorithm. Fuzzy searches discover terms that are similar to a specified term without
necessarily being an exact match. To perform a fuzzy search, use the tilde ~ symbol at the end of
a single-word term. For example, to search for a term similar in spelling to "roam," use the fuzzy
search:

r oam-
This search will match terms like foam and roams. It will also match the word "roam" itself.

An optional, additional parameter specifies the degree of similarity required for a match in a fuzzy
search. The value must be between 0 and 1. When set closer to 1, the optional parameter causes
only terms with a higher similarity to be matched. For example, the search below requires a high

degree of similarity to the term "roam" in order for Solr to return a match:

roam-0. 8

Page 237 of 397

Solr Reference Guide Jan 10, 2012

If this numerical parameter is omitted, Lucene performs the search as though the parameter were
set to 0.5. The sample query above is not very scalable. Upon parsing this query will check the
quasi-edit distance for every term in the index. As a result, this query is practical for only very
small indexes.

In many cases, stemming (reducing terms to a common stem) can produce similar effects
to fuzzy searches and wildcard searches.

Proximity Searches

A proximity search looks for terms that are within a specific distance from one another.

To perform a proximity search, add the tilde character ~ and a numeric value to the end of a
search phrase. For example, to search for a "apache" and "jakarta" within 10 words of each other
in a document, use the search:

"jakarta apache"~10

The distance referred to here is the number of term movements needed to match the specified
phrase. In the example above, if "apache" and "jakarta" were 10 spaces apart in a field, but
"apache" appeared before "jakarta", more than 10 term movements would be required to move the
terms together and position "apache" to the right of "jakarta" with a space in between.

Range Searches

A range search specifies a range of values for a field (a range with an upper bound and a lower
bound). The query matches documents whose values for the specified field or fields fall within the
range. Range queries can be inclusive or exclusive of the upper and lower bounds. Sorting is done
lexicographically, except on numeric fields. For example, the range query below matches all
documents whose nod_dat e field has a value between 20020101 and 20030101, inclusive.

nod_dat e: [20020101 TO 20030101]

Range queries are not limited to date fields or even numerical fields. You could also use range
queries with non-date fields:

title:{Aida TO Carnen}

This will find all documents whose titles are between Aida and Carmen, but not including Aida and
Carmen.

The brackets around a query determine its inclusiveness.

® Square brackets [] denote an inclusive range query that matches values including the upper
and lower bound.

Page 238 of 397

Solr Reference Guide Jan 10, 2012

® Curly brackets { } denote an exclusive range query that matches values between the upper
and lower bounds, but excluding the upper and lower bounds themselves.

Boosting a Term with A

Lucene/Solr provides the relevance level of matching documents based on the terms found. To
boost a term use the caret symbol ~ with a boost factor (a number) at the end of the term you are
searching. The higher the boost factor, the more relevant the term will be.

Boosting allows you to control the relevance of a document by boosting its term. For example, if
you are searching for

"jakarta apache" and you want the term "jakarta" to be more relevant, you can boost it by adding
the ~ symbol along with the boost factor immediately after the term. For example, you could type:

j akartan4 apache

This will make documents with the term jakarta appear more relevant. You can also boost Phrase
Terms as in the example:

"jakarta apache"”™4 "Apache Lucene"

By default, the boost factor is 1. Although the boost factor must be positive, it can be less than 1
(for example, it could be 0.2).

Specifying Fields in a Query to the Standard Query Parser

Data indexed in Solr is organized in fields, which are defined in the Solr schema. xm file. Searches
can take advantage of fields to add precision to queries. For example, you can search for a term
only in a specific field, such as a title field.

The schema. xnml file defines one field as a default field. If you do not specify a field in a query, Solr
searches only the default field. Alternatively, you can specify a different field or a combination of
fields in a query.

To specify a field, type the field name followed by a colon ":" and then the term you are searching
for within the field.

For example, suppose an index contains two fields, title and text,and that text is the default field.
If you want to find a document called "The Right Way" which contains the text "don't go this way,"
you could include either of the following terms in your search query:

title:"The Ri ght Way" AND text:go

title:"Do it right" AND go

Page 239 of 397

Solr Reference Guide Jan 10, 2012

Since text is the default field, the field indicator is not required; hence the second query above
omits it.

The field is only valid for the term that it directly precedes, so the query title: Do it right will

find only "Do" in the title field. It will find "it" and "right" in the default field (in this case the text
field).

Boolean Operators Supported by the Standard Query Parser

Boolean operators allow you to apply Boolean logic to queries, requiring the presence or absence of
specific terms or conditions in fields in order to match documents. The table below summarizes the
Boolean operators supported by the standard query parser.

Boolean Alternative Description
Operator Symbol

AND && Requires both terms on either side of the Boolean operator to be
present for a match.

NOT ! Requires that the following term not be present.
OR | Requires that either term (or both terms) be present for a match.
+ Requires that the following term be present.

- Prohibits the following term (that is, matches on fields or documents
that do not include that term). The - operator is functional similar to the
Boolean operator !. Because it's used by popular search engines such as
Google, it may be more familiar to some user communities.

Boolean operators allow terms to be combined through logic operators. Lucene supports AND, "+",
OR, NOT and "-" as Boolean operators.

. When specifying Boolean operators with keywords such as AND or NOT, the keywords
must appear in all uppercase.

@ The standard query parser supports all the Boolean operators listed in the table above. The
DisMax query parser supports only + and -.

The OR operator is the default conjunction operator. This means that if there is no Boolean
operator between two terms, the OR operator is used. The OR operator links two terms and finds a
matching document if either of the terms exist in a document. This is equivalent to a union using
sets. The symbol || can be used in place of the word OR.

Page 240 of 397

Solr Reference Guide Jan 10, 2012

In the schenma. xnl file, you can specify which symbols can take the place of Boolean operators
such as OR. To search for documents that contain either "jakarta apache" or just "jakarta," use the
query:

"jakarta apache" jakarta
or

"jakarta apache" OR jakarta

The Boolean Operator +

The + symbol (also known as the "required" operator) requires that the term after the + symbol
exist somewhere in a field in at least one document in order for the query to return a match.

For example, to search for documents that must contain "jakarta" and that may or may not contain
"lucene," use the following query:

+j akarta | ucene

@ This operator is supported by both the standard query parser and the DisMax query parser.

The Boolean Operator AND (&&)

The AND operator matches documents where both terms exist anywhere in the text of a single
document. This is equivalent to an intersection using sets. The symbol && can be used in place of
the word AND.

To search for documents that contain "jakarta apache" and "Apache Lucene," use either of the
following queries:

"jakarta apache" AND "Apache Lucene"

"jakarta apache" && "Apache Lucene"

The Boolean Operator NOT (!)

The NOT operator excludes documents that contain the term after NOT. This is equivalent to a
difference using sets. The symbol ! can be used in place of the word NOT.

The following queries search for documents that contain the phrase "jakarta apache" but do not
contain the phrase "Apache Lucene":

"jakarta apache" NOT "Apache Lucene"

"j akarta apache" ! "Apache Lucene"

Page 241 of 397

Solr Reference Guide Jan 10, 2012

The Boolean Operator -

The - symbol or "prohibit" operator excludes documents that contain the term after the - symbol.

For example, to search for documents that contain "jakarta apache" but not "Apache Lucene," use
the following query:

"j akarta apache" -"Apache Lucene”

Escaping Special Characters

Solr gives the following characters special meaning when they appear in a query:
+-8& O[T~ ~*22\

To make Solr interpret any of these characters literally, rather as a special character, precede the
character with a backslash character \. For example, to search for (1+1):2 without having Solr
interpret the plus sign and parentheses as special characters for formulating a subquery with two
terms, escape the characters by preceding each one with a backslash:

V(IV+1V) N 2

Grouping Terms to Form Subqueries

Lucene/Solr supports using parentheses to group clauses to form subqueries. This can be very
useful if you want to control the Boolean logic for a query.

The query below searches for either "jakarta" or "apache" and "website":
(jakarta OR apache) AND website

This adds precision to the query, requiring that the term "website" exist, along with either term
"jakarta" and "apache."

Grouping Clauses within a Field

To apply two or more Boolean operators to a single field in a search, group the Boolean clauses
within parentheses. For example, the query below searches for a title field that contains both the
word "return" and the phrase "pink panther":

title:(+return +"pink panther")

Differences between Lucene Query Parser and the Solr Standard Query
Parser

Solr's standard query parser differs from the Lucene Query Parser in the following ways:

® A * may be used for either or both endpoints to specify an open-ended range query

Page 242 of 397

Solr Reference Guide Jan 10, 2012

i ® field:[* TO 100] finds all field values less than or equal to 100
® field:[100 TO *] finds all field values greater than or equal to 100
® field:[* TO *] matches all documents with the field
® Pure negative queries (all clauses prohibited) are allowed (only as a top-level clause)
® -inStock:fal se finds all field values where inStock is not false
® -field:[* TO *] finds all documents without a value for field
® A hook into FunctionQuery syntax. You'll need to use quotes to encapsulate the function if it
includes parentheses, as shown in the second example below:
® val :nyfield
® val :"recip(rord(nyfield),1,2,3)"
® Nested query support for any type of query parser. Quotes will often be necessary to
encapsulate the nested query if it contains reserved characters.
® query :"{!dismax gf =nyfiel d} how now brown cow'

The standard Solr query parser also differs from earlier (pre-2.9) versions of the Lucene query
parser in this way:

® Range queries [a TO z], prefix queries a*, and wildcard queries a*b are constant-scoring (all
matching documents get an equal score). The scoring factors TF, IDF, index boost, and coord
are not used. There is no limitation on the number of terms that match (as there was in past
versions of Lucene).

Specifying Dates and Times

If you use the Solr "DateField" type, any queries on those fields (typically range queries) should
use the TrieDate Field. In previous releases, you would use the complete ISO 8601 date syntax
that "DateField" supports, or the Lucene/Solr DateMathParser's syntax to get relative dates.

Here are some examples of valid parameters using syntax appropriate for the DateField type:

® tinmestanp:[*TO NOW

® createdate:[1976-03-06T23:59: 59.999Z TO *]

® createdate:[1995-12-31T23:59:59.999Z TO 2007- 03- 06T00: 00: 00Z]

® pubdat e: [NOM 1YEAR/ DAY TO NOW DAY+1DAY]

® createdate:[1976-03-06T23:59:59.999Z TO 1976-03-06T23: 59: 59. 999Z+1VYEAR]
® createdate:[1976-03-06T23: 59: 59. 9997/ YEAR TO 1976- 03- 06T23: 59: 59. 9997]

The DisMax Query Parser

The DisMax query parser is designed to process simple phrases (without complex syntax) entered
by users and to search for individual terms across several fields using different weighting (boosts)
based on the significance of each field. Additional options enable users to influence the score based
on rules specific to each use case (independent of user input).

Page 243 of 397

Solr Reference Guide Jan 10, 2012

In general, the DisMax query parser's interface is more like that of Google than the interface of the
"standard" Solr request handler. This similarity makes DisMax the appropriate query parser for
many consumer applications. It accepts a simple syntax, and it rarely produces error messages.

The DisMax query parser supports an extremely simplified subset of the Lucene QueryParser
syntax. As in Lucene, quotes can be used to group phrases, and +/- can be used to denote
mandatory and optional clauses. All other Lucene query parser special characters (except AND and
OR) are escaped to simplify the user experience. The DisMax query parser takes responsibility for
building a good query from the user's input using Boolean clauses containing DisMax queries across
fields and boosts specified by the user. It also lets the Solr administrator provide additional
boosting queries, boosting functions, and filtering queries to artificially affect the outcome of all
searches. These options can all be specified as default parameters for the handler in the

sol rconfig. xm file or overridden in the Solr query URL.

Interested in the technical concept behind the DisMax name? DisMax stands for Maximum
Disjunction. Here's a definition of a Maximum Disjunction or "DisMax" query:

bg. A query that generates the union of documents produced by its subqueries, and that scores
each document with the maximum score for that document as produced by any subquery, plus a
tie breaking increment for any additional matching subqueries.

Whether or not you remember this explanation, do remember that the DisMax request handler was
primarily designed to be easy to use and to accept almost any input without returning an error.

DisMax Parameters

In addition to the common request parameter, highlighting parameters, and simple facet
parameters, the DisMax query parser supports the parameters described below. Like the standard
query parser, the DisMax query parser allows default parameter values to be specified in

sol rconfig. xm , or overridden by query-time values in the request.

Parameter Description
q Defines the raw input strings for the query.

g.alt Calls the standard query parser and defines query input strings, when the g
parameter is not used.

gf Query Fields: specifies the fields in the index on which to perform the query.

mm Minimum "Should" Match: specifies a minimum number of fields that must match in
a query.

pf Phrase Fields: boosts the score of documents in cases where all of the terms in the

g parameter appear in close proximity.

Page 244 of 397

Solr Reference Guide Jan 10, 2012

ps Phrase Slop: specifies the number of positions two terms can be apart in order to
match the specified phrase.

gs Query Phrase Slop: specifies the number of positions two terms can be apart in
order to match the specified phrase. Used specifically with the gf parameter.

tie Tie Breaker: specifies a float value (which should be something much less than 1) to
use as tiebreaker in DisMax queries.

bg Boost Query: specifies a factor by which a term or phrase should be "boosted" in
importance when considering a match.

bf Boost Functions: specifies functions to be applied to boosts. (See for details about
function queries.)

The sections below explain these parameters in detail.

The q Parameter

The q parameter defines the main "query" constituting the essence of the search. The parameter
supports raw input strings provided by users with no special escaping. The + and - characters are
treated as "mandatory" and "prohibited" modifiers for terms. Text wrapped in balanced quote
characters (for example, "San Jose") is treated as a phrase. Any query containing an odd number
of quote characters is evaluated as if there were no quote characters at all.

. The q parameter does not support wildcard characters such as *.

The qg.alt Parameter

If specified, the g. al t parameter defines a query (which by default will be parsed using standard
query parsing syntax) when the main q parameter is not specified or is blank. The g. al t
parameter comes in handy when you need something like a query to match all documents (don't
forget & ows=0 for that one!) in order to get collection-wise faceting counts.

The qf (Query Fields) Parameter

The gf parameter introduces a list of fields, each of which is assigned a boost factor to increase or
decrease that particular field's importance in the query. For example, the query below:

gf ="fiel dOne”2.3 fieldTwo fi el dThree”0. 4"

assigns fi el dOne a boost of 2.3, leaves fi el dTwo with the default boost (because no boost factor

is specified), and fi el dThr ee a boost of 0.4. These boost factors make matches in fi el dOne much
more significant than matches in fi el dTwo, which in turn are much more significant than matches

infieldThree.

Page 245 of 397

Solr Reference Guide

Jan 10, 2012

The mm (Minimum Should Match) Parameter

When processing queries, Lucene/Solr recognizes three types of clauses: mandatory, prohibited,
and "optional" (also known as "should" clauses). By default, all words or phrases specified in the g
parameter are treated as "optional" clauses unless they are preceded by a "+" or a "-". When
dealing with these "optional" clauses, the nmparameter makes it possible to say that a certain
minimum number of those clauses must match. The DisMax query parser offers great flexibility in
how the minimum number can be specified.

The table below explains the various ways that mm values can be specified.

Syntax

Positive integer

Negative integer

Percentage

Negative
percentage

An expression
beginning with a
positive integer
followed by a > or
< sign and another
value

Multiple conditional
expressions
involving > or <
signhs

Example Description

3

75%

-25%

3<90%

2<-25%
9<-3

Defines the minimum number of clauses that must match,
regardless of how many clauses there are in total.

Sets the minimum number of matching clauses to the total
number of optional clauses, minus this value.

Sets the minimum number of matching clauses to this
percentage of the total number of optional clauses. The number
computed from the percentage is rounded down and used as the
minimum.

Indicates that this percent of the total number of optional
clauses can be missing. The number computed from the
percentage is rounded down, before being subtracted from the
total to determine the minimum number.

Defines a conditional expression indicating that if the number of
optional clauses is equal to (or less than) the integer, they are
all required, but if it's greater than the integer, the specification
applies. In this example: if there are 1 to 3 clauses they are all
required, but for 4 or more clauses only 90% are required.

Defines multiple conditions, each one being valid only for
numbers greater than the one before it. In the example at left, if
there are 1 or 2 clauses, then both are required. If there are 3-9
clauses all but 25% are required. If there are more then 9
clauses, all but three are required.

When specifying mmvalues, keep in mind the following:

Page 246 of 397

Solr Reference Guide Jan 10, 2012

® When dealing with percentages, negative values can be used to get different behavior in
edge cases. 75% and -25% mean the same thing when dealing with 4 clauses, but when
dealing with 5 clauses 75% means 3 are required, but -25% means 4 are required.

® If the calculations based on the parameter arguments determine that no optional clauses are
needed, the usual rules about Boolean queries still apply at search time. (That is, a Boolean
query containing no required clauses must still match at least one optional clause).

® No matter what number the calculation arrives at, Solr will nhever use a value greater than
the number of optional clauses, or a value less then 1. (In other words, no matter how low or
how high the calculated result, the minimum number of required matches will never be less
then 1 or greater than the number of clauses.)

The default value of nmis 100% (meaning that all clauses must match).

The pf (Phrase Fields) Parameter

Once the list of matching documents has been identified using the f g and gf parameters, the pf
parameter can be used to "boost" the score of documents in cases where all of the terms in the g
parameter appear in close proximity.

The format is the same as that used by the gf parameter: a list of fields and "boosts" to associate
with each of them when making phrase queries out of the entire g parameter.

The ps (Phrase Slop) Parameter

The ps parameter specifies the amount of "phrase slop" to apply to queries specified with the pf
parameter. Phrase slop is the number of positions one token needs to be moved in relation to
another token in order to match a phrase specified in a query.

The gqs (Query Phrase Slop) Parameter

The gs parameter specifies the amount of slop permitted on phrase queries explicitly included in
the user's query string with the qf parameter. As explained above, slop refers to the number of
positions one token needs to be moved in relation to another token in order to match a phrase
specified in a query.

The tie (Tie Breaker) Parameter

The ti e parameter specifies a float value (which should be something much less than 1) to use as
tiebreaker in DisMax queries.

When a term from the user's input is tested against multiple fields, more than one field may
match. If so, each field will generate a different score based on how common that word is in that
field (for each document relative to all other documents). The ti e parameter lets you control how
much the final score of the query will be influenced by the scores of the lower scoring fields
compared to the highest scoring field.

Page 247 of 397

Solr Reference Guide Jan 10, 2012

A value of "0.0" makes the query a pure "disjunction max query": that is, only the maximum
scoring subquery contributes to the final score. A value of "1.0" makes the query a pure
"disjunction sum query" where it doesn't matter what the maximum scoring sub query is, because
the final score will be the sum of the subquery scores. Typically a low value, such as 0.1, is useful.

The bq (Boost Query) Parameter

The bg parameter specifies a raw query string (expressed in Solr query syntax) that will be
included with the user's query to influence the score. For example, if you wanted to add a
relevancy boost for recent documents:

g=cheese bqg=dat e\ [NOV DAY- 1YEAR TO NOW DAY\]

You can specify multiple bq parameters. If you want your query to be parsed as separate clauses
with separate boosts, use multiple bq parameters.

The bf (Boost Functions) Parameter

The bf parameter specifies functions (with optional boosts) that will be included in the user's query
to influence the score. Any function supported natively by Solr can be used, along with a boost
value. For example:

reci p(rord(nyfield), 1,2,3)"1.5

Specifying functions with the bf parameter is just shorthand for using the val :"...function..."
syntax in a bg parameter.

For example, if you want to show the most recent documents first, use

reci p(rord(creationbDate), 1, 1000, 1000)

Examples of Queries Submitted to the DisMax Query Parser

Normal results for the word "video" using the StandardRequestHandler with the default search
field:

http://1 ocal host: 8983/ sol r/ sel ect/ ?q=vi deo&f | =nanme+score

The "dismax" handler is configured to search across the text, features, name, sku, id, manu, and
cat fields all with varying boosts designed to ensure that "better" matches appear first, specifically:
documents which match on the name and cat fields get higher scores.

http://1 ocal host: 8983/ sol r/ sel ect/ ?def Type=di smax&q=vi deo

Page 248 of 397

Solr Reference Guide Jan 10, 2012

Note that this instance is also configured with a default field list, which can be overridden in the
URL.

http://1 ocal host: 8983/ sol r/ sel ect/ ?def Type=di snax&g=vi deo&f | =*, score
You can also override which fields are searched on and how much boost each field gets.

http://1 ocal host: 8983/ sol r/ sel ect/ ?def Type=di snax&qg=vi deo&qf =f eat ur es
n20. O+t ext 0. 3

You can boost results that have a field that matches a specific value.
http://1 ocal host: 8983/ sol r/sel ect/ ?def Type=di snax&q=vi deo&bqg=cat: el ectronics 5.0

Another instance of the handler is registered using the qt "instock" and has slightly different
configuration options, notably: a filter for (you guessed it) i nSt ock: true).

http://1 ocal host: 8983/ sol r/ sel ect/ ?def Type=di snax&qg=vi deo&f | =nane, score, i nSt ock
http://1 ocal host: 8983/ sol r/ sel ect/ ?def Type=di snax&qg=vi deo&qt =i nst ock&f | =nan®e, score, i

One of the other really cool features in this handler is robust support for specifying the
"BooleanQuery.minimumNumberShouldMatch" you want to be used based on how many terms are
in your user's query. These allows flexibility for typos and partial matches. For the dismax handler,
one and two word queries require that all of the optional clauses match, but for three to five word
queries one missing word is allowed.

http://1 ocal host: 8983/ sol r/sel ect/ ?def Type=di smax&q=bel ki n+i pod
http://1 ocal host: 8983/ sol r/ sel ect/ ?def Type=di smax&q=bel ki n+i pod+gi bberi sh
http://1 ocal host: 8983/ sol r/ sel ect/ ?def Type=di snax&q=bel ki n+i pod+appl e

Just like the StandardRequestHandler, it supports the debugQuery option to viewing the parsed
query, and the score explanations for each document.

http://1 ocal host: 8983/ sol r/ sel ect/ ?def Type=di snax&qg=bel ki n+i pod+gi bberi sh&lebugQuery

http://1 ocal host: 8983/ sol r/ sel ect/ ?def Type=di snax&g=vi deo+car d&debugQuer y=t r ue

The Extended DisMax Query Parser
The Extended DisMax (eDisMax) query parser is an improved version of the DisMax query parser.

In addition to supporting all the DisMax query parser parameters, Extended Dismax:

® supports the full Lucene query parser syntax
® supports queries such as AND, OR, NOT, -, and "

Page 249 of 397

Solr Reference Guide Jan 10, 2012

® treats and/or as AND/OR in Lucene syntax mode

® includes improved smart partial escaping in the case of syntax errors; fielded queries, +/-,
and phrase queries are still supported in this mode

® improves proximity boosting by using word shingles; you do not need the query to match all
words in the document before proximity boosting is applied

® includes advanced stopword handling: stopwords are not required in the mandatory part of
the query but are still used in the proximity boosting part. If a query consists of all
stopwords, such as "to be or not to be", then all words are required

® includes improved boost function: in Extended DisMax, the boost function is a multiplier
rather than an addend, improving your boost results; the additive boost functions of DisMax (
bf and bq) are also supported

® Supports pure negative nested queries: queries such as +f oo (-foo) will match all
documents

@ The Extended DisMax query parser is still under active development, so it may change in
the future. However, many organizations are already using it in production with great
success.

Extended DisMax Parameters
In addition to all the DisMax parameters, Extended DisMax includes these query parameters:
Parameter Description

boost A multivalued list of strings parsed as queries with scores multipled by the
score from the main query for all matching documents.

lowercaseOperators A Boolean parameter indicating if lowercase "and" and "or" should be
treated the same as operators "AND" and "OR".

pf2 A multivalued list of fields with optional weights, based on pairs of word
shingles.

pf3 A multivalued list of fields with optional weights, based on triplets of word
shingles.

stopwords A Boolean parameter indicating if the St opFi | t er Fact ory configured in the

query analyzer should be respected when parsing the query: if it is false,
then the St opFi | t er Fact ory in the query analyzer is ignored.

The sections below explain these parameters in detail.

The boost Parameter

Page 250 of 397

Solr Reference Guide Jan 10, 2012

A multivalued list of strings that will be parsed as queries and whose scores will be multipled by the
score from the main query for all matching documents. This parameter is shorthand for wrapping
the query produced by eDisMax using the Boost QPar ser Pl ugi n.

The lowercaseOperators Parameter

A Boolean parameter indicating if lowercase "and" and "or" should be treated the same as
operators "AND" and "OR".

The pf2 Parameter

A multivalued list of fields with optional weights. Similar to pf , except that instead of building a
phrase per field out of all the words in the input, it builds a set of phrases for each field out of each
pair of word shingles (or word-based bigrams).

The pf3 Parameter

A multivalued list of fields with optional weights. Similar to pf , except that instead of building a
phrase per field out of all the words in the input, it builds a set of phrases for each field out of each
triplet of word shingles (or word-based trigrams).

The stopwords Parameter

A Boolean parameter indicating if the St opFi | t er Fact ory configured in the query analyzer should
be respected when parsing the query: if it is false, then the St opFi | t er Fact ory in the query
analyzer is ignored.

Examples of Queries Submitted to the Extended DisMax Query Parser

Boost the result of the query term "hello" based on the document's popularity:

http://1 ocal host: 8983/ sol r/ sel ect/ ?def Type=edi smax&q=hel | 0&pf =t ext &qf =t ext &boost =pop
Search for iPods OR video:

http://1 ocal host: 8983/ sol r/ sel ect/ ?def Type=edi smax&q=i pod OR vi deo

Local Parameters in Queries

Local parameters are arguments in a Solr request that are specific to a query parameter. Local
parameters provide a way to add meta-data to certain argument types such as query strings. (In
Solr documentation, local parameters are sometimes referred to as LocalParams.)

Local parameters are specified as prefixes to arguments. Take the following query argument, for
example:

g=sol r rocks

Page 251 of 397

Solr Reference Guide Jan 10, 2012

We can prefix this query string with local parameters to provide more information to the Standard
Query Parser. For example, we can change the default operator type to "AND" and the default field
to "title":

g={'!q. op=AND df =titl e}solr rocks

These local parameters would change the query to require a match on both "solr" and "rocks" while
searching the "title" field by default.

Basic Syntax of Local Parameters

To specify a local parameter, insert the following before the argument to be modified:
® Begin with {!
® Insert any number of key=value pairs separated by white space
® End with } and immediately follow with the query argument

You may specify only one local parameters prefix per argument. Values in the key-value pairs may
be quoted via single or double quotes, and backslash escaping works within quoted strings.

Query Type Short Form

If a local parameter value appears without a name, it is given the implicit name of "type". This
allows short-form representation for the type of query parser to use when parsing a query string.
Thus

g={!di smax gf =nyfield}solr rocks
is equivalent to:
g={!type=di smax qf =nyfiel d}solr rocks

Specifying the Parameter Value with the ' v ' Key

A special key of v within local parameters is an alternate way to specify the value of that
parameter.

g={'!di smax qf =nyfiel d}solr rocks
is equivalent to

g={!type=di smax gf=nyfield v="solr rocks'}

Parameter Dereferencing

Page 252 of 397

Solr Reference Guide Jan 10, 2012

Parameter dereferencing or indirection lets you use the value of another argument rather than
specifying it directly. This can be used to simplify queries, decouple user input from query
parameters, or decouple front-end GUI parameters from defaults set in sol rconfi g. xnl .

g={'!di smax qf =nyfiel d}solr rocks
is equivalent to:

g={!type=di smax qf =nmyfield v=$qq} &gq=sol r rocks

Page 253 of 397

Solr Reference Guide

Jan 10, 2012

Function Queries

Function Query parameters enable you to generate a relevancy score using the actual value of one
or more numeric fields. Function queries are supported by the DisMax, Extended DisMax, and

standard query parsers.

The table below summarizes the functions available for function queries. For more details on these
function queries, see https://wiki.apache.org/solr/FunctionQuery.

Function Description

abs Returns the absolute value of the
specified value or function.

constant Specifies a floating point constant.

div Divides one value or function by
another. div(x,y) divides x by y.

dist Return the distance between two
vectors (points) in an
n-dimensional space. Takes in the
power, plus two or more
ValueSource instances and
calculates the distances between
the two vectors. Each ValueSource
must be a number. There must be
an even number of ValueSource
instances passed in and the
method assumes that the first half
represent the first vector and the
second half represent the second
vector.

fieldvalue Returns the numeric field value of
an indexed (not multi-valued) field
with a maximum of one value per
document. The syntax is simply
the field name by itself. 0 is
returned for documents without a
value in the field.

Syntax Examples

abs(x)
abs(-5)

1.5
_val _:1.5

div(1l,y)
di v(sum(x, 100), max(y, 1))

dist(2, x, y, 0, 0) - calculates the Euclidean
distance between (0,0) and (x,y) for each
document

dist(1l, x, y, 0, 0) - calculates the Manhattan
(taxicab) distance between (0,0) and (x,y) for
each document

dist(2, x,y,z,0,0,0) - Euclidean distance
between (0,0,0) and (x,y,z) for each document.

dist(1,x,y,z,e,f,qg) - Euclidean distance
between (x,y,z) and (e,f,g) where each letter is a
field name

myFloatField
_val _:nyFloatField

Page 254 of 397

https://wiki.apache.org/solr/FunctionQuery

Solr Reference Guide

Jan 10, 2012

hsin

linear

log

map

max

The Haversine distance calculates
the distance between two points
on a sphere when traveling along
the sphere. The values must be in
radians. hsi n also take a Boolean
argument to specify whether the
function should convert its output
to radians.

Implements m*x+c where m and c
are constants and x is an arbitrary
function. This is equivalent to
sum(product(m,x),c), but slightly
more efficient as it is implemented
as a single function.

Returns the log base 10 of the
specified function.

Maps any values of the function x
that fall within min and max
inclusive to the specified target.
The arguments min,max,target are
constants. The function outputs
the field's value if it does not fall
between min and max.

Returns the max of another
function and a constant, which are
specified as arguments: max(x, c)
The max function is useful for
"bottoming out" another function
at some constant.

hsin(2, true, x, y, 0, 0)

I'inear(x, mc)
linear(x,2,4) returns 2*x+4

I og(x) ! og(sum x, 100))

map(x, m n, max, target)

map(x, 0, 0, 1) - changes any values of 0 to 1.
This can be useful in handling default 0 values.
map(x, m n, max, target, al targ)

map(x, 0,0, 1, 0) - changes any valuesof 0 to 1
and if the value is not zero it can be set to the
value of the 5th argument instead of defaulting
to the field's value.

max(nyfiel d, 0)

Page 255 of 397

Solr Reference Guide

Jan 10, 2012

ms

Returns milliseconds of difference
between its arguments. Dates are
relative to the Unix or POSIX time
epoch, midnight, January 1, 1970
UTC.

Arguments may be numerically
indexed date fields such as
TrieDate (the default in 1.4), or
date math based on a constant
date or NOW.

ns()

Equivalent to ms(NOW , number of milliseconds
since the epoch.

ns(a)

Returns the number of milliseconds since the
epoch that the argument represents. Examples:
s (NOW DAY)

nms(2000- 01- 01T0O0: 00: 002)

nms(mydat ef i el d)

ns(a, b)

Returns the number of milliseconds that b occurs
before a (that is, a - b). Note that this offers
higher precision than sub(a, b) because the
arguments are not converted to floating point
numbers before subtraction. Examples:

s (NOW nydat ef i el d)

ms(mydat ef i el d, 2000- 01- 01T00: 00: 00Z)
ns(dat ef i el d1, datefi el d2)

Page 256 of 397

Solr Reference Guide Jan 10, 2012

ord Returns the ordinal of the indexed ord(nyl ndexedFi el d)
field value within the indexed list _val _:"ord(nyl ndexedFi el d)"
of terms for that field in Lucene Example: If there were only three values
index order (lexicographically ("apple","banana","pear") for a particular field,
ordered by unicode value), starting then:
at 1. In other words, for a given ord("appl e")=1ord("banana") =2ord(" pear") =3

field, all values are ordered
lexicographically; this function
then returns the offset of a
particular value in that ordering.
The field must have a maximum of
one value per document (not
multi-valued). 0 is returned for
documents without a value in the
field.

% ord() depends on the
position in an index and
can thus change when
other documents are
inserted or deleted.

See also r or d below.

pow Raises the specified base to the pow(X, y) pow(X, | og(y)) pow(x, 0.5) is the same
specified power. pow X, y) raises X as sqrt
to the power of y.

product Returns the product of multiple product (Xx,y,...) product(x, 2)
values or functions, which are product (X, Y)
specified in a comma-separated
list.

Page 257 of 397

Solr Reference Guide

Jan 10, 2012

query

recip

rord

Returns the score for the given
subquery, or the default value for
documents not matching the
query.

Any type of subquery is supported
through either parameter
dereferencing $ot her par amor
direct specification of the query
string in the Local Parameters
through the v key.

Performs a reciprocal function with
reci p(nyfield, ma,b)
implementing a/(m*x+b). m,a,b
are constants, and x is any
arbitrarily complex function.

When a and b are equal, and
x>=0, this function has a
maximum value of 1 that drops as
X increases. Increasing the value
of a and b together results in a
movement of the entire function to
a flatter part of the curve. These
properties can make this an ideal
function for boosting more recent
documents when x is
rord(datefield).

Returns the reverse ordering of
that returned by ord.

query(subquery, default)

g=pr oduct (popul arity, query({!di smax
v="solr rocks'}) returns the product of the
popularity and the score of the DisMax query.
g=pr oduct (popul arity,

query($q9q)) &qq={! di snax} sol r rocks is
equivalent to the previous query, using
parameter dereferencing.

g=pr oduct (popul arity,

guery($qq, 0. 1)) &q={! di smax}sol r rocks
specifies a default score of 0.1 for documents
that don't match the DisMax query.

reci p(nyfield, ma,b)
recip(rord(creationbDate), 1, 1000, 1000)

rord(nmyDat eFi el d)

val _:"rord(nyDat eFi el d)"

Example: r or d(nyDat eFi el d) is a metric for how
old a document is. The youngest document will
return 1. The oldest document will return the
total number of documents.

Page 258 of 397

Solr Reference Guide

Jan 10, 2012

scale

sqedist

sqrt

Scales values of the function x
such that they fall between the
specified m nTar get and

scal e(x, mi nTar get, maxTar get)
scal e(x, 1, 2) scales the values of x such that all
values will be between 1 and 2 inclusive.

nmaxTar get inclusive.

The current implementation
traverses all of the function values
to obtain the min and max, so it
can pick the correct scale.

The current implementation cannot
distinguish when documents have
been deleted or documents that
have no value. It uses 0.0 values
for these cases. This means that if
values are normally all greater
than 0.0, one can still end up with
0.0 as the min value to map from.
In these cases, an appropriate
map() function could be used as a
workaround to change 0.0 to a
value in the real range, as shown
here:

scale(map(x,0,0,5),1,2)

The Square Euclidean distance
calculates the 2-norm (Euclidean
distance) but does not take the
square root, thus saving a fairly
expensive operation. It is often the
case that applications that care
about Euclidean distance do not
need the actual distance, but
instead can use the square of the
distance. There must be an even
number of ValueSource instances
passed in and the method
assumes that the first half
represent the first vector and the
second half represent the second
vector.

sqedist(x_td, y td, 0, 0)

Returns the square root of the
specified value or function.

sqrt(x)sqrt(100)sqgrt(sum x, 100))

Page 259 of 397

Solr Reference Guide

Jan 10, 2012

strdist

sub

sum

Calculate the distance between strdist("SOLR',id, edit)

two strings. Uses the Lucene spell
checker StringDi st ance interface
and supports all of the
implementations available in that
package, plus allows applications
to plug in their own via Solr's
resource loading capabilities.
strdist takes (stringl, string2,
distance measure). Possible values
for distance measure are:

jw: Jaro-Winkler
edit: Levenstein or Edit distance

ngram: The NGramDistance, if
specified, can optionally pass in
the ngram size too. Default is 2.

FQN: Fully Qualified class Name
for an implementation of the
StringDistance interface. Must
have a no-arg constructor.

Returns x-y from sub(x,y). sub(nyfield, nyfiel d2)
sub(100, sgrt(nmyfield))

Returns the sum of multiple values sunm(x,y,...) sunm(x, 1)
or functions, which are specified in sun{(x, y)

a comma-separated list. sun(sqrt(x),log(y),z,0.5)

Page 260 of 397

Solr Reference Guide Jan 10, 2012

top Causes the function query
argument to derive its values from
the top-level IndexReader
containing all parts of an index.
For example, the ordinal of a value
in a single segment will be
different from the ordinal of that
same value in the complete index.
The ord() and rord() functions
implicitly use t op(), and hence
ord(foo0) is equivalent to
top(ord(foo)).

Using FunctionQuery

There are two principal ways of including function queries in a Solr query:
® Introduce a function query with the val keyword. For example:
_val _:mynunericfield _val _:"recip(rord(nyfield),1,2,3)"

® Use a parameter that has an explicit type of FunctionQuery, such as the DisMax query
parser's bf (boost function) parameter. Note that the bf parameter actually takes a list of
function queries separated by white space and each with an optional boost. Make sure you
eliminate any internal white space in single function queries when using bf . For example:

g=di smax&bf ="ord(popul arity)”~0.5 reci p(rord(price), 1, 1000, 1000)"0. 3"

Functions must be expressed as function calls (for example, sun(a, b) instead of simply a+b).

Example of Function Queries Using the top Function

To give you a better understanding of how function queries can be used in Solr, suppose an index
stores the dimensions in meters x,y,z of some hypothetical boxes with arbitrary names stored in
field boxname. Suppose we want to search for box matching name findbox but ranked according to
volumes of boxes. The query parameters would be:

g=boxnane: fi ndbox_val _: " product (product (x,Yy), z)

® This query will rank the results based on volumes. In order to get the computed volume, you
will need to add the parameter:

& | =*, score

Page 261 of 397

Solr Reference Guide Jan 10, 2012

where score will contain the resultant volume.

® Suppose that you also have a field storing the weight of the box as 'weight'. To sort by the
density of the box and return the value of the density in score, you would submit the
following query:

™~

http://1ocal host: 8983/ sol r/ sel ect/ ?q=boxnane: fi ndbox_val _di v(wei ght, product (product (x,y),
X y z weight score

Sort By Function

You can sort your query results by the output of a function. For example, to sort results by
distance, you could enter:

http://1ocal host: 8983/ sol r/sel ect ?2q=*: *&sort=di st(2, pointl, point2) desc

Sort By Function also supports pseudo-fields: fields can be generated dynamically and return
results as though it was normal field in the index. For example, &f | =i d, sun(x, y), score would

return:

<str nane="id">f oo</str>
<fl oat nane="sum(x,y)">40</fl oat >
<fl oat name="score">0.343</fl oat >

Page 262 of 397

Solr Reference Guide Jan 10, 2012

Highlighting
Solr provides a collection of highlighting utilities which can be called by various Request Handlers

to include "highlighted" matches in field values. These highlighting utilities may be used with either
the DisMax, Extended DisMax, or standard query parser.

~ Only text that has been both indexed and stored may be highlighted.

Some parameters may be overridden on a per-field basis with the following syntax:
f.<fi el dNanme>. <ori gi nal Par anm>=<val ue>. For example: f. contents. hl . sni ppet s=2

The table below describes Solr's parameters for highlighting.

Parameter Description

hl When set to "true", enables highlighted snippets to be generated in
the query response. If set to "false" or to a blank or missing value,
disables highlighting.

The default value is blank, which disables highlighting.

hl.fl Specifies a list of fields to highlight. Accepts a comma- or
space-delimited list of fields for which Solr should generate
highlighted snippets. If left blank, highlights the defaultSearchField
(or the field specified the df parameter if used) for the
StandardRequestHandler. For the DisMaxRequestHandler, the gf
fields are used as defaults.

A '"*' can be used to match field globs, such as 'text_*' or even '*' to
highlight on all fields where highlighting is possible. When using '*',
consider adding hl . requi r eFi el dMat ch=t r ue.

The default value is blank.

hl.snippets Specifies maximum number of highlighted snippets to generate per
field. Note: it is possible for any number of snippets from zero to
this value to be generated. This parameter accepts per-field
overrides.

The default value is "1".

Page 263 of 397

Solr Reference Guide

Jan 10, 2012

hl.fragsize

hl.mergeContinuous

hl.requireFieldMatch

hl.maxAnalyzedChars

hl.alternateField

hl.maxAlternateFieldLength

hl.formatter

Specifies the size, in characters, of fragments to consider for
highlighting. "0" indicates that the whole field value should be used
(no fragmenting). This parameter accepts per-field overrides.

The default value is "100".

Instructs Solr to collapse contiguous fragments into a single
fragment. "true" indicates contiguous fragments will be collapsed
into single fragment. This parameter accepts per-field overrides.

The default value is "false", which is also the backward-compatible
setting.

If set to true, highlights terms only if they appear in the specified
field. Normally, terms are highlighted in all requested fields
regardless of which field matched the query.

The default value is "false".

Specifies the number of characters into a document that Solr should
look for suitable snippets.

The default value is "51200".

Specifies a field to be used as a backup default summary if Solr
cannot generate a snippet (because no terms match). This
parameter accepts per-field overrides.

By default, Solr does not select a field for a backup summary.

Specifies the maximum number of characters of the field to return.
Any value less than or equal to 0 means the field's length is
unlimited.

The default value is unlimited.

Requires the use of the hl . al t er nat eFi el d parameter.

Selects a formatter for the highlighted output. Currently the only
legal value is "simple", which surrounds a highlighted term with a
customizable pre- and post-text snippet. This parameter accepts
per-field overrides.

The default value is "simple".

Page 264 of 397

Solr Reference Guide

Jan 10, 2012

hl.simple.pre hl.simple.post

hl.fragmenter

hl.useFastVectorHighlighter

hl.phraseLimit

hl.boundaryScanner

hl.usePhraseHighlighter

hl.highlightMultiTerm

Specifies the text that should appear before and after a highlighted
term when using the simple formatter. This parameter accepts
per-field overrides.

The default values are "" and "".

Specifies a text snippet generator for highlighted text. The standard
fragmenter is gap (which is so called because it creates fixed-sized
fragments with gaps for multi-valued fields). Another option is
regex, which tries to create fragments that resemble a specified
regular expression.

The hl.fragmenter parameter accepts per-field overrides.

The default value is gap.

The FastVectorHighlighter is a TermVector-based highlighter that
offers higher performance than the standard highlighter in many
cases. To use the FastVectorHighlighter, set this parameter to true.
You must also turn on t er nVect or s, t er nPosi ti ons, and
ternOF f sets. Lastly, you should use a boundary scanner to prevent
the FastVectorHighlighter from truncating your terms. In most
cases, using the br eakl t er at or boundary scanner will give you
excellent results. See the following topic for more details about
boundary scanners.

To improve the performance of the FastVectorHighlighter, you can
set a limit on the number (int) of phrases to be analyzed for
highlighting. The default value for this parameter is

i nt eger. MAX_ VALUE.

Specifies one of two boundary scanners to use with the
FastVectorHighlighter: si npl e or br eakl t er at or . See the following
topic for more information about the boundary scanners.

If set to "true," instructs Solr to use the Lucene SpanScorer class to
highlight phrase terms only when they appear within the query
phrase in the document. The default is "true."

If set to "true," instructs Solr to highlight phrase terms that appear
in multi-term queries. The default is "true."

Page 265 of 397

Solr Reference Guide Jan 10, 2012

hl.regex.slop Specifies the factor by which the r egex fragmenter can stray from
the ideal fragment size (given by hl . fragsi ze) to accommodate a
regular expression. For instance, a slop of 0.2 with fragsi ze of 100
should yield fragments between 80 and 120 characters in length. It
is usually good to provide a slightly smaller f r agsi ze when using
the r egex fragmenter.

The default value is 0.6.

hl.regex.pattern Specifies the regular expression for fragmenting. This could be used
to extract sentences.

hl.regex.maxAnalyzedChars Instructs Solr to analyze only this many characters from a field
when using the r egex fragmenter (after which, the fragmenter
produces fixed-sized fragments). Applying a complicated r egex to a
huge field is computationally expensive.

The default value is "10000".

hl.q Specifies an overriding query term for highlighting. If hl . q is
specified, the highlighter will use that term rather than the main
query term.

Using Boundary Scanners with the Fast Vector Highlighter

The Fast Vector Highlighter will occasionally truncate highlighted words. To prevent this, implement
a boundary scanner in sol rconfi g. xnm , then use the hl . boundar yScanner parameter to specify
the boundary scanner for highlighting.

Solr supports two boundary scanners: breaklterator and si npl e.

The breaklIterator Boundary Scanner

The breakl t er at or boundary scanner offers excellent performance right out of the box by taking
locale and boundary type into account. In most cases you will want to use the breakl t er at or
boundary scanner. To implement the br eakl t er at or boundary scanner, add this code to the

hi ghl i ghti ng section of your sol rconfi g. xn file, adjusting the type, language, and country
values as appropriate to your application:

Page 266 of 397

Solr Reference Guide

Jan 10, 2012

<boundar yScanner nane="breaklterator"
cl ass="sol r. hi ghl i ght. Breakl t er at or Boundar yScanner " >
<l st name="defaul ts">
<str name="hl.bs. type" >WORD</ str >
<str name="hl.bs. | anguage" >en</str>
<str name="hl.bs. country">US</str>
</lst>
</ boundar yScanner >

Possible values for the hl . bs. t ype parameter are WORD, LINE, SENTENCE, and CHARACTER.

The simple Boundary Scanner

The si nmpl e boundary scanner scans term boundaries for a specified maximum character value and
for common delimiters such as punctuation marks. The si npl e boundary scanner may be useful for
some custom To implement the si npl e boundary scanner, add this code to the hi ghl i ghti ng
section of your sol rconfi g. xml file, adjusting the values as appropriate to your application:

<boundar yScanner nane="si npl e" class="sol r. hi ghlight. Si npl eBoundaryScanner"
defaul t="true">
<l st name="defaul ts">
<str name="hl.bs. maxScan">10</str>
<str name="hl.bs.chars">., ! ?2\t\n</str>
</lst>
</ boundar yScanner >

Page 267 of 397

Solr Reference Guide Jan 10, 2012

MorelLikeThis

The Mor eLi keThi s component enables users to query for results similar to the specified terms.

Mor eLi keThi s constructs a Lucene query based on terms in a document. For best results, use
stored term vectors in the schema. xnl for fields specified for similarity. For example:

<field name="cat" ... ternVectors="true" />

If term vectors are not stored, Mor eLi keThi s will generate terms from stored fields.

Common Parameters for MorelikeThis

The table below summarizes the Mor elLi keThi s parameters supported by Lucene/Solr.

Parameter Description

mlt.fl

mlt.mintf

mlt.mindf

mlt.minwl
mlt.maxwl

mit.maxqt

mit.maxntp

mlt.boost

mlt.qf

Specifies the fields to use for similarity. If possible, these should have a stored
TermVector.

Specifies the Minimum Term Frequency—the frequency below which terms will be
ignored in the source doc.

Specifies the Minimum Document Frequency—the frequency at which words will be
ignored which do not occur in at least this many docs.

Sets the minimum word length below which words will be ignored.
Sets the maximum word length above which words will be ignored.

Sets the maximum number of query terms that will be included in any generated
query.

Sets the maximum number of tokens to parse in each example document field that
is not stored with TermVector support.

[true/false] set if the query will be boosted by the interesting term relevance.

Query fields and their boosts using the same format as that used by the
DisMaxRequestHandler. These fields must also be specified in mit.fl.

Parameters for the StandardRequestHandler

This method returns similar documents for each document in the response set.

Page 268 of 397

Solr Reference Guide

Jan 10, 2012

Parameter Description

mit If set to true, activates the MorelLi keThi s component and enables Solr to return
Mor eLi keThi s results.

mlt.count Specifies the number of similar documents to be returned for each result. The
default value is 5.

Parameters for the MorelLikeThis Request Handler

The table below summarizes parameters accessible through the Mor eLi keThi sHandl er . It supports
faceting, paging, and filtering using common query parameters.

Parameter

mlt.match.include

mlt.match.offset

mit.interestingTerms

Description

Specifies whether or not the response should include the matched
document. If set to false, the response will look like a nhormal select
response.

Specifies an offset into the main query search results to locate the
document on which the Mor eLi keThi s query should operate. By default,
the query operates on the first result for the q parameter.

Controls how the Mr eLi keThi s component presents the "interesting"
terms (the top TF/IDF terms) for the query. Supports three settings. The
setting list lists the terms. The setting none lists no terms. The setting
details lists the terms along with the boost value used for each term.
Unless nl t . boost =t r ue, all terms will have boost =1. 0.

Page 269 of 397

Solr Reference Guide Jan 10, 2012

Faceting

As described in Overview of Searching in Solr, faceting is the arrangement of search results into
categories based on indexed terms. Searchers are presented with the indexed terms, along with
numerical counts of how many matching documents were found were each term. Faceting makes it
easy for users to explore search results, narrowing in on exactly the results they are looking for.

Topics covered on this page:

General Parameters

Field-Value Faceting Parameters
Range Faceting

Date Faceting Parameters
LocalParams for Faceting

General Parameters

The table below summarizes the general parameters for controlling faceting.

Parameter Description
facet If set to true, enables faceting.

facet.query Specifies a Lucene query to generate a facet count.

These parameters are described in the sections below.

The facet Parameter

If set to "true," this parameter enables facet counts in the query response. If set to "false" to a
blank or missing value, this parameter disables faceting. None of the other parameters listed below
will have any effect unless this parameter is set to "true." The default value is blank.

The facet.query Parameter

This parameter allows you to specify an arbitrary query in the Lucene default syntax to generate a
facet count. By default, Solr's faceting feature automatically determines the unique terms for a
field and returns a count for each of those terms. Using f acet. query, you can override this default
behavior and select exactly which terms or expressions you would like to see counted. In a typical
implementation of faceting, you will specify a number of f acet. query parameters. This parameter
can be particularly useful for numeric-range-based facets or prefix-based facets.

Page 270 of 397

Solr Reference Guide Jan 10, 2012

You can set the f acet . query parameter multiple times to indicate that multiple queries should be
used as separate facet constraints.

To use facet queries in a syntax other than the default syntax, prefix the facet query with the name
of the query notation. For example, to use the hypothetical nmyf unc query parser, you could set the
facet. query parameter like so:

facet. query={! nyfunc} name~fred

Field-Value Faceting Parameters

Several parameters can be used to trigger faceting based on the indexed terms in a field.

When using this parameter, it is important to remember that "term" is a very specific concept in
Lucene: it relates to the literal field/value pairs that are indexed after any analysis occurs. For text
fields that include stemming, lowercasing, or word splitting, the resulting terms may not be what
you expect. If you want Solr to perform both analysis (for searching) and faceting on the full literal
strings, use the copyFi el d directive in the schema. xnl file to create two versions of the field: one
Text and one String. Make sure both are i ndexed="true". (For more information about the

copyFi el d directive, see Documents, Fields, and Schema Design.)

The table below summarizes Solr's field value faceting parameters.

Parameter Description

facet.field Identifies a field to be treated as a facet.

facet.prefix Limits the terms used for faceting to those that begin with the specified
prefix.

facet.sort Controls how faceted results are sorted.

facet.limit Controls how many constraints should be returned for each facet.

facet.offset Specifies an offset into the facet results at which to begin displaying
facets.

facet.mincount Specifies the minimum counts required for a facet field to be included

in the response.

facet.missing Controls whether Solr should compute a count of all matching results
which have no value for the field, in addition to the Term-based
constraints of a facet field.

facet.method Selects the algorithm or method Solr should use when faceting a field.

Page 271 of 397

Solr Reference Guide Jan 10, 2012

facet.enum.cache.minDF Specifies the minimum document frequency (the number of documents
matching a term) for which the fi | t er Cache should be used when
determining the constraint count for that term.

These parameters are described in the sections below.

The facet.field Parameter

The facet. fi el d parameter identifies a field that should be treated as a facet. It iterates over
each Term in the field and generate a facet count using that Term as the constraint. This
parameter can be specified multiple times in a query to select multiple facet fields.

If you do not set this parameter to at least one field in the schema, none of the other
parameters described in this section will have any effect.

The facet.prefix Parameter

The f acet . prefi x parameter limits the terms on which to facet to those starting with the given
string prefix. This does not limit the query in any way, only the facets that would be returned in
response to the query.

This parameter can be specified on a per-field basis with the syntax of
f.<fiel dnanme>. facet. prefi x.

The facet.sort Parameter

This parameter determines the ordering of the facet field constraints.

The true/false values for this parameter were deprecated in Solr 1.4.

facet.sort Results

Setting
count Sort the constraints by count (highest count first).
index Return the constraints sorted in their index order (lexicographic by indexed term).

For terms in the ASCII range, this will be alphabetically sorted.

The default is count iffacet.limt is greater than 0, otherwise, the default is i ndex.

This parameter can be specified on a per-field basis with the syntax of f. <fi el dnane>. f acet. sort

Page 272 of 397

Solr Reference Guide Jan 10, 2012

The facet.limit Parameter

This parameter specifies the maximum number of constraint counts (essentially, the number of
facets for a field that are returned) that should be returned for the facet fields. A negative value
means that Solr will return unlimited number of constraint counts.

The default value is 100.

This parameter can be specified on a per-field basis to apply a distinct limit to each field with the
syntax of f. <fi el dnane>.facet.limt.

The facet.offset Parameter

The f acet. of f set parameter indicates an offset into the list of constraints to allow paging.
The default value is 0.

This parameter can be specified on a per-field basis with the syntax of
f.<fiel dnanme>. facet. of f set.

The facet.mincount Parameter

The facet . mi ncount parameter specifies the minimum counts required for a facet field to be
included in the response. If a field's counts are below the minimum, the field's facet is not
returned.

The default value is 0.

This parameter can be specified on a per-field basis with the syntax of
f.<fiel dnane>. facet. m ncount.

The facet.missing Parameter

If set to true, this parameter indicates that, in addition to the Term-based constraints of a facet
field, a count of all results that match the query but which have no facet value for the field should
be computed and returned in the response.

The default value is false.

This parameter can be specified on a per-field basis with the syntax of
f.<fiel dnane>. facet. m ssi ng.

The facet.method Parameter

The facet.method parameter selects the type of algorithm or method Solr should use when faceting
a field.

Page 273 of 397

Solr Reference Guide Jan 10, 2012

Setting Results

enum Enumerates all terms in a field, calculating the set intersection of documents that match
the term with documents that match the query. This method is recommended for
faceting multi-valued fields that have only a few distinct values. The average number of
values per document does not matter. For example, faceting on a field with U.S. States
such as Al abama, Al aska, ... Woni ng would lead to fifty cached filters which would
be used over and over again. The fi | t er Cache should be large enough to hold all the
cached filters.

fc Calculates facet counts by iterating over documents that match the query and summing
the terms that appear in each document. This is currently implemented using an
Unl nver t edFi el d cache if the field either is multi-valued or is tokenized (according to
Fi el dType. i sTokened()). Each document is looked up in the cache to see what
terms/values it contains, and a tally is incremented for each value. This method is
excellent for situations where the number of indexed values for the field is high, but the
number of values per document is low. For multi-valued fields, a hybrid approach is
used that uses term filters from the fi | t er Cache for terms that match many
documents. The letters f ¢ stand for field cache.

The default value is f ¢ (except for fields using the Bool Fi el d field type) since it tends to use less
memory and is faster when a field has many unique terms in the index.

This parameter can be specified on a per-field basis with the syntax of
f.<fiel dnane>. f acet. net hod.

The facet.enum.cache.minDf Parameter

This parameter indicates the minimum document frequency (the number of documents matching a
term) for which the filterCache should be used when determining the constraint count for that
term. This is only used with the f acet . met hod=enummethod of faceting.

A value greater than zero decreases the filterCache's memory usage, but increases the time
required for the query to be processed. If you are faceting on a field with a very large number of
terms, and you wish to decrease memory usage, try setting this parameter to a value between 25
and 50, and run a few tests. Then, optimize the parameter setting as necessary.

The default value is 0, causing the filterCache to be used for all terms in the field.
This parameter can be specified on a per-field basis with the syntax of

f.<fieldnane>. facet. enum cache. m nDF.

Range Faceting

Page 274 of 397

Solr Reference Guide Jan 10, 2012

You can use Range Faceting on any date field or any numeric field that supports range queries.
This is particularly useful for stitching together a series of range queries (as facet by query) for
things like prices. As of Solr 3.1, Range Faceting is preferred over Date Faceting (described below).

Parameter Description

facet.range Specifies the field to facet by range.

facet.range.start Specifies the start of the facet range.

facet.range.end Specifies the end of the facet range.

facet.range.gap Specifies the span of the range as a value to be added to the lower bound.

facet.range.hardend A boolean parameter that specifies how Solr handles a range gap that
cannot be evenly divided between the range start and end values. If true,
the last range constraint will have the f acet. range. end value an upper
bound. If false, the last range will have the smallest possible upper bound
greater then f acet . range. end such that the range is the exact width of the
specified range gap. The default value for this parameter is false.

facet.range.include Specifies inclusion and exclusion preferences for the upper and lower
bounds of the range. See the f acet. range. i ncl ude topic for more detailed
information.

facet.range.other Specifies counts for Solr to compute in addition to the counts for each facet
range constraint.

The facet.range Parameter

The f acet . range parameter defines the field for which Solr should create range facets. For
example:

facet.range=priceé&f acet.range=age

The facet.range.start Parameter

The facet . range. start parameter specifies the lower bound of the ranges. You can specify this
parameter on a per field basis with the syntax of f. <fi el dnane>. f acet . range. start. For
example:

f.price.facet.range. start=0.0&f . age. facet.range. start=10

The facet.range.end Parameter

The facet.range.end specifies the upper bound of the ranges. You can specify this parameter on a
per field basis with the syntax of f. <fi el dnanme>. f acet . range. end. For example:

Page 275 of 397

Solr Reference Guide Jan 10, 2012

f.price.facet.range. end=1000. 0&f . age. f acet . range. start =99

The facet.range.gap Parameter

The span of each range expressed as a value to be added to the lower bound. For date fields, this
should be expressed using the Dat eMVat hPar ser syntax (such as facet. range. gap=%2B1DAY ...

" +1DAY'). You can specify this parameter on a per field basis with the syntax of

f.<fiel dname>. f acet.range. gap. For example:

f.price.facet.range. gap=100&f . age. f acet . range. gap=10

facet . dat e. gap=1, 2, 3, 10 creates 4+ buckets of size, 1, 2, 3 and then 0 or more buckets of 10
days each, depending on the start and end values.

The facet.range.hardend Parameter

The f acet . range. har dend parameter is a Boolean parameter that specifies how Solr should handle
cases where the f acet . range. gap does not divide evenly between f acet. range. start and

facet. range. end. If true, the last range constraint will have the f acet . r ange. end value as an
upper bound. If false, the last range will have the smallest possible upper bound greater then
facet. range. end such that the range is the exact width of the specified range gap. The default
value for this parameter is false. This parameter can be specified on a per field basis with the
syntax f. <fi el dname>. f acet . range. har dend.

The facet.range.include Parameter

By default, the ranges used to compute range faceting between f acet . range. start and
facet.range. end are inclusive of their lower bounds and exclusive of the upper bounds. The
"before" range defined with the f acet . range. ot her parameter is exclusive and the "after" range is
inclusive. This default, equivalent to "lower" below, will not result in double counting at the
boundaries. You can use the f acet. range. i ncl ude parameter to modify this behavior using the
following options:

Option Description
lower All gap-based ranges include their lower bound.

upper All gap-based ranges include their upper bound.

edge The first and last gap ranges include their edge bounds (lower for the first one, upper for
the last one) even if the corresponding upper/lower option is not specified.

outer The "before" and "after" ranges will be inclusive of their bounds, even if the first or last
ranges already include those boundaries.

all Includes all options: lower, upper, edge, outer.

Page 276 of 397

http://lucene.apache.org/solr/api/org/apache/solr/util/DateMathParser.html

Solr Reference Guide Jan 10, 2012

You can specify this parameter on a per field basis with the syntax of
f.<fieldnanme>. facet. range. i ncl ude, and you can specify it multiple times to indicate multiple
choices.

@ To ensure you avoid double-counting, do not choose both | ower and upper, do not choose
out er, and do not choose al | .

The facet.range.other Parameter

The f acet. range. ot her parameter specifies that in addition to the counts for each range
constraint between f acet.range. start and f acet. range. end, counts should also be computed
for these options:

Option Description

before All records with field values lower then lower bound of the first range.

after All records with field values greater then the upper bound of the last range.
between All records with field values between the start and end bounds of all ranges.
none Do not compute any counts.

all Compute counts for before, between, and after.

This parameter can be specified on a per field basis with the syntax of
f.<fiel dnane>. facet. range. ot her. In addition to the al | option, this parameter can be specified
multiple times to indicate multiple choices, but none will override all other options.

Date Faceting Parameters

As of Solr 3.1, date faceting has been deprecated in favor of Range Faceting, which provides more
flexibility with dates and numeric fields. Date Faceting can be used, but are not covered in this
guide. For more information on those parameters, which are equivalent to the parameters for
Range Faceting, see Date Faceting Parameters on the Solr Wiki.

LocalParams for Faceting

The LocalParams syntax provides a method of adding metadata to other parameter values, much
like XML attributes.

Tagging and Excluding Filters

Page 277 of 397

http://wiki.apache.org/solr/SimpleFacetParameters#Date_Faceting_Parameters

Solr Reference Guide Jan 10, 2012

You can tag specific filters and exclude those filters when faceting. This is useful when doing
multi-select faceting.

Consider the following example query with faceting:
g=mai nquer y&f g=st at us: publ i c&f g=doct ype: pdf & acet =on&f acet . fi el d=doct ype

Because everything is already constrained by the filter doct ype: pdf, the f acet. fi el d=doct ype
facet command is currently redundant and will return 0 counts for everything except doct ype: pdf .

To implement a multi-select facet for doctype, a GUI may want to still display the other doctype
values and their associated counts, as if the doct ype: pdf constraint had not yet been applied. For
example:

=== Docunent Type ===
[1 Word (42)
[x] PDF (96)
[1 Excel (11)
[1 HTM. (63)

To return counts for doctype values that are currently not selected, tag filters that directly
constrain doctype, and exclude those filters when faceting on doctype.

g=nmai nquer y&f g=st at us: publ i c& q={!t ag=dt } doct ype: pdf & acet =on&f acet . fi el d={! ex=dt } do

Filter exclusion is supported for all types of facets. Both the t ag and ex local parameters may
specify multiple values by separating them with commas.

Changing the Output Key
To change the output key for a faceting command, specify a new name with the key local
parameter. For example:

facet.fiel d={!ex=dt key=nyl abel }doctype

The parameter setting above causes the results to be returned under the key "mylabel" rather than
"doctype" in the response. This can be helpful when faceting on the same field multiple times with
different exclusions.

Page 278 of 397

Solr Reference Guide Jan 10, 2012

Result Grouping

Result Grouping groups documents with a common field value into groups and returns the top
documents for each group. For example, if you searched for "DVD" on an electronic retailer's
e-commerce site, you might be returned three categories such as "TV and Video," "Movies," and
"Computers," with three results per category. In this case, the query term "DVD" appeared in all
three categories, so Solr groups them together in order to increase relevancy for the user.

Result Grouping is not to be confused with Faceting. Though it is conceptually similar, faceting
returns all relevant results and allows the user to refine the results based on the facet category.
For example, if you searched for "shoes" on a footwear retailer's e-commerce site, you would be
returned all results for that query term, along with selectable facets such as "size," "color,"
"brand," and so on.

Request Parameters

Result Grouping takes the following request parameters. Any nhumber of these request parameters
can be included in a single request:

Parameter Type Description
group Boolean If true, query results will be grouped.
group.field string The name of the field by which to group results. The field

be single-valued, and either be indexed or a field type that
has a value source and works in a function query, such as
Ext er nal Fi | eFi el d. It must also be a string-based field,
such as StrFieldor TextField

group.query query Return a single group of documents that match the given
query.

rows integer The number of groups to return. The default value is 10.

start integer Specifies an initial offset for the list of groups.

group.limit integer Specifies the number of results to return for each group.

The default value is 1.

group.offset integer Specifies an initial offset for the document list of each
group.

Page 279 of 397

Solr Reference Guide

Jan 10, 2012

sort sortspec
group.sort sortspec
group.format grouped/simple
group.main Boolean
group.ngroups Boolean
group.truncate Boolean

group.cache.percent integer
between 0 and
100

Examples

Specifies how Solr sorts the groups relative to each other.
For example, sort=popul arity desc will cause the
groups to be sorted according to the highest popularity
document in each group. The default value is score desc.

Specifies how Solr sorts documents within a single group.
The default value is score desc.

If this parameter is set to si npl e, the grouped documents
are presented in a single flat list, and the start and r ows
parameters affect the numbers of documents instead of
groups.

If true, the result of the first field grouping command is
used as the main result list in the response, using
group. f or mat =si npl e.

If true, Solr includes the number of groups that have
matched the query in the results. The default value is
false.

If true, facet counts are based on the most relevant
document of each group matching the query. The default
value is false.

Setting this parameter to a number greater than 0 enables
caching for result grouping. Result Grouping executes two
searches; this option caches the second search. The
default value is 0. Testing has shown that group caching
only improves search time with Boolean, wildcard, and
fuzzy queries. For simple queries like term or "match all"
qgueries, group caching degrades performance.

All of the following examples work with the data provided in the Solr Example directory.

Grouping Results by Field

In this example, we will group results based on the manu_exact field, which specifies the
manufacturer of the items in the sample dataset.

http://1 ocal host: 8983/ sol r/ sel ect ?wt =j son& ndent =t r ue&f | =i d, nane&qg=sol r +menor y&gr oup

Page 280 of 397

Solr Reference Guide Jan 10, 2012

"responseHeader": {

"status":0,

"QrTi me": 56,

"parans": {
"fl":"id, name",

"indent":"true",

"q":"solr menory",
"group.field":"manu_exact",
"group":"true",
"w":"json"}},

"grouped": {
"manu_exact": {
"mat ches": 6,
"groups":[{

"groupVal ue": " Apache Software Foundation",
"doclist":{"nunFound": 1, "start":0,"docs":[
{
"id":"SOLR1000",
"name":"Solr, the Enterprise Search Server"}]

I3

"groupVal ue":"Corsair Mcrosystens Inc.",
"doclist":{"nunFound":2,"start":0, "docs": [
{
"id":"VS1GB400C3",
"name": " CORSAI R Val ueSel ect 1GB 184-Pi n DDR SDRAM Unbuffered DDR 400 (PC
3200) System Menory - Retail"}]
h

"groupVal ue": " A- DATA Technol ogy Inc.",
"doclist":{"nunFound": 1, "start":0,"docs":[
{
"id":"VDBDBlAl6",
"name": " A- DATA V-Series 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC
3200) System Menory - OEM'}]

h
{
"groupVal ue": " Canon Inc.",
"doclist":{"nunmFound":1,"start":0, "docs": [
{
"id":"0579B002",
"nanme": " Canon Pl XMA MP500 All-In-One Photo Printer"}]
1
{

"groupVal ue": " ASUS Conputer Inc.",
"doclist":{"nunFound":1,"start":0, "docs": [

{

Page 281 of 397

Solr Reference Guide Jan 10, 2012

"id": " ENVBOOGTX/ 2DHTV/ 256M',
"name": " ASUS Extreme N7800GTX/ 2DHTV (256 MB)"}]

The response indicates that there are six total matches for our query. For each unique value of
group. field, Solr returns a docLi st with the top scoring document. The docLi st also includes
the total number of matches in that group as the nunfFound value. The groups are sorted by the
score of the top document within each group.

We can run the same query with the request parameter gr oup. mai n=t r ue. This will format the
results as a single flat document list. This flat format does not include as much information as the
normal result grouping query results, but it may be easier for existing Solr clients to parse.

http://1 ocal host: 8983/ sol r/ sel ect ?wt =j son& ndent =t r ue&f | =i d, nanme, manuf act ur er &g=sol r

Page 282 of 397

Solr Reference Guide Jan 10, 2012

"responseHeader": {
"status":0,
"QTime": 1,
"parans": {
"fl":"id, name, manuf acturer”,
"indent":"true",
"q":"solr menory",
"group.field":"manu_exact",
"group. main":"true",
"group":"true",
"wt":"json"}},
"grouped":{},
"response": {"nunfFound": 6,"start": 0, "docs": [
{
"id":"SOLR1000",
"name":"Solr, the Enterprise Search Server"},

"id":"VS1GB400C3",
"name": " CORSAI R Val ueSel ect 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC 3200)
System Menory - Retail "},
{
"id":"VDBDB1Al6",
"name": " A- DATA V-Series 1GB 184-Pin DDR SDRAM Unbuf fered DDR 400 (PC 3200)
System Menory - CEM'},
{
"id":"0579B002",
"name": " Canon Pl XMA MP500 All-In-One Photo Printer"},

"id": " ENVBOOGTX/ 2DHTV/ 256M',
"name": " ASUS Extreme N7800GTX/ 2DHTV (256 MB)"}]

Grouping by Query

In this example, we will use the gr oup. query parameter to find the top three results for "memory"
in two different price ranges: 0.00 to 99.99, and over 100.

http://1 ocal host: 8983/ sol r/ sel ect ?wt =j son& ndent =t r ue&f | =i d, nanme, manuf act ur er &g=sol r

Page 283 of 397

Solr Reference Guide Jan 10, 2012

"responseHeader": {

"status":0,

"Qrine": 42,

"parans": {
"fl":"name, price",
"indent":"true",
"q":"menmory",
"group.limt":"3",
"group.query":["price:[0 TO 99.99]",

"price:[100 TO *]"],

"group":"true",
"w":"json"}},

"grouped":{
"price:[0 TO 99.99]":{
"mat ches": 5,
"doclist":{"nunFound":1,"start":0, "docs": [
{

"name": " CORSAI R Val ueSel ect 1GB 184-Pi n DDR SDRAM Unbuffered DDR 400 (PC
3200) System Menmory - Retail",
"price":74.99}]

e
"price:[100 TO *]":{
"mat ches": 5,
"doclist":{"nunFound": 3,"start":0, "docs": [

{
"name"”:"CORSAIR XMS 2GB (2 x 1GB) 184-Pin DDR SDRAM Unbuffered DDR 400 (PC

3200) Dual Channel Kit System Menory - Retail",
"price":185. 0},

"nane": " Canon PI XMA MP500 Al |l -1n-One Photo Printer",
"price":179.99},

"name": " ASUS Extreme N7800GTX/ 2DHTV (256 MB)",
"price":479.95}]

In this case, Solr found five matches for "memory," but only returns four results grouped by price.
This is because one result for "memory" did not have a price assigned to it.

Distributed Result Grouping

Page 284 of 397

Solr Reference Guide Jan 10, 2012

Solr also supports result grouping on distributed indexes. If you are using result grouping on the
"/select" request handler, you must provide the shar ds parameter described here. If you are using
result grouping on a request handler other than "/select", you must also provide the shards. gt
parameter:

Parameter Description

shards Specifies the shards in your distributed indexing configuration. For more information
about distributed indexing, see Distributed Search with Index Sharding

shards.qt Specifies the request handler Solr uses for requests to shards. This parameter is not
required for the / sel ect request handler.

For example:
http://1 ocal host: 8983/ sol r/ sel ect ?wt =j son& ndent =t r ue&f | =i d, name, manuf act ur er &g=sol r

Page 285 of 397

Solr Reference Guide Jan 10, 2012

Spell Checking

The SpellCheck component is designed to provide inline query suggestions based on other, similar,
terms. The basis for these suggestions can be terms in a field in Solr, externally created text files,
or fields in other Lucene indexes.

Topics covered in this section:

® Configuring the SpellCheckComponent
® Spell Check Parameters
® Distributed SpellCheck

Configuring the SpellCheckComponent

Define Spell Check in solrconfig.xml

The first step is to specify the source of terms in sol rconfi g. xm . Below is a simple example of
how this would be done with the IndexBasedSpellChecker, which uses a field in Solr the basis of
the spell check index:

<sear chConponent name="spel | check" cl ass="sol r. Spel | CheckConponent ">
<l st name="spel | checker">
<str name="cl assnane">sol r. | ndexBasedSpel | Checker</str>
<str name="spel | checkl ndexDir">./spel | checker</str>
<str name="field">content</str>
<str name="buil dOnCommi t " >t rue</str>
</[lst>
</ sear chConponent >

The first element defines the searchComponent to use the sol r. Spel | CheckConponent . The
classname is the specific implementation of the SpellCheckComponent. There are 2 options:
I ndexBasedSpel | Checker, which uses a field as the basis of the spell check terms; or

Fi | eBasedSpel | Checker, which uses an external file as the basis of the terms. Defining the
classname is optional; if not defined, it will default to | ndexBasedSpel | Checker.

Page 286 of 397

Solr Reference Guide Jan 10, 2012

The spellcheckIndexDir defines the location of the directory that holds the spellcheck index, while
the field defines the source field (defined in schenma. xni) for spell check terms. When choosing a
field for the spellcheck index, it's best to avoid a heavily processed field to get more accurate
results. If the field has many word variations from processing synonyms and/or stemming, the
dictionary will be created with those variations in addition to more valid spelling data.

Finally, buildOnCommit defines whether to build the spell check index at every commit (that is,
every time new documents are added to the index). It is optional, and can be omitted if you would
rather set it to f al se.

If you are using the Fi | eBasedSpel | Checker, you would define the searchComponent as so:

<sear chConponent nane="spel | check" cl ass="sol r. Spel | CheckConponent ">
<l st name="spel | checker">
<str name="cl assnanme" >sol r. Fi | eBasedSpel | Checker</str>
<str name="nane">file</str>
<str nanme="sourcelLocation">spellings.txt</str>
<str name="char act er Encodi ng" >UTF- 8</ st r>
<str name="spel | checkl ndexDi r">./spel | checkerFil e</str>
</lst>
</ sear chConponent >

The differences here are the use of the sourcelLocation to define the location of the file of terms
and the use of characterEncoding to define the encoding of the terms file.

@ Inthe previous example, name is used to name this specific definition of the spellchecker.
Multiple defintions can co-exist in a single sol rconfi g. xm , and the name helps to
differentiate them when they are defined in the schema. xm . If only defining one
spellchecker, no name is required.

Add It to a Request Handler

Queries will be sent to a RequestHandler. If every request should generate a suggestion, then you
would add the following to the r equest Handl er that you are using:

<str name="spel | check">true</str>

Page 287 of 397

Solr Reference Guide

Jan 10, 2012

@ This section covers some of the basic implementation options for Spell Checking. For more
advanced options, including how to buildOnOptimize, modify how terms are sorted, or
customize how suggestions are made, see the page on the
SpellCheckComponent|http://wiki.apache.org/solr/SpellCheckComponent] on the Solr

Wiki.

Spell Check Parameters

The SpellCheck component accepts the parameters described in the table below.

Parameter

spellcheck

spellcheck.q or g
spellcheck.build

spellcheck.collate

spellcheck.maxCollations

spellcheck.maxCollationTries

spellcheck.maxCollationEvaluations

spellcheck.collateExtendedResult

spellcheck.count

spellcheck.dictionary

Description

Turns on or off SpellCheck suggestions for the request. If
true, then spelling suggestions will be generated.

Selects the query to be spellchecked.
Instructs Solr to build a dictionary for use in spellchecking.

Causes Solr to build a new query based on the best
suggestion for each term in the submitted query.

This parameter specifies the maximum number of collations
to return.

This parameter specifies the number of collation possibilities
for Solr to try before giving up.

This parameter specifies the maximum number of word
correction combinations to rank and evaluate prior to
deciding which collation candidates to test against the index.

Specifies the maximum number of spelling suggestions to be
returned.

Specifies the dictionary that should be used for
spellchecking.

Page 288 of 397

Solr Reference Guide Jan 10, 2012

spellcheck.extendedResults Causes Solr to return additional information about spellcheck
results, such as the frequency of each original term in the
index (origFreq) as well as the frequency of each suggestion
in the index (frequency).

Note that this result format differs from the non-extended
one as the returned suggestion for a word is actually an
array of lists, where each list holds the suggested term and
its frequency.

spellcheck.onlyMorePopular Limits spellcheck responses to queries that are more popular
than the original query.

spellcheck.reload Reloads the spellchecker.

spellcheck.accuracy Specifies an accuracy value to help decide whether a result
is worthwhile.

spellcheck.<DICT_NAME>.key Specifies a key/value pair for the implementation handling a
given dictionary.

The spellcheck Parameter

This parameter turns on SpellCheck suggestions for the request. If true, then spelling suggestions
will be generated.

The spellcheck.q or q Parameter

This parameter specifies the query to spellcheck. If spel | check. q is defined, then it is used;
otherwise the original input query is used. The spel | check. g parameter is intended to be the
original query, minus any extra markup like field names, boosts, and so on. If the q parameter is
specified, then the Spel | i ngQuer yConverter class is used to parse it into tokens; otherwise the
Wi t espaceTokeni zer is used. The choice of which one to use is up to the application. Essentially,
if you have a spelling "ready" version in your application, then it is probably better to use

spel | check. g. Otherwise, if you just want Solr to do the job, use the q parameter.

» The SpellingQueryConverter class does not deal properly with non-ASCII characters. In this
case, you have either to use spel | check. q, or implement your own QueryConverter.

The spellcheck.build Parameter

Page 289 of 397

Solr Reference Guide Jan 10, 2012

If set to true, this parameter creates the dictionary that the SolrSpellChecker will use for
spell-checking. In a typical search application, you will need to build the dictionary before using the
SolrSpellChecker. However, it's not always necessary to build a dictionary first. For example, you
can configure the spellchecker to use a dictionary that already exists.

The dictionary will take some time to build, so this parameter should not be sent with every
request.

The spellcheck.reload Parameter

If set to true, this parameter reloads the spellchecker. The results depend on the implementation
of Sol r Spel | Checker. rel oad() . In a typical implementation, reloading the spellchecker means
reloading the dictionary.

The spellcheck.count Parameter

This parameter specifies the maximum number of suggestions that the spellchecker should return
for a term. If this parameter isn't set, the value defaults to 1. If the parameter is set but not
assigned a number, the value defaults to 5. If the parameter is set to a positive integer, that
number becomes the maximum number of suggestions returned by the spellchecker.

The spellcheck.onlyMorePopular Parameter

If true, Solr will to return suggestions that result in more hits for the query than the existing
query. Note that this will return more popular suggestions even when the given query term is
present in the index and considered "correct".

The spellcheck.extendedResults Parameter

This parameter causes to Solr to include additional information about the suggestion, such as the
frequency in the index.

The spelicheck.collate Parameter

If true, this parameter directs Solr to take the best suggestion for each token (if one exists) and
construct a new query from the suggestions. For example, if the input query was "jawa class
lording" and the best suggestion for "jawa" was "java" and "lording" was "loading", then the
resulting collation would be "java class loading".

The spellcheck.collate parameter only returns collations that are guaranteed to result in hits if
re-queried, even when applying original f g parameters. This is especially helpful when there is
more than one correction per query.

. This only returns a query to be used. It does not actually run the suggested query.

Page 290 of 397

Solr Reference Guide Jan 10, 2012

The spellcheck.maxCollations Parameter

The maximum number of collations to return. The default is 1. This parameter is ignored if
spel | check. col | at e is false.

The spellcheck.maxCollationTries Parameter

This parameter specifies the number of collation possibilities for Solr to try before giving up. Lower
values ensure better performance. Higher values may be necessary to find a collation that can
return results. The default value is 0, which maintains backwards-compatible (Solr 1.4) behavior
(do not check collations). This parameter is ignored if spel | check. col | at e is false.

The spellcheck.maxCollationEvaluations Parameter

This parameter specifies the maximum number of word correction combinations to rank and
evaluate prior to deciding which collation candidates to test against the index. This is a
performance safety-net in case a user enters a query with many misspelled words. The default is
10,000 combinations, which should work well in most situations.

The spelicheck.collateExtendedResult Parameter

If true, this parameter returns an expanded response format detailing the collations Solr found.
The default value is false. Ignored if spel | check. col | at e is false. Following is an example of the
extended output for the misspelled query Titl e: (hopg AND faill):

<l st name="coll ation">
<str name="coll ationQuery">Title: (hope AND faith)</str>
<int name="hits">2</int>
<l st name="mi sspel | i ngsAndCor recti ons" >
<str name="hopq" >hope</str>
<str name="faill">faith</str>
</lst>
</lst>
<l st name="coll ation">
<str nanme="coll ati onQuery">Title:(chops AND all)</str>
<int name="hits">1</int>
<l st name="mi sspel | i ngsAndCorrecti ons" >
<str name="hopq" >chops</str>
<str name="faill">all</str>
</lst>
</lst>

The spellicheck.dictionary Parameter

Page 291 of 397

Solr Reference Guide Jan 10, 2012

This parameter causes Solr to use the dictionary named in the parameter's argument. The default
setting is "default". This parameter can be used to invoke a specific spellchecker on a per request
basis.

The spelicheck.accuracy Parameter

Specifies an accuracy value to be used by the spell checking implementation to decide whether a
result is worthwhile or not. The value is a float between 0 and 1. Defaults to Fl oat . M N_VALUE.

The spellcheck.<DICT_NAME>.key Parameter

Specifies a key/value pair for the implementation handling a given dictionary. This key/value pair is
passed through to the implementation in a Sol r Par ans cl ass. The value that is passed through is
just key=val ue (spel | check. <DI CT_NAME>. is stripped off).

For example, given a dictionary called f oo, spel | check. f oo. myKey=nyVal ue would result in
nyKey=nyVal ue being passed through to the implementation handling the dictionary f oo.

Example

This example shows the results of a simple query that defines a query using the spel | check. g
parameter. The query also includes a spel | check. bui | d=t rue parameter, which is needs to be
called only once in order to build the index. spel | check. bui | d should not be specified with for
each request.

http://1 ocal host: 8983/ sol r/ spel | CheckCompRH?g=*: *&spel | check. g=hel | %20ul t r ashar &spel

Results:

Page 292 of 397

Solr Reference Guide Jan 10, 2012

<l st name="spel | check" >
<l st name="suggesti ons">
<l st name="hell">
<i nt name="nunFound">1</i nt>
<int name="start O fset">0</int>
<int name="endO fset">4</int>
<arr name="suggestion">
<str>del | </str>
</arr>
</[lst>
<l st name="ul trashar">
<i nt name="nunFound">1</i nt>
<int name="start O fset">5</int>
<int name="endO fset">14</int>
<arr name="suggesti on">
<str>ul trasharp</str>
</arr>
</[lst>
</lst>
</lst>

Distributed SpellCheck

The Spel | CheckConmponent also supports spellchecking on distributed indexes. If you are using the
SpellCheckComponent on a request handler other than "/select", you must provide the following
two parameters:

Parameter Description

shards Specifies the shards in your distributed indexing configuration. For more information
about distributed indexing, see
https://dev.lcimg.com/wiki/display/solr/Distributed+Search+with+Index+Sharding

shards.qt Specifies the request handler Solr uses for requests to shards. This parameter is not
required for the / sel ect request handler.

For example:
http://sol r:8983/sol r/sel ect ?2q=*: *&spel | check=t rue&spel | check. bui | d=t rue&spel | check.

In case of a distributed request to the SpellCheckComponent, the shards are requested for at least
five suggestions even if the spel | check. count parameter value is less than five. Once the
suggestions are collected, they are ranked by the configured distance measure (Levenstein
Distance by default) and then by aggregate frequency.

Page 293 of 397

Solr Reference Guide Jan 10, 2012

Suggester

Solr includes an autosuggest component called Suggester, which is built on the SpellCheck search
component. The autocompletion suggestions that Suggester provides come from a dictionary that
is based on the main index or on a dictionary file that you provide. It is common to provide only
the top-N suggestions, either ranked alphabetically or according to their usefulness for an average
user (such as popularity or the number of returned results).

Configuring Suggester

Because it is based on the SpellCheck search component, configuring Suggester is very similar to
configuring spell checking. In sol rconfi g. xm , add something like the following:

Page 294 of 397

Solr Reference Guide Jan 10, 2012

<sear chConponent cl ass="sol r. Spel | CheckConponent" nane="suggest">

<I-- Alternatives to | ookupl npl

j aspel | - based]

<l--

</ sear chConponent >

<request Handl er cl ass="org. apache. sol r. handl er. conponent . Sear chHandl er"
name="/suggest " >

</ request Handl er >

<l st name="spel | checker">
<str name="nane">suggest</str>
<str name="cl assnanme" >or g. apache. sol r. spel | i ng. suggest . Suggester</str>
<str name="1 ookupl npl ">or g. apache. sol r. spel | i ng. suggest . tst. FSTLookup</str>

org. apache. sol r. spel I i ng. suggest . f st. FSTLookup [finite state autonaton]
org. apache. sol r. spel I i ng. suggest . j aspel | . Jaspel | Lookup [default,

org. apache. sol r. spel I i ng. suggest . t st. TSTLookup [ternary trees]

-->
<str name="field">nane</str> <!-- the indexed field to derive suggestions from
<fl oat nanme="t hreshol d">0. 005</f| oat >
<str name="buil dOnComi t">true</str>
<str name="sourcelLocation">anerican-english</str>

</lst>

<l st name="defaul ts">
<str name="spel | check">true</str>
<str name="spel | check. di cti onary" >suggest </str>
<str name="spel | check. onl yMor ePopul ar" >t rue</str>
<str name="spel | check. count">5</str>
<str name="spel | check. col | ate">true</str>

</lst>

<arr name="conponents">
<str>suggest</str>

</arr>

The look-up of matching suggestions in a dictionary is implemented by subclasses of the | ookup

class.

Solr includes three | ookup class implementations:

FSTLookup: automaton based representation; slower to build, but consumes far less memory
at runtime.

JaspellLookup: tree-based representation based on Jaspell.

TSTLookup: ternary tree based representation, capable of immediate data structure updates.

Page 295 of 397

Solr Reference Guide Jan 10, 2012

All three implementations will most likely run at similar speed when requests are made through
HTTP. Direct benchmarks of these classes indicate that FSTLookup provides better performance
compared to the other two methods, and at a much lower memory cost. We recommend using the
FSTLookup implementation unless you need more sophisticated matching, in which case you should
use the JaspellLookup implementation.

Suggester Parameters

Suggester Search Component Parameters

The Suggester search component takes the following configuration parameters:

Parameter Description

searchComponent Arbitrary name for the search component.

name

name A symbolic name for this spellchecker. You can refer to this name in the URL
parameters and in the SearchHandler configuration.

classname Suggester

lookupImpl Lookup implementation. Choose one of these three:

org. apache. sol r. suggest . f st. FSTLookup: automaton-based lookup. This
implementation provides the best performance and the lowest memory cost.
We recommend using this implementation unless you need more
sophisticated matching results, in which case you should use the Jaspell
implementation.

or g. apache. sol r. suggest . j aspel | . Jaspel | Lookup: a more complex lookup
based on a ternary trie from the JaSpell project. Use this implementation if
you need more sophisticated matching results.

org. apache. sol r. suggest . t st. TSTLookup: a simple compact ternary trie
based lookup.

Page 296 of 397

http://jaspell.sourceforge.net/

Solr Reference Guide Jan 10, 2012

buildOnCommit False by default. If true then the Lookup data structure will be rebuilt after
commit. If false, then the Lookup data will be built only when requested by
URL parameter spel | check. bui | d=tr ue.

Currently implemented Lookups keep their data in memory, so unlike
spellchecker data, this data is discarded on core reload and not
available until you invoke the build command, either explicitly or
implicitly during a commit.

sourcelLocation The path to the dictionary file. If this value is empty then the main index will
be used as a source of terms and weights.

field If sourceLocat i on is empty then terms from this field in the index will be
used when building the trie.

threshold A value between zero and one representing the minimum fraction of the total
documents where a term should appear in order to be added to the lookup
dictionary.

Dictionary files should be plain text files in UTF-8 encoding. Blank lines and lines that start with a
'#' are ignored. The remaining lines must consist of either a string without literal TAB (\u0007)
characters, or a string and a TAB separated floating-point weight. You can use both single terms
and phrases in a dictionary file.

This is a sanple dictionary file.

acquire
accidental Iy\t2.0
accommpdat e\t 3.0

If weight is missing it's assumed to be 1.0. Weights affect the sorting of matching suggestions
when spel | check. onl yMor ePopul ar =t r ue is selected: weights are treated as "popularity" score,
with higher weights preferred over suggestions with lower weights.

When you use the index as the dictionary, you may encounter many invalid or uncommon terms.
The t hr eshhol d parameter addresses this issue. By setting the t hr eshol d parameter to a value
just above zero, you can greatly reduce the number of unusable terms in your dictionary while
maintaining most of the common terms. The example above sets the t hr eshol d value to 0.5%.
The t hr eshol d parameter does not affect file-based dictionaries.

Suggester Request Handler Parameters

Page 297 of 397

Solr Reference Guide Jan 10, 2012

The Suggester request handler takes the following configuration parameters:

Parameter Description

spellcheck=true This parameter should always be true, because we always want to
run the Suggester for queries submitted to this handler.

spellcheck.dictionary The name of the dictionary component configured in the search
component.

spellcheck.onlyMorePopular If true, then suggestions will be sorted by weight ("popularity"). The
count parameter will effectively limit this to a top-N list of best
suggestions. If false, suggestions are sorted alphabetically.

spellcheck.count Specifies the number of suggestions for Solr to return.
spellcheck.collate If true, Solr provides a query collated with the first matching
suggestion.

Page 298 of 397

Solr Reference Guide Jan 10, 2012

Spatial Search

Solr supports location data for use in spatial or geospatial searches. Using spatial search, you can:

Represent spatial data in the index
Filter by location based on a bounding box or circle
Sort by distance

[}
[J
[J
® Score and boost by distance

There are three new function queries that support spatial search: di st, to determine the distance
between two points; hsi n, to calculate the distance between two points on a sphere; and sqedi st ,
to calculate the square Euclidean distance between two points. For more information about these
function queries, see Function Queries and http://wiki.apache.org/solr/FunctionQuery.

For more information on Solr spatial search, see http://wiki.apache.org/solr/SpatialSearch.

Spatial Search Features

Solr includes three useful tools for working with spatial queries: geofi |l t, a geospatial filter; bbox,
a geospatial bounding-box filter; and geodi st, a geospatial distance function.

Spatial Search Parameters

The following parameters are used for spatial search:

Parameter Description

d distance, in kilometers

pt a lat/lon coordinate point

sfield a spatial field, by default a | ocat i on (lat/lon) field type.
geofilt

The geofi | t filter allows you to retrieve results based on the distance from a given point. For
example, to find all results for a product search within five kilometers of the lat/lon point, you
couldenter... &= : & q={!geofilt sfield=store}&pt=45.15,-93. 85&d=5. This filter returns
all results within a circle of the given radius around the initial point:

Page 299 of 397

http://wiki.apache.org/solr/FunctionQuery#dist
http://wiki.apache.org/solr/FunctionQuery#hsin.2C_ghhsin_-_Haversine_Formula
https://wiki.apache.org/solr/FunctionQuery#sqedist_-_Squared_Euclidean_Distance
http://wiki.apache.org/solr/FunctionQuery
http://wiki.apache.org/solr/SpatialSearch

Solr Reference Guide Jan 10, 2012

bbox

bbox allows you to filter results based on a specified area around a given point. bbox takes the
same parameters as geofi | t, but rather than calculating all points in a circle within the given
radius from the initial point, it only calculates the lower left and upper right corners of a square
that would enclose a circle with the given radius. To return all results within five kilometers of a
give point, you could enter . .. &= : &f q={! bbox sfi el d=st or e} &pt =45. 15, - 93. 85&d=5. The
resulting bounding box would encompass all points within a five kilometer circle around the initial
point, but it would also include some extra points in the corners of the bounding box that fall
outside the five kilometer radius. Bounding box filters therefore can return results that fall outside
your desired parameters, but they are much less "expensive" to implement.

f

5 KM

")
N

% When a bounding box includes a pole, the | ocat i on field type produces a "bounding bowl!"
(a spherical cap) that includes all values that are north or south of the latitude of the
bounding box corner (the lower left and the upper right) that is closer to the equator. In
other words, Solr still calculates what the coordinates of the upper right corner and the
lower left corner of the box would be just as in all other filtering cases, but it then take the
corner that is closest to the equator (since it goes over the pole it may not be the lower
left, despite the name) and filters by latitude only. This returns more matches than a pure
bounding box match, but the query is both faster and easier to construct.

geodist

Page 300 of 397

Solr Reference Guide Jan 10, 2012

geodi st is a distance function that takes three optional parameters:
(sfield,latitude, | ongitude). You can use the geodi st function to sort results by distance or
score return results.

For example, to sort your results by ascending distance, you could enter ... &= : &f gq={!geofilt
}&sfi el d=st or e&pt =45. 15, - 93. 85&d=508&sor t =geodi st asc.

To return the distance as the document score, you could enter . . . &={! func?}
geodi st ¥289%R29&sf i el d=st or e&pt =45. 15, - 93. 85&sort =scor e+asc.

More Examples

Here are a few more useful examples of what you can do with spatial search in Solr.

Use as a Sub-Query to Expand Search Results

Here we will query for results in Jacksonville, Florida, or withing 50 kilometers of 45.15,-93.85
(near Buffalo, Minnesota):

...&q= : &fqg=(state:"FL" AND city:"Jacksonville") OR query :"{!geofilt}
"&sfi el d=st or e&pt =45. 15, - 93. 85&0=50&so0r t =geodi st () asc

Facet by Distance
To facet by distance, use the Frange query parser:

...&q= : &sfiel d=store&pt=45. 15, - 93. 85&f acet. query={!frange | =0 u=5}
geodi st () & acet . query={!frange | =5.001 u=3000}geodi st ()

Boost Nearest Results
Using the DisMax or Extended DisMax, you can combine spatial search with the boost function to
boost the nearest results:

...&q.alt=: & q={'geofilt}
&sfi el d=st or e&pt =45. 15, - 93. 85&d=50&bf =r eci p(geodi st (), 2, 200, 20) &sort =score desc

Page 301 of 397

Solr Reference Guide Jan 10, 2012

The Terms Component

The Terms Component provides access to the indexed terms in a field and the number of
documents that match each term. This can be useful for building an auto-suggest feature or any
other feature that operates at the term level instead of the search or document level. Retrieving
terms in index order is very fast since the implementation directly uses Lucene's TermEnum to
iterate over the term dictionary.

In a sense, this component provides fast field-faceting over the whole index, not restricted by the
base query or any filters. The document frequencies returned are the number of documents that
match the term, including any documents that have been marked for deletion but not yet removed
from the index.

To use the Terms Component, users can pass in a variety of options to control what terms are
returned. The supported parameters are available in the class:
http://lucene.apache.org/solr/api/org/apache/solr/common/params/TermsParams.html

These parameters are:

Parameter Description Syntax

terms If set to true, terms on the Terms terms={true|fal se}
Component. By default, the Terms
Component is turned off.

terms.fl Specifies the field from which to retrieve terns.fl=field
terms.
terms.lower Specifies the term at which to start. If not ternms. |l ower= term

specified, the empty string is used, causing
Solr to start at the beginning of the field.

terms.lower.incl If set to true, includes the lower-bound term terns. | ower.incl ={true|fal se
in the result set. By default, this parameter }
is set to true.

terms.mincount Specifies the minimum document frequency terns. m ncount = i nt eger
to return in order for a term to be included
in @ query response. Results are inclusive of
the mincount (that is, >= mincount). This
parameter is optional.

Page 302 of 397

http://lucene.apache.org/solr/api/org/apache/solr/common/params/TermsParams.html

Solr Reference Guide Jan 10, 2012

terms.maxcount Specifies the maximum document frequency terns. maxcount = i nt eger
a term must have in order to be included in
a query response. The default setting is -1,
which sets no upper bound. Results are
inclusive of the maxcount (that is, <=
maxcount). This parameter is optional.

terms.prefix Restricts matches to terms that begin with terms. prefix={string}
the specified string.

terms.limit Specifies the maximum number of termsto ternms.limit= integer
return. The default is 10. If the limit is set to
a number less than 0, then no maximum
limit is enforced.

terms.upper Specifies the term to stop at. Any application terms. upper= upper_term
using the Terms component must set either
terms.limt ortermns. upper.

terms.upper.incl If set to true, includes the upper bound term terns. upper.incl ={true|fal se
in the result set. The default is false.)3

terms.raw If set to true, returns the raw characters of terns.raw={true|fal se}
the indexed term, regardless of whether it is
human-readable. For instance, the indexed
form of numeric numbers is not
human-readable. The default is false.

The output is a list of the terms and their document frequency values.

Examples

The following examples use the sample Solr configuration located in the <Sol r >/ exanpl e directory.
The query below requests the first ten terms in the name field.
http://1ocal host:8983/sol r/ternms?terns. fl =nanme

Results:

Page 303 of 397

Solr Reference Guide

Jan 10, 2012

<?xm version="1.0" encodi ng="UTF- 8" ?>

<r esponse>

<l st name="responseHeader" >
<int name="status">0</int>
<int nanme="Qri ne">1</int>

</[lst>

<l st name="terns">

<l st name="name">
<int name="0">5</int>
<int name="1">15</int>
<int name="11">5</int>
<int name="120">5</int>
<int name="133">5</int>
<int name="184">15</int>
<int name="19">5</int>
<int name="1900">5</int >
<int name="2">15</int>
<int name="20">5</int>
</lst>

</lst>

</ response>

The query below requests the first ten terms in the name field, beginning with the first term that

begins with the letter a.
http://1ocal host:8983/sol r/terns?termns. fl =nanmeé&t er ns. | ower =a

Results:

Page 304 of 397

Solr Reference Guide

Jan 10, 2012

<
<
<
<
<
<
<
<
<
<

<i nt
<int
</[lst>
<l st name="terns">
<| st

nt
nt
nt
nt
nt
nt
nt
nt
nt
nt

<?xm version="1.0" encodi ng="UTF- 8" ?>
<response>
<l st name="responseHeader" >

nane="st at us" >0</i nt >
name="Qri nme" >2</i nt >

nanme="nane" >

name="
nane="
name="
name="
name="
nane="
name="
nanme="
name="
nane="

</|st>
</lst>
</ response>

a">8</int>

adat a">5</i nt >
al | ">5</int>

al I'i non">5</int>
anber">1</i nt >
appl ">5</int>
asus">5</int>
ata">5</int>
ati">5</int>
b">5</int >

Using the Terms Component for an Auto-Suggest Feature

If the Suggester doesn't suit your needs, you can use the Terms component in Solr to build a
similar feature for your own search application. Simply submit a query specifying whatever
characters the user has typed so far as a prefix. For example, if the user has typed "at", the search

engine's interface would submit the following query:

http://1 ocal host: 8983/ solr/terns?terns. fl =nanmeé&t er ms. prefi x=at

Result:

Page 305 of 397

Solr Reference Guide Jan 10, 2012

<?xm version="1.0" encodi ng="UTF- 8" ?>

<r esponse>

<l st name="responseHeader" >

<int name="status">0</int>

<int nanme="Qri me">120</int >

</[lst>

<l st name="terns">

<l st name="name">
<int name="ata">5</int> <int name="ati">5</int>
</lst>

</lst>

</ response>

You can use the parameter oni t Header =t r ue to omit the response header from the query
response, like so:

http://1ocal host: 8983/ solr/terns?terns. fl =nanme&t er ms. pr ef i x=at & ndent =t r ue&wm =j son&o

Result:
{
"terms": [
"name", [
"ata", 1,
"ati", 111}

Distributed Search Support

The TermsComponent also supports distributed indexes. For the / t er ns request handler, you must
provide the following two parameters:
Parameter Description

shards Specifies the shards in your distributed indexing configuration. For more information
about distributed indexing, see
https://dev.lcimg.com/wiki/display/solr/Distributed+Search+with+Index+Sharding

shards.qt Specifies the request handler Solr uses for requests to shards.

Page 306 of 397

Solr Reference Guide Jan 10, 2012

The Term Vector Component

The Term Vector Component (TVC) is a search component designed to return information about
documents. For each document, the TVC can return the term vector, the term frequency, inverse
document frequency, position, and offset information. The TVC is stored when setting the

t er mect or attribute on a field:

<field nanme="features"
type="text"
i ndexed="true"
stored="true"
mul ti Val ued="true"
ternvectors="true"
termPositions="true"
ternOf fsets="true"/>

As with most components, there are a number of options that are outlined in the samples below.
All examples are based on the Solr example.

Enabling the the TermVectorComponent

Changes for solrconfig.xml
To enable the Term VectorComponent, you need to configure a sear chConponent element in your
sol rconfi g. xnl file, like so:

<searchComponent name="tvComponent"
class="org.apache.solr.handler.component.TermVectorComponent"/>

A request handler configuration using this component could look like this:

<request Handl er name="tvrh" cl ass="org. apache. sol r. handl er. conponent . Sear chHandl er " >
<l st name="defaul ts">
<pool nanme="tv">true</bool >
</[lst>
<arr name="| ast - conponent s">
<str>t vConponent </ str>
<larr>
</ request Handl er >

Invoking the Term Vector Component

The example below shows an invocation of this component:

Page 307 of 397

Solr Reference Guide Jan 10, 2012

http://1 ocal host: 8983/ sol r/ sel ect/ ?2q=*%3A* & er si on=2. 2&st art =0& ows=10& ndent =on&qt =

In the example, the component is associated with a request handler named t vr h, but you can
associate it with any request handler. To turn on the component for a request, add the tv=true
parameter (or add it to your RequestHandler defaults configuration).

Example output: See http://wiki.apache.org/solr/TermVectorComponentExampleEnabled

Optional Parameters

The example below shows optional parameters for this component:

http://1 ocal host: 8983/ sol r/sel ect/ ?2q=*%3A* & er si on=2. 2&st art =0& ows=10& ndent =on&qt =

Boolean Description

Parameters

tv.all A shortcut that invokes all the parameters listed below.

tv.df Returns the Document Frequency (DF) of the term in the collection. This can be

computationally expensive.
tv.offsets Returns offset information for each term in the document.
tv.positions Returns position information.
tv.tf Returns document term frequency info per term in the document.

tv.tf_idf Calculates TF*IDF for each term. Requires the parameters tv.tf and tv. df to be
"true". This can be computationally expensive. (The results are not shown in
example output)

To learn more about TermVector component output, see the Wiki page:
http://wiki.apache.org/solr/TermVectorComponentExampleOptions

For schema requirements, see the Wiki page: http://wiki.apache.org/solr/FieldOptionsByUseCase

The Term Vector component also accepts these optional parameters:

Parameters Description

tv.doclds Returns term vectors for the specified list of Lucene document IDs (not the Solr
Unique Key).
tv.fl Returns term vectors for the specified list of fields. If not specified, the f|

parameter is used.

Page 308 of 397

http://wiki.apache.org/solr/TermVectorComponentExampleEnabled
http://wiki.apache.org/solr/TermVectorComponentExampleOptions
http://wiki.apache.org/solr/FieldOptionsByUseCase

Solr Reference Guide Jan 10, 2012

Solr] and the Term Vector Component

Neither the SolrQuery class nor the QueryResponse class offer specific method calls to set Term
Vector Component parameters or get the "termVectors" output. However, there is a patch for it:
SOLR-949.

Page 309 of 397

https://issues.apache.org/jira/browse/SOLR-949

Solr Reference Guide Jan 10, 2012

The Stats Component

The Stats component returns simple statistics for numeric, string, and date fields within the
document set.

Stats Component Parameters

The Stats Component accepts the following parameters:

Parameter Description
stats If true, then invokes the Stats component.

stats.field Specifies a field for which statistics should be generated. This parameter may be
invoked multiple times in a query in order to request statistics on multiple fields.
(See the example below.)

stats.facet Returns sub-results for values within the specified facet.

Statistics Returned

The table below describes the statistics returned by the Stats component.

Name Description

min The minimum value in the field.

max The maximum value in the field.

sum The sum of all values in the field.

count The number of non-null values in the field.
missing The number of null values in the field.

sumOfSquares Sum of all values squared (useful for st ddev).

mean The average (vl + v2 + vN)/N
stddev Standard deviation, measuring how widely spread the values in the data set are.
Example

The query below:

http://1 ocal host: 8983/ sol r/sel ect ?2q=*: *&stats=true&stats.field=priceé&stats.fiel d=pop

Page 310 of 397

Solr Reference Guide Jan 10, 2012

Would produce the following results:

<l st name="stats">
<l st nanme="stats_fields">
<l st name="price">
<doubl e name="m n">0. 0</ doubl e>
<doubl e nanme="nmax">2199. 0</ doubl e>
<doubl e name="sunt >5251. 2699999999995</ doubl e>
<l ong name="count " >15</1 ong>
<l ong nanme="m ssi ng">11</1 ong>
<doubl e name="suntX Squar es" >6038619. 160300001</ doubl e>
<doubl e nanme="nmean" >350. 08466666666664</ doubl e>
<doubl e name="st ddev">547. 737557906113</ doubl e>
</[lst>
<l st name="popul arity">
<doubl e nanme="m n">0. 0</ doubl e>
<doubl e name="nmax">10. 0</ doubl e>
<doubl e nanme="sun{ >90. 0</ doubl e>
<l ong nane="count">26</1 ong>
<l ong nane="ni ssi ng">0</1 ong>
<doubl e name="suntX Squar es" >628. 0</ doubl e>
<doubl e name="nean">3. 4615384615384617</ doubl e>
<doubl e nanme="stddev">3.5578731762756157</ doubl e>
</lst>
</lst>
</[lst>

Here are the same results with faceting requested for the field i nSt ock, using the parameter
&st at s. facet =i nSt ock.

Page 311 of 397

Solr Reference Guide Jan 10, 2012

<l st name="{*}stats{*}">
<l st name="{*}stats{*} _fields">
<l st name="price">
<doubl e name="m n">0. 0</ doubl e>
<doubl e name="nax">2199. 0</ doubl e>
<doubl e nanme="sunt >5251. 2699999999995</ doubl e>
<l ong name="count " >15</1 ong>
<l ong nanme="m ssi ng">11</1 ong>
<doubl e name="sunX Squar es" >6038619. 160300001</ doubl e>
<doubl e name="nean" >350. 08466666666664</ doubl e>
<doubl e name="st ddev" >547. 737557906113</ doubl e>
<l st name="facets">
<l st name="inSt ock" >
<l st name="fal se">
<doubl e name="m n">11. 5</ doubl e>
<doubl e name="nmax">649. 99</ doubl e>
<doubl e name="sunt >1161. 39</ doubl e>
<l ong nane="count">4</1|ong>
<l ong name="ni ssi ng">0</1 ong>
<doubl e name="suntX Squar es" >653369. 2551</ doubl e>
<doubl e name="nean">290. 3475</ doubl e>
<doubl e nanme="st ddev">324. 63444676281654</ doubl e>
</lst>
<l st name="true">
<doubl e nanme="m n">0. 0</ doubl e>
<doubl e name="nax">2199. 0</ doubl e>
<doubl e name="suni' >4089. 879999999999</ doubl e>
<l ong nanme="count">11</1 ong>
<l ong nanme="mi ssi ng">0</1 ong>
<doubl e name="suntX Squar es" >5385249. 905200001</ doubl e>
<doubl e name="nean">371. 8072727272727</ doubl e>
<doubl e name="st ddev">621. 6592938755265</ doubl e>
</lst>
</lst>
</lst>
</lst>
</lst>

The Stats Component and Faceting

The facet field can be selectively applied. That is if you want stats on field "A" and "B", you can
facet a on "X" and B on "Y" using the parameters:

&stats.field=A&f . A stats.facet=X&stats.fiel d=B&f.B.stats.facet=Y

Page 312 of 397

Solr Reference Guide Jan 10, 2012

. All facet results are returned, so be careful what fields you ask for.

Multi-valued fields and facets may be slow.

Multi-value fields rely on Unl nvert edFi el d. j ava for implementation. This is like a FieldCache, so
be aware of your memory footprint.

Page 313 of 397

Solr Reference Guide Jan 10, 2012

The Query Elevation Component

The Query Elevation Component enables you to configure the top results for a given query
regardless of the normal Lucene scoring. This is sometimes called "sponsored search," "editorial
boosting," or "best bets." This component matches the user query text to a configured map of top
results. Although this component will work with any QueryParser, it makes the most sense to use
with DisMax or eDisMax.

Configuring the Query Elevation Component

You can configure the Query Elevation Component in the sol rconfi g. xm file. The default
configuration looks like this:

<sear chConponent nane="el evator" cl ass="sol r. QueryEl evati onConponent" >
<l-- pick a fieldType to analyze queries -->
<str name="queryFi el dType">string</str>
<str name="config-file">el evate.xm </str>

</ sear chConponent >

<request Handl er name="/el evate" cl ass="sol r. SearchHandl er" startup="lazy">
<l st name="defaul ts">
<str nanme="echoParans">explicit</str>
</[lst>
<arr name="| ast - conponent s">
<str>el evator</str>
<larr>
</ request Handl er >

The Query Elevation Search Component takes the following arguments:

Argument Description

queryFieldType Specifes which fieldType should be used to analyze the incoming text. For
example, it may be appropriate to use a fieldType with a LowerCaseFilter.

config-file Path to the file that defines query elevation. This file must exist in

${instanceDir }/ conf/${config-file} or ${databDir }/ ${config-file}.

If the file exists in the /conf/ directory it will be loaded once at startup. If it
exists in the data directory, it will be reloaded for each IndexReader.

Page 314 of 397

https://wiki.apache.org/solr/QueryElevationComponent

Solr Reference Guide Jan 10, 2012

forceElevation By default, this component respects the requested sort parameter: if the

request asks to sort by date, it will order the results by date. If
f or ceEl evat i on=t r ue, results will first return the boosted docs, then order by

date.

elevate.xml
Elevated query results are configured in an external XML file specified in the config-file
argument. An el evat e. xnl file might look like this:

<el evat e>
<query text="AAA">
<doc id="A" />
<doc id="B" />
</ query>

<query text="ipod">
<doc id="A" />

<l-- you can optionally exclude docunents froma query result -->

<doc id="B" exclude="true" />
</ query>
</ el evat e>

In this example, the query "AAA" would first return documents A and B, then whatever normally
appears for the same query. For the query "ipod", it would first return A, and would make sure that

B is not in the result set.

The uni queKey field must currently be of type stri ng for the QueryElevationComponent to

operate properly.

Using the Query Elevation Component

The enableElevation Parameter
For debugging it may be useful to see results with and without the elevated docs. To hide results,

use enabl eEl evati on=f al se:

http://1 ocal host: 8983/ sol r/ el evat e?q=YYYY&ebugQuer y=t r ue&enabl eEl evati on=t r ue

http://1 ocal host: 8983/ sol r/ el evat e?q=YYYY&ebugQuer y=t r ue&enabl eEl evati on=f al se

Page 315 of 397

Solr Reference Guide Jan 10, 2012

The forceElevation Parameter

You can force elevation during runtime by adding f or ceEl evati on=t r ue to the query URL:

http://1 ocal host: 8983/ sol r/ el evat e?q=YYYY&JebugQuer y=t r ue&enabl eEl evati on=t rue&f orce

The exclusive Parameter

You can force Solr to return only the results specified in the elevation file by adding
excl usi ve=true to the URL:

http://1 ocal host: 8983/ sol r/ el evat e?q=YYYY&JebugQuer y=t r ue&excl usi ve=true

The fq Parameter

Query elevation respects the standard filter query (f q) parameter. That is, if the query contains the
f q parameter, all results will be within that filter even if el evat e. xnl adds other documents to the
result set.

Page 316 of 397

Solr Reference Guide Jan 10, 2012

Response Writers

A Response Writer generates the formatted response of a search. Solr supports a variety of
Response Writers to ensure that query responses can be parsed by the appropriate language or
application.

The wt parameter selects the Response Writer to be used. The table below lists the most common
settings for the wt parameter.

wt Parameter Setting Response Writer Selected

csv CSVResponseWriter

json JSONResponseWriter

php PHPResponseWriter

phps PHPSerializedResponseWriter
python PythonResponseWriter

ruby RubyResponseWriter

xml XMLResponseWriter

xslt XSLTResponseWriter

The Standard XML Response Writer

The XML Response Writer is the most general purpose and reusable Response Writer currently
included with Solr. It is the format used in most discussions and documentation about the response
of Solr queries.

Note that the XSLT Response Writer can be used to convert the XML produced by this writer to
other vocabularies or text-based formats.

The behavior of the XML Response Writer can be driven by the following query parameters.

The version Parameter

The ver si on parameter determines the XML protocol used in the response. Clients are strongly
encouraged to always specify the protocol version, so as to ensure that the format of the response
they receive does not change unexpectedly when the Solr server is upgraded.

XML Notes
Version

Page 317 of 397

Solr Reference Guide Jan 10, 2012

2.0 An <arr > tag was used for multiValued fields only if there was more then one value.
2.1 An <arr > tag is used for multiValued fields even if there is only one value.
2.2 The format of the responseHeader changed to use the same <I st > structure as the

rest of the response.

The default value is the latest supported.

The stylesheet Parameter

The st yl esheet parameter can be used to direct Solr to include a <?xn - st yl esheet
type="text/xsl" href="..."?> declaration in the XML response it returns.

The default behavior is not to return any stylesheet declaration at all.

Use of the st yl esheet parameter is discouraged, as there is currently no way to specify
external stylesheets, and no stylesheets are provided in the Solr distributions. This is a
legacy parameter, which may be developed further in a future release.

The indent Parameter

If the i ndent parameter is used, and has a non-blank value, then Solr will make some attempts at
indenting its XML response to make it more readable by humans.

The default behavior is not to indent.

The XSLT Response Writer

The XSLT Response Writer applies an XML stylesheet to output. It can be used for tasks such as
formatting results for an RSS feed.

tr Parameter

The XSLT Response Writer accepts one parameter: the tr parameter, which identifies the XML
transformation to use. The transformation must be found in the Solr conf/ xsl t directory.

The Content-Type of the response is set according to the <xsl : out put > statement in the XSLT
transform, for example: <xsl : out put nedi a-type="text/htm "/ >

Configuration
The example below, from the default sol rconfi g. xn file, shows how the XSLT Response Writer is
configured.

Page 318 of 397

Solr Reference Guide Jan 10, 2012

<l--
Changes to XSLT transforns are taken into account
every xsltCachelifetimeSeconds at nost.
-->
<quer yResponseWiter
nane="xslt"
cl ass="org. apache. sol r. request. XSLTResponseWiter"

<int nane="xslt CachelLi feti meSeconds">5</int>
</ quer yResponseWiter>

A value of 5 for xsl t CachelLi f et i neSeconds is good for development, to see XSLT changes
quickly. For production you probably want a much higher value.

JSON Response Writer

A very commonly used Response Writer is the JsonResponseW i t er , which formats output in
JavaScript Object Notation (JSON), a lightweight data interchange format specified in specified in
RFC 4627. Setting the wt parameter to j son invokes this Response Writer.

Python Response Writer

Solr has an optional Python response format that extends its JSON output in the following ways to
allow the response to be safely evaluated by the python interpreter:

true and false changed to True and False

Python unicode strings are used where needed

ASCII output (with unicode escapes) is used for less error-prone interoperability
newlines are escaped

null changed to None

PHP Response Writer and PHP Serialized Response Writer

Solr has a PHP response format that outputs an array (as PHP code) which can be evaluated.
Setting the wt parameter to php invokes the PHP Response Writer.

Example usage:

$code = file_get_contents(' http://local host: 8983/ sol r/sel ect ?2q=i Pod&wm ={*} php{*}');
eval ("$result =" . $code . ";");
print_r($result);

Solr also includes a PHP Serialized Response Writer that formats output in a serialized array.
Setting the wt parameter to phps invokes the PHP Serialized Response Writer.

Page 319 of 397

Solr Reference Guide Jan 10, 2012

Example usage:

$serializedResult =

file_get_contents(' http://local host: 8983/ sol r/sel ect ?q=i Pod&wm ={*} php{*}s');
$result = unserialize($serializedResult);

print_r($result);

Before you use either the PHP or Serialized PHP Response Writer, you may first need to
un-comment these two lines in sol rconfi g. xm :

<quer yResponseWiter name="php" cl ass="org.apache. solr.request. PHPResponseWiter"/>

<quer yResponseWiter nane="phps"
cl ass="org. apache. sol r.request. PHPSeri al i zedResponseWiter"/>

Ruby Response Writer

Solr has an optional Ruby response format that extends its JSON output in the following ways to
allow the response to be safely evaluated by Ruby's interpreter:

Ruby's single quoted strings are used to prevent possible string exploits.
\ and ' are the only two characters escaped.

Unicode escapes are not used. Data is written as raw UTF-8.

nil used for null.

=> is used as the key/value separator in maps.

Here is a simple example of how one may query Solr using the Ruby response format:

require 'net/http'

h = Net::HTTP. new' | ocal host', 8983)

hresp, data = h.get('/solr/sel ect ?q=i Pod&wm =ruby', nil)
rsp = eval (data)

puts 'nunmber of matches ="' + rsp['response'][' nunFound'].to_s
#print out the nane field for each returned docunment
rsp['response']['docs'].each { |doc| puts 'nanme field ="' + doc['nane'\] }

CSV Response Writer

The CSV response writer returns a list of documents in comma-separated values (CSV) format.
Other information that would normally be included in a response, such as facet information, is
excluded.

The CSV response writer supports multi-valued fields, and the output of this CSV format is
compatible with Solr's CSV update format.

Page 320 of 397

https://wiki.apache.org/solr/UpdateCSV

Solr Reference Guide Jan 10, 2012

CSV Parameters

These parameters specify the CSV format that will be returned. You can accept the default values
or specify your own.

Parameter Default Value

csv.encapsulator

csv.escape None

csv.separator ,

csv.header Defaults to true. If false, Solr does not print the column headers

csv.newline \n

csv.null Defaults to a zero length string. Use this parameter when a document has no

value for a particular field.

Multi-Valued Field CSV Parameters

These parameters specify how multi-valued fields are encoded. Per-field overrides for these values
can be done using f . <fi el dnane>. csv. separ at or =| .

Parameter Default Value

csv.mv.encapsulator None

csv.mv.escape \
csv.mv.separator Defaults to the csv. separ at or value
Example

http://1 ocal host: 8983/ sol r/ sel ect ?g=i pod&f | =i d, cat, nanme, popul arity, price, score&w =cs
returns:

i d, cat, nane, popul arity, price, score

I W02, "el ectronics, connector",iPod & i Pod Mni USB 2.0 Cable, 1, 11.5, 0. 98867977
F8V7067- APL-KI T, "el ectronics, connector", Bel kin Mobile Power Cord for iPod w
Dock, 1, 19. 95, 0. 6523595

MA147LL/ A "el ectroni cs, nusic", Appl e 60 GB i Pod with Video Pl ayback

Bl ack, 10, 399. 0, 0. 2446348

Binary Response Writer

Page 321 of 397

Solr Reference Guide Jan 10, 2012

Solr also includes a Response Writer that outputs binary format for use with a Java client. See
Client APIs for more details.

Page 322 of 397

Solr Reference Guide Jan 10, 2012

The Well-Configured Solr Instance

This section tells you how to fine-tune your Solr instance for optimum performance. This section
covers the following topics:

Configuring solrconfig.xml: Describes how to work with the main configuration file for Solr.

Configuring solr.xml: Describes how to configure your Solr core, or multiple Solr cores within a
single instance.

Lucene IndexWriters: Describes how to configure the index writers in the underlying Lucene
engine.

HTTP Request Dispatcher: Describes how to configure Solr's response to HTTP requests

JVM Settings: Gives some guidance on best practices for working with Java Virtual Machines.

% The focus of this section is on configuring a single Solr instance. To scale a Solr
implementation, either through sharding or replication, please see Scaling and Distribution.

For more information about factors affecting Solr performance, see
http://wiki.apache.org/solr/SolrPerformanceFactors.

Page 323 of 397

http://wiki.apache.org/solr/SolrPerformanceFactors

Solr Reference Guide Jan 10, 2012

Configuring solrconfig.xml

The sol rconfi g. xnl file is the configuration file with the most parameters affecting Solr itself. The
file comprises a series of XML statements that set configuration values. In sol rconfi g. xm , you
configure important features such as:

® request handlers

® |isteners (processes that "listen" for particular query-related events; listeners can be used to
trigger the execution of special code, such as invoking some common queries to warm-up
caches)

® the Request Dispatcher for managing HTTP communications
® the Admin Web interface

® parameters related to replication and duplication (these parameters are covered in detail in
Scaling and Distribution)

The sol rconfi g. xm file is found in the sol r/ conf/ directory.

For more information about sol rconfi g. xn , see http://wiki.apache.org/solr/SolrConfigXml.

Topics covered in this section:

Specifying a Location for Index Data with the dat abi r Parameter
Specifying the DirectoryFactory For Your Index

Configuring the Lucene IndexWriters

Controlling the Behavior of the Update Handler

Query Settings in solrconfig.xml

HTTP RequestDispatcher Settings

Specifying a Location for Index Data with the dataDir Parameter

By default, Solr stores its index data in a directory called / dat a under the Solr home. If you would
like to specify a different directory for storing index data, use the <dat aDi r > parameter in the

sol rconfi g. xm file. You can specify another directory either with a full pathname or a pathname
relative to the current working directory of the servlet container. For example:

<dat aDi r >/ var/ dat a/ sol r/ </ dat abi r >

Page 324 of 397

http://wiki.apache.org/solr/SolrConfigXml

Solr Reference Guide Jan 10, 2012

If you are using replication to replicate the Solr index (as described in Scaling and Distribution),
then the <dat abi r > directory should correspond to the index directory used in the replication
configuration.

Specifying the DirectoryFactory For Your Index

The default sol r. St andar dDi r ect or yFact ory is filesystem based, and tries to pick the best
implementation for the current JVM and platform. You can force a particular implementation by
specifying sol r. MvapDi r ect or yFact ory, sol r. Nl OFSDi r ect or yFact ory, or

sol r. Si npl eFSDi rect oryFactory.

<di rectoryFactory nane="DirectoryFactory"
cl ass="${solr.directoryFactory:solr. StandardDi rectoryFactory}"/>

The sol r. RAMDI r ect or yFact ory is memory based, not persistent, and does not work with
replication. Use this DirectoryFactory to store your index in RAM.

<directoryFactory cl ass="org. apache. solr. core. RAMDI rect oryFactory"/>

Configuring the Lucene IndexWriters

The settings in this section are specified in the <i ndexDef aul t s> element in sol rconfi g. xm and
control the behavior of Lucene index writers.

<i ndexDef aul t s>

</ i ndexDef aul t s>

UseCompoundFile

Setting <useConmpoundFi | e> to true combines the various files on disk that make up an index into

a single file. On systems where the number of open files allowed per process is limited, setting this
to true may avoid hitting that limit (the open files limit might also be tunable for your OS with the

Linux/Unix ul i mi t command, or something similar for other operating systems).

Updating a compound index may incur a minor performance hit for various reasons, depending on
the runtime environment. For example, filesystem buffers are typically associated with open file
descriptors, which may limit the total cache space available to each index.

This setting may also affect how much data needs to be transferred during index replication
operations.

Page 325 of 397

Solr Reference Guide Jan 10, 2012

This setting is false in the sol rconfi g. xm file for the example application. Since Lucene 1.4, the
default in the code is true, if not explicitly specified.

<useConpoundFi | e>
fal se
</ useConmpoundFi | e>

mergeFactor

The mer geFact or controls how many segments a Lucene index is allowed to have before it is
coalesced into one segment. When an update is made to an index, it is added to the most recently
opened segment. When that segment fills up (see maxBuf f er edDocs and r anBuf f er Si zeMB in the
next section), a new segment is created and subsequent updates are placed there.

If creating a new segment would cause the number of lowest-level segments to exceed the

mer geFact or value, then all those segments are merged together to form a single large segment.
Thus, if the merge factor is ten, each merge results in the creation of a single segment that is
roughly ten times larger than each of its ten constituents. When there are ner geFact or settings for
these larger segments, then they in turn are merged into an even larger single segment. This
process can continue indefinitely.

Choosing the best merge factor is generally a trade-off of indexing speed vs. searching speed.
Having fewer segments in the index generally accelerates searches, because there are fewer places
to look. It also can also result in fewer physical files on disk. But to keep the number of segments
low, merges will occur more often, which can add load to the system and slow down updates to the
index.

Conversely, keeping more segments can accelerate indexing, because merges happen less often -
making an update is less likely to trigger a merge. But searches become more computationally
expensive and will likely be slower, because search terms must be looked up in more index
segments. Faster index updates also means shorter commit turnaround times, which means more
timely search results.

The default value in the example sol rconfi g. xnl is 10, which is a reasonable starting point.

<mer geFact or >
10
</ mer geFact or >

Other Indexing Settings

There are a few other parameters that may be important to configure for your implementation.
These settings affect how or when updates are made to an index.

Page 326 of 397

Solr Reference Guide Jan 10, 2012

Setting Description

maxBufferedDocs Sets the number of document updates to buffer in memory before flushed to
disk and added to the current index segment. If the segment fills up, a new
one may be created, or a merge may be started. The default Solr
configuration leaves this value undefined.

ramBufferSizeMB Once accumulated document updates exceed this much memory space
(specified in megabytes), then the pending updates are flushed. This can also
create new segments or trigger a merge. Using this setting is generally
preferable to naxBuf f er edDocs. If both naxBuf f er edDocs and
ranBuf f er Si zeMB are set in sol rconfi g. xm , then a flush will occur when
either limit is reached.

maxMergeDocs This sets the maximum number of documents for a single segment. If this
limit is reached, the segment is closed and a new segment is created. A
merge, as governed by ner geFact or may also occur.

maxFieldLength This determines the maximum number of terms that will be stored for a field.
If field analysis generates more than the number of indexable tokens specified
by this parameter, the excess tokens are discarded. Raising this limit too high
can degrade performance because long term lists require more resources and
take longer to traverse. Choose this value according to the needs of your
application.

<maxBuf f er edDocs>1000</ maxBuf f er edDocs>
<ranBuf f er Si zeMB>32</ r anBuf f er Si zeMB>
<maxMer geDocs>2147483647</ maxMer geDocs>
<maxFi el dLengt h>10000</ maxFi el dLengt h>

Controlling the Behavior of the Update Handler

The settings in this section are configured in the <updat eHandl er > element in sol rconfi g. xm and
may affect the performance of index updates. These settings affect how updates are done
internally. <updat eHand! er > configurations do not affect the higher level configuration of
RequestHandlers that process client update requests.

<updat eHandl er cl ass="sol r. Di rect Updat eHandl er 2" >

</ updat eHandl er >

autoCommit

Page 327 of 397

Solr Reference Guide Jan 10, 2012

These settings control how often pending updates will be automatically pushed to the index.

Setting Description
maxDocs The number of updates that have occurred since the last commit.

maxTime The number of milliseconds since the oldest uncommitted update.

If either of these limits are reached, then Solr automatically performs a commit operation. If the
aut oConmi t tag is missing, then only explicit commits will update the index. The decision whether
to use auto-commit or not depends on the needs of your application.

Determining the best auto-commit settings is a tradeoff between performance and accuracy.
Settings that cause frequent updates will improve the accuracy of searches because new content
will be searchable more quickly, but performance may suffer because of the frequent updates. Less
frequent updates may improve performance but it will take longer for updates to show up in
queries.

<aut oConmi t >
<maxDocs>10000</ maxDocs>
<maxTi ne>1000</ maxTi ne>
</ aut oConmi t >

maxPendingDeletes

This value sets a limit on the number of deletions that Solr will buffer during document deletion.
This can affect how much memory is used during indexing.

<maxPendi ngDel et es>
100000
</ maxPendi ngDel et es>

Query Settings in solrconfig.xml

The settings in this section affect the way that Solr will process and respond to queries. These
settings are all configured in child elements of the <quer y> element in sol rconfi g. xm .

<query>

</ query>

Caching

Page 328 of 397

Solr Reference Guide Jan 10, 2012

Solr caches are associated with a specific instance of an Index Searcher—a specific view of an
index that doesn't change during the lifetime of that searcher. As long as that Index Searcher is
being used, any items in its cache will be valid and available for reuse. Caching in Solr differs from
caching in many other applications in that cached Solr objects do not expire after a time interval;
instead, they remain valid for the lifetime of the Index Searcher.

When a new searcher is opened, the current searcher continues servicing requests while the new
one auto-warms its cache. The new searcher uses the current searcher's cache to pre-populate its
own. When the new searcher is ready, it is registered as the current searcher and begins handling
all new search requests. The old searcher will be closed once it has finished servicing all its
requests.

In Solr, there are two cache implementations: sol r. sear ch. LRUCache and
sol r. search. Fast LRUCache.

The acronym LRU stands for Least Recently Used. When an LRU cache fills up, the entry with the
oldest last-accessed timestamp is evicted to make room for the new entry. The net effect is that
entries that are accessed frequently tend to stay in the cache, while those that are not accessed
frequently tend to drop out and will be re-fetched from the index if needed again.

The Fast LRUCache, which was introduced in Solr 1.4, is designed to be lock-free, so it is well suited
for caches which are hit several times in a request.

The Statistics page in the Solr Admin Web interface will display information about the performance
of all the active caches. This information can help you fine-tune the sizes of the various caches
appropriately for your particular application. When a Searcher terminates, a summary of its cache
usage is also written to the log.

There are three predefined types of caches you can configure.

filterCache

This cache is used by Sol r | ndexSear cher for filters (DocSets) for unordered sets of all documents
that match a query. The numeric attributes control the number of entries in the cache.

Solr uses the fi |l t er Cache to cache results of queries that use the f g search parameter.
Subsequent queries using the same parameter setting result in cache hits and rapid returns of
results. See Searching for a detailed discussion of the f g parameter.

Solr also makes this cache for faceting when the configuration parameter f acet . net hod is set to
f c. For a discussion of faceting, see Searching.

Page 329 of 397

Solr Reference Guide Jan 10, 2012

<filterCache
cl ass="sol r. LRUCache"
si ze="512"
initial Si ze="512"
aut owar mCount =" 128"/ >

queryResultCache
This cache holds the results of previous searches: ordered lists of document IDs (DocList) based on

a query, a sort, and the range of documents requested.

<quer yResul t Cache
cl ass="sol r. LRUCache"
size="512"
initial Si ze="512"
aut owar nCount =" 128"/ >

documentCache
This cache holds Lucene Document objects (the stored fields for each document). Since Lucene

internal document IDs are transient, this cache is not auto-warmed.

<docunent Cache cl ass="sol r. LRUCache"
size="512"
initial Si ze="512"
aut owar nCount =" 0"/ >

User Defined Caches

You can also define hamed caches for your own application code to use. You can locate and use
your cache object by name by calling the Sol r | ndexSear cher methods get Cache(),
cacheLookup() and cachel nsert (). If you want auto-warming of your cache, include a

regener at or attribute with the fully qualified name of a class that implements

sol r. search. CacheRegener at or .

<cache nane="nyUser Cache"
cl ass="sol r. LRUCache"
si ze="4096"
initial Si ze="1024"

aut owar nCount =" 1024"

regener at or =" or g. nyconpany. mypackage. M/Regenerator" />

Page 330 of 397

Solr Reference Guide Jan 10, 2012

maxBooleanClauses
This sets the maximum number of clauses allowed in a boolean query. This can affect range or
prefix queries that expand to a query with a large nhumber of boolean terms. If this limit is

exceeded, an exception is thrown.

<nmaxBool eanC auses>

1024
</ maxBool eanCl auses>

enableLazyFieldLoading
If this parameter is set to true, then fields that are not directly requested will be loaded lazily as
needed. This can boost performance if the most common queries only need a small subset of fields,

especially if infrequently accessed fields are large in size.

<enabl eLazyFi el dLoadi ng>

true
</ enabl eLazyFi el dLoadi ng>

useColdSearcher
This setting controls whether search requests for which there is not a currently registered searcher
should wait for a new searcher to warm up (false) or proceed immediately (true). When set to

"false", requests will block until the searcher has warmed its caches.

<useCol dSear cher >

fal se
</ useCol dSear cher >

maxWarmingSearchers
This parameter sets the maximum number of searchers that may be warming up in the background
at any given time. Exceeding this limit will raise an error. For read-only slaves, a value of two is

reasonable. Masters should probably be set a little higher.

<maxWar m ngSear cher s>

2
</ maxWar m ngSear cher s>

HTTP RequestDispatcher Settings

Page 331 of 397

Solr Reference Guide Jan 10, 2012

The request Di spat cher element of sol rconfi g. xm controls the way the Solr servlet's
Request Di spat cher implementation responds to HTTP requests.

handleSelect Attribute

The first configurable item is the handl eSel ect attribute on the <r equest Di spat cher > element
itself. This attribute can be set to one of two values, either "true" or "false". A value of "true" (the
default) indicates that error handling should consistent for / sel ect and / updat e URLs. The value
"false" indicates that error formatting should be compatible with Solr 1.1.

<request Di spat cher handl eSel ect="true" >

</ request Di spat cher >

requestParsers Element

The <r equest Par ser s> sub-element controls values related to parsing requests. This is an empty
XML element that doesn't have have any content, only attributes. The attribute

enabl eRenot eSt r eam ng controls whether remote streaming of content is allowed. If set to f al se
(the default), streaming will not be allowed. Setting it to t r ue lets you specify the location of
content to be streamed using stream fil e or stream url parameters.

If you enable remote streaming, be sure that you have authentication enabled. Otherwise,
someone could potentially gain access to your content by accessing arbitrary URLs. It's also a good
idea to place Solr behind a firewall to prevent it being accessed from untrusted clients.

The attribute nul ti part Upl oadLi mi t | nKB sets an upper limit on the size of a document that may
be submitted in a multi-part HTTP POST request. The value specified is multiplied by 1024 to
determine the size in bytes.

<r equest Di spat cher handl eSel ect ="true">
<request Par sers
enabl eRenpot eSt r eam ng="f al se"
mul ti part Upl oadLi m t | nKB="2048"/ >
</ request Di spat cher >

httpCaching Element

The <ht t pCachi ng> element controls HTTP cache control headers. Do not confuse these settings
with Solr's internal cache configuration. This element controls caching of HTTP responses as
defined by the W3C HTTP specifications.

Page 332 of 397

Solr Reference Guide Jan 10, 2012

This element allows for three attributes and one sub-element. The attributes of the <ht t pCachi ng>
element control whether a 304 response to a GET request is allowed, and if so, what sort of
response it should be. When an HTTP client application issues a GET, it may optionally specify that
a 304 response is acceptable if the resource has not been modified since the last time it was
fetched.

Parameter Description

never304 If present with the value true, then a GET request will never respond with a 304
code, even if the requested resource has not been modified. When this attribute is
set to true, the following two attributes are ignored. Setting this to true is handy
for development, as the 304 response can be confusing when tinkering with Solr
responses through a web browser or other client that supports cache headers.

lastModFrom This attribute may be set to either openTi ne (the default) or di r Last Mod. The
value openTi e indicates that last modification times, as compared to the
If-Modified-Since header sent by the client, should be calculated relative to the
time the Searcher started. Use di r Last Mbd if you want times to exactly correspond
to when the index was last updated on disk.

etagSeed This value of this attribute is sent as the value of the ETag header. Changing this
value can be helpful to force clients to re-fetch content even when the indexes
have not changed—for example, when you've made some changes to the
configuration.

<htt pCachi ng never 304="f al se"
| ast ModFr on¥" openTi ne"
et agSeed="Sol r" >
<cacheContr ol >max- age=30, public
</ cacheControl >
</ htt pCachi ng>

The cacheControl Element

In addition to these attributes, <ht t pCachi ng> accepts one child element: <cacheControl >. The
content of this element will be sent as the value of the Cache-Control header on HTTP responses.
This header is used to modify the default caching behavior of the requesting client. The possible

values for the Cache-Control header are defined by the HTTP 1.1 specification in Section 14.9.

Page 333 of 397

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9

Solr Reference Guide Jan 10, 2012

Setting the max-age field controls how long a client may re-use a cached response before
requesting it again from the server. This time interval should be set according to how often you
update your index and whether or not it is acceptable for your application to use content that is
somewhat out of date. Setting must-revalidate will tell the client to validate with the server that its
cached copy is still good before re-using it. This will ensure that the most timely result is used,
while avoiding a second fetch of the content if it isn't needed, at the cost of a request to the server
to do the check.

Page 334 of 397

Solr Reference Guide Jan 10, 2012

Configuring solr.xml

Use the sol r. xnl to configure your Solr core, or to configure multiple cores. You can find
sol r. xm in your Solr Home directory. The default sol r. xnl file looks like this:

<solr persistent="fal se">
<cores adm nPat h="/adm n/ cores" defaul t CoreNane="col | ectionl">
<core nane="col |l ectionl" instanceDir="." />
</ cores>
</solr>

For more information about core configuration and sol r. xm , see
http://wiki.apache.org/solr/CoreAdmin.

Using Multiple SolrCores

It is possible to segment Solr into multiple cores, each with its own configuration and indices.
Cores may be dedicated to a single application or to very different ones, but all are administered
through a common administration interface. You can create new Solr cores on the fly, shutdown
cores, even replace one running core with another, all without ever stopping or restarting your
servlet container.

Solr cores are configured by placing a file named sol r. xm in your sol r. hone directory. A typical
sol r. xm looks like this:

<solr persistent="true" sharedLi b="1ib">
<cores adm nPat h="/adm n/ cores">
<core name="core0" instanceDir="coreOdir"/>
<core name="corel" instanceDir="coreldir"/>
</ cores>
</solr>

This sets up two Solr cores, named "core0" and "corel" and names the directories (relative to the
Solr installation path) which will store the configuration and data subdirectories.

You can run Solr without configuring any cores.

The <solr> Element

There are two attributes that you can specify on <sol r >, which is the root element of sol r. xn .

Page 335 of 397

http://wiki.apache.org/solr/CoreAdmin

Solr Reference Guide Jan 10, 2012

Attribute Description

persistent Indicates that changes made through the API or admin UI should be saved back to
this sol r. xm . If not t rue, any runtime changes will be lost on the next Solr restart.
The servlet container running Solr must have sufficient permissions to replace
sol r. xm (file delete and create), or errors will result. Any comments in sol r. xnl are
not preserved when the file is updated.

sharedLib Specifies the path to a common library directory that will be shared across all cores.
Any JAR files in this directory will be added to the search path for Solr plugins. This
path is relative to the top-level container's Solr Home.

If you set the persistent attribute to true, be sure that the Web server has permission to

replace the file. If the permissions are set incorrectly, the server will generate 500 errors
and throw IOExceptions. Also, note that any comments in the sol r. xnmi file will be lost
when the file is overwritten.

The <cores> Element

The <cor es> element, which contains definitions for each Solr core, is a child of <sol r > and
accepts three attributes of its own.

Attribute

adminPath

shareSchema

adminHandler

Description

This is the relative URL path to access the SolrCore administration pages. For
example, a value of / adni n/ cor es means that you can access the
CoreAdminHandler with a URL that looks like this:
http://localhost:8983/solr/admin/cores

If this attribute is not present, then SolrCore administration will not be possible.

This attribute, when set to t rue, ensures that the multiple cores pointing to the
same schema. xm will be referring to the same IndexSchema Object. Sharing the
IndexSchema Object makes loading the core faster. If you use this feature, make
sure that no core-specific property is used in your schema. xm .

If used, this attribute should be set to the FQN (Fully qualified name) of a class
that inherits from Cor eAdni nHandl er . For example,

adm nHandl er =" com nyor g. MyAdni nHandl er " would configure the custom admin
handler (MyAdnmi nHandl er) to handle admin requests. If this attribute isn't set,
Solr uses the default admin handler,

or g. apache. sol r. handl er. adm n. Cor eAdm nHandl er .

Page 336 of 397

http://localhost:8983/solr/admin/cores

Solr Reference Guide Jan 10, 2012

For a use case of the adni nHandl er attribute, suppose we wanted to get statistics from different
cores in a Solr instance. First, we could define a new action called nyst at that could be accessed
from the client as below.

http://1 ocal host: 8983/ sol r/ adm n/ cores?act i on=MYSTAT

Then, we would define the implementation of the MYSTAT action like so:

i nport org. apache. sol r. handl er. admi n. Cor eAdni nHandl er ;
cl ass MyAdnmi nHandl er extends Cor eAdm nHandl er {

/**
* @eturn true, if the changes need to be persisted by the CoreContainer. (Use only
if solr.xm would be changed because of this action.)
* false, otherwise. (Use this if unsure or having a read-only access to the
CoreContainer like collecting statistics)
*
*/
prot ect ed bool ean handl eCust omActi on(Sol r Quer yRequest req, SolrQueryResponse rsp) {
Cor eCont ai ner contai ner = super. get CoreCont ai ner();
Sol r Core nycorel = container.getCore("corel");
Sol r Core nycore2 = contai ner. get Core("core2");
Sol r Parans parans = req. get Parans();
String a = parans. get (CoreAdm nPar ans. ACTI ON) ;
if (a.toLowerCase().equals("nystat")) {
[/ TODO popul ate 'rsp' as necessary.

There are other methods in CoreAdminHandler that could be used to override default actions, but
for most of the common cases they would not be necessary.

The <core> Element

There is one <cor e> element for each SolrCore you define. They are children of the <cores>
element and each one accepts six attributes.
Attribute Description

name The name of the SolrCore. You'll use this name to reference the SolrCore when
running commands with the CoreAdminHandler.

instanceDir This relative path defines the Solr Home for the core.

config The configuration file name for a given core. The default is sol rconfi g. xm .

Page 337 of 397

http://lucene.apache.org/solr/api/org/apache/solr/handler/admin/CoreAdminHandler.html

Solr Reference Guide Jan 10, 2012

schema The schema file name for a given core. The default is schema. xni
dataDir This relative path defines the Solr Home for the core.

properties The name of the properties file for this core. The value can be an absolute pathname
or a path relative to the value of i nst anceDi r.

Properties in solr.xml

You can define properties in sol r. xm that you may then reference in sol rconfi g. xml and
schema. xrml . Properties are name/value pairs. The scope of a property depends on which element it
occurs within.

<solr persistent="true" sharedLi b="1ib">
<property nane="product nane" val ue="Acne Online"/>
<cores adm nPat h="/adm n/ cores" >
<core nanme="core0" instanceDir="core0">
<property nane="dataDi r" val ue="/data/ core0"/></core>
<core nanme="corel" instanceDir="corel"/>
</ cores>
</solr>

If a property is declared under <sol r > but outside a <cor e> element, then it will have container
scope and will be visible to all cores. In the example above, product nane is such a property.

If a property declaration occurs within a <cor e> element, then its scope is limited to that core and
it will not be visible to other cores. A property at core scope will override one of the same name
declared at container scope.

In addition to any properties you declare at core scope, there are several properties that Solr
defines automatically for each core. These properties are described in the table below:

Property Description
solr.core.name The core's name, as defined by the "name" attribute.

solr.core.instanceDir The core's instance directory under which that its conf/ and dat a/
directories are located, derived from the core's i nst anceDi r attribute.

solr.core.dataDir The core's data directory, ${sol r. core. i nstanceDi r}/ dat a by default.
solr.core.configName The name of the core's configuration file, sol rconfi g. xm by default.

solr.core.schemaName The name of the core's schema file, schema. xm by default.

Any of the above properties can be referenced by name in schena. xml or sol rconfi g. xm .

Page 338 of 397

Solr Reference Guide Jan 10, 2012

When defining properties, you can assign a property a default value that will be used if another
value isn't specified. For example:

Without a default value, result will be empty if property not defined
${ pr oduct nane}
With a default value

${ pr oduct nane: Sear chCo Megal ndex}

CoreAdminHandler

The CoreAdminHandler is a special SolrRequestHandler that is used to manage Solr cores. Unlike
normal SolrRequestHandlers, the CoreAdminHandler is not attached to a single core. Instead, it
manages all the cores running in a single Solr instance. Only one CoreAdminHandler exists for each
top-level Solr instance.

To use the CoreAdminHandler, make sure that the adni nPat h attribute is defined on the <cor es>
element; otherwise you will not be able to make HTTP requests to perform Solr core
administration.

The CoreAdminHandler supports seven different actions that may be invoked on the adm nPat h
URL. The action to perform is named by the HTTP request parameter "action", with arguments for a
specific action being provided as additional parameters.

All action names are uppercase. The actions names are:

STATUS
CREATE
RELOAD
RENAME
ALIAS
SWAP
UNLOAD

These actions are described in detail in the sections below.

STATUS

The STATUS action returns the status of all running Solr cores, or status for only the named core.
http://1 ocal host: 8983/ sol r/ adni n/ cores?acti on=STATUS
http://1 ocal host: 8983/ sol r/ admi n/ cor es?act i on=STATUS&cor e=cor e0

The STATUS action accepts one optional parameter:

Page 339 of 397

Solr Reference Guide Jan 10, 2012

Parameter Description

core (Optional) The name of a core, as listed in the "name" attribute of a <cor e> element
insolr.xnm .

CREATE

The CREATE action creates a new core and registers it. If persistence is enabled (

persi stent="true" on the <sol r > element), the updated configuration for this new core will be
saved in sol r. xm . If a Solr core with the given name already exists, it will continue to handle
requests while the new core is initializing. When the new core is ready, it will take new requests
and the old core will be unloaded.

http://1ocal host: 8983/ sol r/ adm n/ cor es?acti on=CREATE
&name=cor eX& nstanceDi r=path/to/dir
&config=config_file_nanme.xm &chema=schem fil e_name. xnl &at aDi r =dat a

The CREATE accepts the two mandatory parameters, as well as three optional parameters.

Parameter Description
name The name of the new core. Same as "name" on the <cor e> element.

instanceDir The directory where files for this SolrCore should be stored. Same as i nst anceDi r
on the <cor e> element.

config (Optional) Name of the config file (solrconfig.xml) relative to i nst anceDi r .
schema (Optional) Name of the schema file (schema.xml) relative to i nst anceDi r.
datadir (Optional) Name of the data directory relative to i nst anceDi r.

RELOAD

The RELQAD action loads a new core from the configuration of an existing, registered Solr core.
While the new core is initializing, the existing one will continue to handle requests. When the new
Solr core is ready, it takes over and the old core is unloaded.

This is useful when you've made changes to a Solr core's configuration on disk, such as adding new
field definitions. Calling the RELOAD action lets you apply the new configuration without having to
restart the Web container.

http://1 ocal host: 8983/ sol r/ adm n/ cor es?act i on=RELOAD&cor e=cor e0

The RELOAD action accepts a single parameter

Page 340 of 397

Solr Reference Guide Jan 10, 2012

Parameter Description

core The name of the core to be reloaded.

RENAME
The RENAME action changes the name of a Solr core.

http://1 ocal host: 8983/ sol r/ adm n/ cor es?act i on=RENAVE

&cor e=cor e0&ot her =cor e5

The RENAME action requires the following two parameter:

Parameter Description

core The name of the Solr core to be renamed.

other The new name for the Solr core. If the persistent attribute of <sol r> is t rue, the
new name will be written to sol r. xml as the nane attribute of the <cor e> attribute.

ALIAS

The ALI AS action establishes an additional name by which a SolrCore may be referenced.
Subsequent actions may use the Solr core's original name or any of its aliases.

This action is still considered experimental.

http://1 ocal host: 8983/ sol r/ adni n/ cores?acti on=AL| AS&cor e=cor eX&ot her =cor eY
The ALIAS action requires two parameters:

Parameter Description
core The name or alias of an existing core.

other The additional name by which this core should be known.

SWAP

SWAP atomically swaps the names used to access two existing Solr cores. This can be used to swap
new content into production. The prior core remains available and can be swapped back, if
necessary. Each core will be known by the name of the other, after the swap.

http://1 ocal host: 8983/ sol r/ adm n/ cor es?act i on=SWAP&cor e=cor el1&ot her =cor e0

Page 341 of 397

Solr Reference Guide Jan 10, 2012

The SWAP action requires two parameters, which are described in the table below.

Parameter Description

core The name of one of the cores to be swapped.
other The name of one of the cores to be swapped.
UNLOAD

The UNLOAD action removes a core from Solr. Active requests will continue to be processed, but no

new requests will be sent to the named core. If a core is registered under more than one name,
only the given name is removed.

http://1 ocal host: 8983/ sol r/ admni n/ cores?acti on=UNLOAD&cor e=cor e0

The UNLOAD action requires a parameter identifying the core to be removed.

Parameter Description

core The name of the core to be to be removed. If the persistent attribute of <sol r> is
set to true, the <cor e> element with this nane attribute will be removed from
solr.xm .

Page 342 of 397

Solr Reference Guide Jan 10, 2012

Solr Plugins

Solr allows you to load custom code to perform a variety of tasks within Solr, from custom Request
Handlers to process your searches, to custom Analyzers and Token Filters for your text field. You
can even load custom Field Types. These pieces of custom code are called plugins.

Not everyone will need to create plugins for their Solr instances - what's provided is usually enough
for most applications. However, if there's something that you need, you may want to review the
Solr Wiki documentation on plugins at SolrPlugins.

Page 343 of 397

http://wiki.apache.org/solr/SolrPlugins

Solr Reference Guide Jan 10, 2012

JVM Settings

Configuring your JVM can be a complex topic. A full discussion is beyond the scope of this
document. Luckily, most modern JVMs are quite good at making the best use of available resources
with default settings. The following sections contain a few tips that may be helpful when the
defaults are not optimal for your situation.

For more general information about improving Solr performance, see
https://wiki.apache.org/solr/SolrPerformanceFactors.

Choosing Memory Heap Settings

The most important JVM configuration settings are those that determine the amount of memory it
is allowed to allocate. There are two primary command-line options that set memory limits for the
JVM. These are - Xns, which sets the initial size of the JVM's memory heap, and - Xnx, which sets
the maximum size to which the heap is allowed to grow.

If your Solr application requires more heap space than you specify with the - Xns option, the heap
will grow automatically. It's quite reasonable to not specify an initial size and let the heap grow as
needed. The only downside is a somewhat slower startup time since the application will take longer
to initialize. Setting the initial heap size higher than the default may avoid a series of heap
expansions, which often results in objects being shuffled around within the heap, as the application
spins up.

The maximum heap size, set with - Xnx, is more critical. If the memory heap grows to this size,
object creation may begin to fail and throw Qut O Menor yExcept i on. Setting this limit too low can
cause spurious errors in your application, but setting it too high can be detrimental as well.

It doesn't always cause an error when the heap reaches the maximum size. Before an error is
raised, the JVM will first try to reclaim any available space that already exists in the heap. Only if
all garbage collection attempts fail will your application see an exception. As long as the maximum
is big enough, your app will run without error, but it may run more slowly if forced garbage
collection kicks in frequently.

The larger the heap the longer it takes to do garbage collection. This can mean minor, random
pauses or, in extreme cases, "freeze the world" pauses of a minute or more. As a practical matter,
this can become a serious problem for heap sizes that exceed about two gigabytes, even if far
more physical memory is available. On robust hardware, you may get better results running
multiple JVMs, rather than just one with a large memory heap. Some specialized JVM
implementations may have customized garbage collection algorithms that do better with large
heaps. Also, Java 7 is expected to have a redesigned GC that should handle very large heaps
efficiently. Consult your JVM vendor's documentation.

Page 344 of 397

https://wiki.apache.org/solr/SolrPerformanceFactors

Solr Reference Guide Jan 10, 2012

When setting the maximum heap size, be careful not to let the JVM consume all available physical
memory. If the JVM process space grows too large, the operating system will start swapping it,
which will severely impact performance. In addition, the operating system uses memory space not
allocated to processes for file system cache and other purposes. This is especially important for
I/O-intensive applications, like Lucene/Solr. The larger your indexes, the more you will benefit from
filesystem caching by the OS. It may require some experimentation to determine the optimal
tradeoff between heap space for the JVM and memory space for the OS to use.

On systems with many CPUs/cores, it can also be beneficial to tune the layout of the heap and/or
the behavior of the garbage collector. Adjusting the relative sizes of the generational pools in the
heap can affect how often GC sweeps occur and whether they run concurrently. Configuring the
various settings of how the garbage collector should behave can greatly reduce the overall
performance impact when it does run. There is a lot of good information on this topic available on
Sun's website. A good place to start is here: http://java.sun.com/javase/technologies/hotspot/gc/.

Use the Server HotSpot VM

If you are using Sun's JVM, add the - ser ver command-line option when you start Solr. This tells
the JVM that it should optimize for a long running, server process. If the Java runtime on your
system is a JRE, rather than a full JDK distribution (including j avac and other development tools),
then it is possible that it may not support the - server JVM option. Test this by running j ava

- hel p and look for - server as an available option in the displayed usage message.

Checking JVM Settings

A great way to see what JVM settings your server is using, along with other useful information, is
to use the admin RequestHandler, sol r/ adni n/ syst em This request handler will display a wealth
of server statistics and settings.

You can also use any of the tools that are compatible with the Java Management Extensions (JMX).
See the section Using JMX with Solr in Managing Solr for more information.

Page 345 of 397

http://java.sun.com/javase/technologies/hotspot/gc/

Solr Reference Guide Jan 10, 2012

Managing Solr

This section describes how to run Solr and how to look at Solr when it is running. It contains the
following sections:

Running Solr on Jetty: Describes how to run Solr in the Jetty web application container. The Solr
example included in this distribution runs in a Jetty web application container.

Running Solr on Tomcat: Describes how to run Solr in the Tomcat web application container.
Configuring Logging: Describes how to configure logging for Solr.

Backing Up: Describes backup strategies for your Solr indexes.

Using JMX with Solr: Describes how to use Java Management Extensions with Solr.

For information on running Solr in a variety of Java application containers, see the basic installation
instructions on the Solr wiki.

Page 346 of 397

http://wiki.apache.org/solr/SolrInstall
http://wiki.apache.org/solr/SolrInstall

Solr Reference Guide Jan 10, 2012

Running Solr on Tomcat

Solr comes with an example schema and scripts for running on Jetty. The next section describes
some of the details of how things work "under the hood," and covers running multiple Solr
instances and deploying Solr using the Tomcat application manager.

For more information about running Solr on Tomcat, see the basic installation instructions and the
Solr Tomcat page on the Solr wiki.

How Solr Works with Tomcat

The two basic steps for running Solr in any Web application container are as follows:

1. Make the Solr classes available to the container. In many cases, the Solr Web application
archive (WAR) file can be placed into a special directory of the application container. In the
case of Tomcat, you need to place the Solr WAR file in Tomcat's webapps directory. If you
installed Tomcat with Solr, take a look in t ontat / webapps:you'll see the sol r. war file is
already there.

2. Point Solr to the Solr home directory that contains conf/ sol rconfi g. xm and
conf/schema. xm . There are a few ways to get this done. One of the best is to define the
sol r. sol r. hone Java system property. With Tomcat, the best way to do this is via a shell
environment variable, JAVA OPTS. Tomcat puts the value of this variable on the command
line upon startup. Here is an example:

export JAVA OPTS="-Dsol r.sol r. home=/ User s/ j onat han/ Deskt op/ sol r"

Port 8983 is the default Solr listening port. If you are using Tomcat and wish to change this port,
edit the file t ontat/ conf/server. xm in the Solr distribution. You'll find the port in this part of the
file:

<Connector port="8983" protocol ="HTTP/ 1. 1" connecti onTi neout ="20000"
redi rect Port="8443" />

Modify the port number as desired and restart Tomcat if it is already running.

Modifying the port number will leave some of the samples and help file links pointing to the
default port. It is out of the scope of this reference guide to provide full details of how to
change all of the examples and other resources to the new port.

Running Multiple Solr Instances

Page 347 of 397

http://wiki.apache.org/solr/SolrInstall
http://wiki.apache.org/solr/SolrTomcat

Solr Reference Guide Jan 10, 2012

The standard way to deploy multiple Solr index instances in a single Web application is to use the
multicore API described in Using Multiple SolrCores.

An alternative approach, which provides more code isolation, uses Tomcat context fragments. A
context fragment is a file that contains a single <cont ext > element and any subelements required
for your application. The file omits all other XML elements.

Each context fragment specifies where to find the Solr WAR and the path to the solr home
directory. The name of the context fragment file determines the URL used to access that instance
of Solr. For example, a context fragment named har vey. xm would deploy Solr to be accessed at
http://1 ocal host: 8983/ harvey.

In Tomcat's conf/ Cat al i na/ | ocal host directory, store one context fragment per instance of Solr.
If the conf/ Cat al i na/ | ocal host directory doesn't exist, go ahead and create it.

Using Tomcat context fragments, you could run multiple instances of Solr on the same server, each
with its own schema and configuration. For full details and examples of context fragments, take a
look at the Solr Wiki: http://wiki.apache.org/solr/SolrTomcat.

Here are examples of context fragments which would set up two Solr instances, each with its own
sol r. homne:

<Cont ext docBase="/sone/path/solr.war" debug="0" crossContext="true" >

<Envi ronment nane="sol r/ honme" type="java.lang. String" val ue="/sone/ path/solrlhome"
override="true" />
</ Cont ext >
<Cont ext docBase="/sone/path/solr.war" debug="0" crossContext="true" >

<Envi ronment name="sol r/ hone" type="java.lang. String"

val ue="/sone/ pat h/ sol r 2hone" overri de="true" />

</ Cont ext >

Deploying Solr with the Tomcat Manager

If your instance of Tomcat is running the Tomcat Web Application Manager, you can use its
browser interface to deploy Solr.

Just as before, you have to tell Solr where to find the solr home directory. You can do this by
setting JAVA_OPTS before starting Tomcat.

Once Tomcat is running, navigate to the Web application manager, probably available at a URL like
this:

http://1 ocal host: 8983/ manager/ ht m

You will see the main screen of the manager.

Page 348 of 397

http://wiki.apache.org/solr/SolrTomcat

Solr Reference Guide

Jan 10, 2012

1.1

Imanager

o] = B i 8+ | b becalhos: BOR) manager el f usdesloyTaarte japache -sok- L d-des i

8" Apache

Software Foundation

http:/fwww.apache.org/

= jond a aloelol O

Tomcat Web Application Manager

[oE - tndeployed application st contest path /apache-salr-l.4—der

[|
Ligt Applcations HTML Manager Hel Managar Halp Sarver Stals
Path Dty M Feerring Seusbons | Comsands
Etarl Clpp PBeiced Lndepiny
I trus e { txprs sawmes) with idle & 50 LT
B Eipy Beload Undapios
[Tornest Dessumantaticn s L] Erpre seasees | Wil idle e 51 minules J
S S Baload Undapiow
Smarohin Sl and JEP Examgins s o [Enpert seasaes | Wit il & 3 mirues
Stol Siop Beload Undepioy
Al TR oozt Managis Appboation i 2@ [Enperw gessmes | with idle 2 30 i
Siarl Siop Peloac Undepioy
TR Tomeat Manager Appkcation trus] { Tpre saawioms | with klla s 31 miubes
|8
.
Lrnrsa binrd o s s e L
- S ——]

To add Solr, scroll down to the Deploy section, specifically WAR file to deploy. Click Browse...
and find the Solr WAR file, usually something like di st/ apache-sol r-3. x. 0. war within your Solr
installation. Click Deploy. Tomcat will load the WAR file and start running it. Click the link in the

application path column of the manager to see Solr. You won't see much, just a welcome screen,

but it contains a link for the Admin Console.

Tomcat's manager screen, in its application list, has links so you can stop, start, reload, or
undeploy the Solr application.

Page 349 of 397

Solr Reference Guide Jan 10, 2012

Running Solr on Jetty

Solr comes with an example schema and scripts for running on Jetty, along with a working
installation, in the / exanpl e directory. The included version of Jetty works well for small
installations, but may not be appropriate for more heavy-duty use. For more robust Solr
applications, we recommend that you download the full Jetty package, which includes additional
modules ("JettyPlus").

For more information about the Jetty example installation, see the Solr Tutorial and the basic
installation instructions on the Solr wiki.

For detailed information about running Solr on Jetty or JettyPlus, see
http://wiki.apache.org/solr/Solrletty.

Changing the Solr Listening Port

Port 8983 is the default port for Solr. If you are using Jetty and wish to change the port number,
edit thefilejetty/etc/jetty. xml in the Solr distribution. You'll find the port in this part of the
file:

<New cl ass="org. nortbay. jetty. bi o. Socket Connect or " >
<Set name="port"><SystenProperty nane="jetty.port"
def aul t =" 8983"/ ></ Set >
<Set name="maxl| dl eTi ne">50000</ Set >
<Set name="| owResour ceMaxl| dl eTi ne" >1500</ Set >
</ New>

Modify the port number as desired and restart Jetty if it is already running.

% Modifying the port humber will leave some of the samples and help file links pointing to the
default port. It is out of the scope of this reference guide to provide full details of how to
change all of the examples and other resources to the new port.

Page 350 of 397

http://jetty.mortbay.org/jetty/
http://docs.codehaus.org/display/JETTY/Downloading+Jetty
http://lucene.apache.org/solr/tutorial.html
http://wiki.apache.org/solr/SolrInstall
http://wiki.apache.org/solr/SolrInstall
http://wiki.apache.org/solr/SolrJetty

Solr Reference Guide Jan 10, 2012

Configuring Logging

Logging is the practice of writing informative messages somewhere. System administrators or
developers can read logs to learn information about a system. If an application dies unexpectedly,
the key to its demise might be written in a log somewhere. A canny developer can examine a log
to understand what went wrong, much like a detective can examine the scene of a crime to find
out what happened.

Solr uses the SLF4] Logging API (http://www.slf4j.org). If you want to see the log output in
Tomcat, look in sol r/tontat/ | ogs. You will find a file named something like
catal i na. 2011- 05- 01. | og, except with the current date.

Temporary Logging Settings

You can control the amount of logging output in Solr by using the Admin Web interface. Select the
LOGGING link. Note that this page only lets you change settings in the running system and is not
saved for the next run. (For more information about the Admin Web interface, see Using the Solr
Administration User Interface.)

Page 351 of 397

http://www.slf4j.org

Solr Reference Guide Jan 10, 2012

. Solr Admin: DK Log Level Selec... +

n“ BB localhost:8383/solrfadmin/logging T\,"' r__‘ 'Ea (B -

ey

A\ F.rff_‘?:

CONFIG INFO WARNING SEVERE OFF Effective

o
(0]

Level
unset FINEST
(o]
(2]

org.apache.solr.analysis. BaseTokenFilterFactory
org.apache.solr.analysis. BaseTokenStreamFactory
org.apache.solr.analysis. BaseTokenizerFactory

org.apache.solr.common.util. ConcurrentLRUCache INFO
org.apache.solr.common.util.SystemIdResolver INFO

OHOHOF ORNORONO!

®®0 ®

org.apache.solr.core.Config
org.apache.solr.core CoreContainer
org.apache.solr.core JmxMonitoredMap
org.apache.solr.core RequestHandlers
org.apache.solr.core.SolrConfig
org.apache.solr.core.SolrCore
org.apache.solr.core.SolrResourceLoader

oliolicliolfoffolio] o

org.apache.solr.handler.ReplicationHandler

org.apache.solr.handler.SnapPuller
org.apache.solr.handler.XmlUpdateRequestHandler

o] o [elielle] o [elfollelleolleollolls] o [olle] o o [ellsl{e] o o o o [e]fe]
OOOOOOOOOOOOOOOOOOOOOOOOOOOE
e] o [olielle] o [ellellellollo}{eolle] o [olle] ¢ o [o)lelle] o o o o [olle)
o] o folielle] o [elleliellollol{eolle] o [olle] ¢ o [o)lelle] © o o o [l
©] o [eljelle] o [ol{oliolloliollo]lie] o [olle] o o [ello){e] @ o o o (0]

o] o/felielle] o [ellellellollellelle] o [elle] o o [ellelle] o o o o (o]

g solr.handleggadmin.Core AdmipHandle:
The JDK Log Level Selector screen.

This part of the Admin Web interface allows you to set the logging level for many different log
categories. Fortunately, any categories that are unset will have the logging level of its parent. This
makes it possible to change many categories at once by adjusting the logging level of their parent.

Permanent Logging Settings

Making permanent changes to the JDK Logging API configuration is a matter of creating or editing
a properties file.

Tomcat Logging Settings

Page 352 of 397

Solr Reference Guide Jan 10, 2012

Tomcat offers a choice between settings for all applications or settings specifically for the Solr
application.

To change logging settings for Solr only, edit

t ontat / webapps/ sol r/ VWEB- | NF/ cl asses/ | oggi ng. properties. You will need to create the
classes directory and the logging.properties file. You can set levels from FINEST to SEVERE for a
class or an entire package. Here are a couple of examples:

or g. apache. commons. di gest er. Di gester. | evel = FI NEST
org. apache. solr. |l evel = WARNI NG

Alternately, if you wish to change Tomcat's JDK Logging API settings for every application in this
instance of Tomcat, edit t ontat/ conf/| oggi ng. properti es.

See the documentation for the SLF4J Logging API for more information:
http://slf4j.org/docs.html
http://java.sun.com/javase/6/docs/technotes/guides/logging/index.html

Jetty Logging Settings

To change settings for the SLF4] Logging API in Jetty, you need to create a settings file and tell
Jetty where to find it.

Begin by creating a file j etty/ | oggi ng. properti es. Use the example lines above as a guide.

To tell Jetty how to find the file, edit start.sh. Find the line which launches Jetty, which looks
something like this, except it will have an absolute path to start.jar:

java - DSTOP. PORT=8079 - DSTOP. KEY=secret -jar start.jar

#Add the | ocation of the |ogging properties file like this:

java -Djava.util.logging.config.file=logging.properties
- DSTOP. PORT=8079 - DSTOP. KEY=secret -jar start.jar

The next time you launch Jetty, it will use the settings in the file.

Page 353 of 397

http://slf4j.org/docs.html
http://java.sun.com/javase/6/docs/technotes/guides/logging/index.html

Solr Reference Guide Jan 10, 2012

Backing Up

If you are worried about data loss, and of course you should be, you need a way to back up your
Solr indexes so that you can recover quickly in case of catastrophic failure.

Making Backups with the Solr Replication Handler

The easiest way to make back-ups in Solr is to take advantage of the Replication Handler, which is
described in detail in Index Replication. The Replication Handler's primary purpose is to replicate an
index on slave servers for load-balancing, but the Replication Handler can be used to make a
back-up copy of a server's index, even if no slave servers are in operation.

Once you have configured the Replication Handler in sol rconfi g. xm , you can trigger a back-up
with an HTTP command like this:

http:// master_host /solr/replicati on?command=backup

For details on configuring the Replication Handler, see Scaling and Distribution.

Backup Scripts from Earlier Solr Releases

Solr also provides shell scripts in the bin directory that make copies of the indexes. However, these
scripts only work with a Linux-style shell, and not everybody in the world runs Linux.

The scripts themselves are relatively simple. Look in the bin directory of your Solr home directory,
for example exanpl e/ sol r/ bi n. In particular, backup.sh makes a copy of Solr's index directory

and gives it a name based on the current date.

This scripts include the following:

Script Name Description

abc Atomic Backup post-Commit tells the Solr server to perform a commit. A
snapshot of the index directory is made after the commit if the Solr server is
configured to do so (by enabling the postCommit event listener in
sol r/ conf/sol rconfig.xm). A backup of the most recent snapshot directory is
then made if the commit is successful. Backup directories are named backup.
yyyymddHHWSS where yyyymddHHWESS is the timestamp of when the snaphot
was taken.

Page 354 of 397

Solr Reference Guide Jan 10, 2012

abo Atomic Backup post-Optimize tells the Solr server to perform an optimize. A
snapshot of the index directory is made after the optimize if the Solr server is
configured to do so (by enabling the postCommit or postOptimize event
listener in sol r/ conf/sol rconfig.xm). A backup of the most recent snapshot
directory is then made if the optimize is successful. Backup directories are named
backup. yyyymddHHWSS where yyyymddHHWES is the timestamp of when the
snaphot was taken.

backup Backs up the index directory using hard links. Backup directories are named
backup. yyyymddHHMVES where yyyymddHHMVSS is the timestamp of when the
backup was taken.

backupcleaner Runs as a cron job to remove backups more than a configurable number of days
old or all backups except for the most recent n number of backups. Also can be
run manually.

For more details about backup scripts, see the Solr Wiki page
http://wiki.apache.org/solr/SolrOperationsTools.

Page 355 of 397

http://wiki.apache.org/solr/SolrOperationsTools

Solr Reference Guide Jan 10, 2012

Using JMX with Solr

Java Management Extensions (JMX) is a technology that makes it possible for complex systems to
be controlled by tools without the systems and tools having any previous knowledge of each other.
In essence, it is a standard interface by which complex systems can be viewed and manipulated.

Solr, like any other good citizen of the Java universe, can be controlled via a JMX interface. You
can enable JMX support by adding lines to sol rconfi g. xm . You can use a JMX client, like
jconsole, to connect with Solr. Check out the Wiki page http://wiki.apache.org/solr/SolrJmx for
more information. You may also find the following overview of JMX to be useful:
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html.

Page 356 of 397

http://wiki.apache.org/solr/SolrJmx
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html

Solr Reference Guide Jan 10, 2012

Scaling and Distribution

This section describes how to set up distribution and replication in Solr. It covers the following
topics:

Introduction to Scaling and Distribution: Conceptual information about distribution and replication
in Solr.

Distributed Search with Index Sharding: Detailed information about implementing distributed
searching in Solr.

Index Replication: Detailed information about replicating your Solr indexes.

Combining Distribution and Replication: Detailed information about replicating shards in a
distributed index.

Merging Indexes: Information about combining separate indexes in Solr.

Page 357 of 397

Solr Reference Guide Jan 10, 2012

Introduction to Scaling and Distribution

Both Lucene and Solr were designed to scale to support large implementations with minimal
custom coding. This section covers:

® distributing an index across multiple servers
® replicating an index on multiple servers
® merging indexes

What Problem Does Distribution Solve?

If searches are taking too long or the index is approaching the physical limitations of its machine,
you should consider distributing the index across two or more Solr servers.

To distribute an index, you divide the index into partitions called shards, each of which runs on a
separate machine. Solr then partitions searches into sub-searches, which run on the individual
shards, reporting results collectively. The architectural details underlying index sharding are
invisible to end users, who simply experience faster performance on queries against very large
indexes.

What Problem Does Replication Solve?

Replicating an index is useful when:

® You have a large search volume which one machine cannot handle, so you need to distribute
searches across multiple read-only copies of the index.

® There is a high volume/high rate of indexing which consumes machine resources and reduces
search performance on the indexing machine, so you need to separate indexing and
searching.

® You want to make a backup of the index (see Backing Up).

Page 358 of 397

Solr Reference Guide Jan 10, 2012

Distributed Search with Index Sharding

When an index becomes too large to fit on a single system, or when a query takes too long to
execute, an index can be split into multiple shards, and Solr can query and merge results across
those shards. A single shard receives the query, distributes the query to other shards, and
integrates the results. You can find additional information about distributed search on the Solr wiki:
http://wiki.apache.org/solr/DistributedSearch.

The figure below compares a single server to a distributed configuration with two shards.
Single Server Distributed

Shard1l Shard 2

— "

@ 1f single queries are currently fast enough and one simply wishes to expand the capacity
(queries/sec) of the search system, then standard index replication (replicating the entire
index on multiple servers) should be used instead of index sharding.

Distributing Documents across Shards

It is up to you to get all your documents indexed on each shard of your server farm. Solr does not
include out-of-the-box support for distributed indexing, but your method can be as simple as a
round robin technique. Just index each document to the next server in the circle. (For more
information about indexing, see Indexing and Basic Data Operations.)

A simple hashing system would also work. The following should serve as an adequate hashing
function.

uni quel d. hashCode() % nunServers

One advantage of this approach is that it is easy to know where a document is if you need to
update it or delete. In contrast, if you are moving documents around in a round-robin fashion, you
may not know where a document actually is.

Page 359 of 397

http://wiki.apache.org/solr/DistributedSearch

Solr Reference Guide Jan 10, 2012

Solr does not calculate universal term/doc frequencies. For most large-scale implementations, it is
not likely to matter that Solr calculates TD/IDF at the shard level. However, if your collection is
heavily skewed in its distribution across servers, you may find misleading relevancy results in your
searches. In general, it is probably best to randomly distribute documents to your shards.

Executing Distributed Searches with the shards Parameter

If a query request includes the shar ds parameter, the Solr server distributes the request across all
the shards listed as arguments to the parameter. The shar ds parameter uses this syntax:

host : port / base url [, host : port / base url]*

For example, the shar ds parameter below causes the search to be distributed across two Solr
servers: solrl and solr2, both of which are running on port 8983:

http://1ocal host: 8983/sol r/sel ect?
shar ds=sol r 1: 8983/ sol r, sol r 2: 8983/ sol r & ndent =t r ue&qg=i pod+sol r

Rather than require users to include the shards parameter explicitly, it is usually preferred to
configure this parameter as a default in the RequestHandler section of sol rconfig. xm .

. Do not add the shar ds parameter to the standard requestHandler; otherwise, search
queries may enter an infinite loop. Instead, define a new requestHandler that uses the
shar ds parameter, and pass distributed search requests to that handler.

Currently, only query requests are distributed. This includes requests to the standard request
handler (and subclasses such as the DisMax RequestHandler), and any other handler (

or g. apache. sol r. handl er. conponent . sear chHandl er) using standard components that support
distributed search.

The following components support distributed search:

® The Query component, which returns documents matching a query

® The Facet component, which processes facet.query and facet.field requests where facets are
sorted by count (the default).

® The Highlighting component, which enables Solr to include "highlighted" matches in field
values.

® The Stats component, which returns simple statistics for numeric fields within the DocSet.

® The Debug component, which helps with debugging.

Limitations to Distributed Search

Page 360 of 397

Solr Reference Guide Jan 10, 2012

Distributed searching in Solr has the following following limitations:

® Each document indexed must have a unique key.

® If Solr discovers duplicate document IDs, Solr selects the first document and discards
subsequent ones.

® Inverse-document frequency (IDF) calculations cannot be distributed.

® Distributed searching does not support the QueryElevationComponent, which configures the
top results for a given query regardless of Lucene's scoring. For more information, see
http://wiki.apache.org/solr/QueryElevationComponent.

® The index for distributed searching may become out of date; for example, a document that
once matched a query and was subsequently changed may no longer match the query but
will still be retrieved.

® Distributed searching supports only sorted-field faceting, not date faceting

® The number of shards is limited by number of characters allowed for GET method's URI;
most Web servers generally support at least 4000 characters, but many servers limit URI
length to reduce their vulnerability to Denial of Service (DoS) attacks.

® TF/IDF computations are per shard. This may not matter if content is well (randomly)
distributed.

Avoiding Distributed Deadlock

Each shard may also serve top-level query requests and then make sub-requests to all of the other
shards. In this configuration, care should be taken to ensure that the max number of threads
serving HTTP requests in the servlet container is greater than the possible number of requests from
both top-level clients and other shards. If this is not the case, the configuration may result in a
distributed deadlock.

For example,a deadlock might occur in the case of two shards, each with just a single thread to
service HTTP requests. Both threads could receive a top-level request concurrently, and make
sub-requests to each other. Because there are no more remaining threads to service requests, the
servlet containers will block the incoming requests until the other pending requests are finished,
but they will not finish since they are waiting for the sub-requests. By ensuring that the serviets
are configured to handle a sufficient number of threads, you can avoid deadlock situations like this.

Testing Index Sharding on Two Local Servers

For simple functionality testing, it's easiest to just set up two local Solr servers on different ports.
(In a production environment, of course, these servers would be deployed on separate machines.)

1. Make a copy of the solr example directory:

cd solr
cp -r exanpl e exanpl e7574

Page 361 of 397

http://wiki.apache.org/solr/QueryElevationComponent

Solr Reference Guide Jan 10, 2012

2. Change the port number:

perl -pi -e s/8983/7574/ g exanpl e7574/etc/jetty. xn
exanpl e7574/ exanpl edocs/ post . sh

3. In the first window, start up the server on port 8983:

cd exanpl ejava -server -jar start.jar

4. In the second window, start up the server on port 7574:

cd exanpl e7574j ava -server -jar start.jar

5. In the third window, index some example documents to each server:

cd exanpl e/ exanpl edocs. /post.sh \[a-m]\ *. xn cd
..1..lexanpl e7574/ exanpl edocs. / post.sh \[n-z\]*. xni

6. Now do a distributed search across both servers with your browser or curl :

curl
'http://localhost:8983/so|r/select?shardszlocalhost:8983/so|r,IocaIhost:7574/so|r&i1(

Page 362 of 397

Solr Reference Guide Jan 10, 2012

Index Replication

Index Replication distributes complete copies of a master index to one or more slave servers. The
master server continues to manage updates to the index. All querying is handled by the slaves.
This division of labor enables Solr to scale to provide adequate responsiveness to queries against
large search volumes.

The figure below shows a Solr configuration using index replication. The master server's index is
replicated on the slaves.

Replication
Master

slavel slave2 slave3

A Solr index can be replicated across multiple slave servers, which then process requests.

Topics covered in this section:

Index Replication in Solr

Replication Terminology

Configuring the Replication RequestHandler on a Master Server
Index Replication using ssh and rsync

The Snapshot and Distribution Process
Snapshot Directories

Solr Distribution Scripts

Solr Distribution-related Cron Jobs

Commit and Optimization

Distribution and Optimization

Performance Tuning for Script-based Replication

Index Replication in Solr

Page 363 of 397

Solr Reference Guide Jan 10, 2012

Solr includes a Java implementation of index replication that works over HTTP.
For information on the ssh/r sync based replication, see Index Replication using ssh and rsync.

The Java-based implementation of index replication offers these benefits:

Replication without requiring external scripts

The configuration affecting replication is controlled by a single file, sol rconfi g. xml
Supports the replication of configuration files as well as index files

Works across platforms with same configuration

No reliance on OS-dependent hard links

Tightly integrated with Solr; an admin page offers fine-grained control of each aspect of
replication

® The Java-based replication feature is implemented as a RequestHandler. Configuring
replication is therefore similar to any normal RequestHandler.

Replication Terminology

The table below defines the key terms associated with Solr replication.

Term Definition

Collection A Lucene collection is a directory of files. These files make up the indexed and
returnable data of a Solr search repository.

Distribution The copying of a collection from the master server to all slaves. The distribution
process takes advantage of Lucene's index file structure.

Inserts and As inserts and deletes occur in the collection, the directory remains unchanged.

Deletes Documents are always inserted into newly created files. Documents that are
deleted are not removed from the files. They are flagged in the file, deletable, and
are not removed from the files until the collection is optimized.

Master and The Solr distribution model uses the master/slave model. The master is the service

Slave which receives all updates initially and keeps everything organized. Solr uses a
single update master server coupled with multiple query slave servers. All changes
(such as inserts, updates, deletes, etc.) are made against the single master server.
Changes made on the master are distributed to all the slave servers which service
all query requests from the clients.

Update An update is a single change request against a single Solr instance. It may be a
request to delete a document, add a new document, change a document, delete all
documents matching a query, etc. Updates are handled synchronously within an
individual Solr instance.

Page 364 of 397

Solr Reference Guide Jan 10, 2012

Optimization

Segments

mergeFactor

Snapshot

A process that compacts the index and merges segments in order to improve query
performance. New secondary segment(s) are created to contain documents
inserted into the collection after it has been optimized. A Lucene collection must be
optimized periodically to maintain satisfactory query performance. Optimization is
run on the master server only. An optimized index will give you a performance gain
at query time of at least 10%. This gain may be more on an index that has become
fragmented over a period of time with many updates and no optimizations.
Optimizations require a much longer time than does the distribution of an
optimized collection to all slaves.

The number of files in a collection.

A parameter that controls the number of files (segments) in a collection. For
example, when mergeFactor is set to 3, Solr will fill one segment with documents
until the limit maxBufferedDocs is met, then it will start a new segment. When the
number of segments specified by mergeFactor is reached—in this example, 3—then
Solr will merge all the segments into a single index file, then begin writing new
documents to a new segment.

A directory containing hard links to the data files. Snapshots are distributed from
the master server when the slaves pull them, "smartcopying" the snapshot
directory that contains the hard links to the most recent collection data files.

Configuring the Replication RequestHandler on a Master Server

The example below shows how to configure the Replication RequestHandler on a master server.

Page 365 of 397

Solr Reference Guide Jan 10, 2012

<request Handl er nane="/replication" class="solr.ReplicationHandl er" >
<l st name="nmster">

<!--Replicate on 'optimze'. Oher values can be 'conmt', 'startup'.
It is possible to have multiple entries of this config string-->

<str name="replicateAfter">optim ze</str>

<I--Create a backup after 'optimze'. Qther values can be 'conmit', 'startup'.
It is possible to have multiple entries of this config string.
Note that this is just for backup, replication does not require this. -->
<l-- <str nanme="backupAfter">optim ze</str> -->

<I--Specify the nunber of backup copies to keep. The default value for this
paraneter is MAX_VALUE. -->

<l-- <int name="nunber ToKeep">2</int> -->

<I--1f configuration files need to be replicated give the nanes here, separated
by coma -->

<str name="confFil es">schema. xm , st opwords. txt, el evate. xm </str>

<I--The default value of reservation is 10 secs. Nornally , you should not need
to specify this -->

<str nane="conm t ReserveDuration">00: 00: 10</str>
</|st>
</ request Handl er >

® If your commits are very frequent and network is particularly slow, you can tweak an
extra attribute <str nane="conmi t ReserveDur ati on">00: 00: 10</ str>. This is
roughly the time taken to download 5MB from master to slave. Default is 10
seconds.

® If you are using startup option for repl i cat eAfter, it is necessary to have a
commit/optimize entry also, if you want to trigger replication on future
commits/optimizes. If only the startup option is given, replication will not be
triggered on subsequent commits/optimizes after it is done for the first time at the
start.

Page 366 of 397

Solr Reference Guide Jan 10, 2012

Replicating solrconfig.xml

In the configuration file on the master server, include a line like the following:

<str name="confFiles">solrconfig_slave.xm :solrconfig.xm,6 x.xm,y.xm</str>

This ensures that the local configuration sol rconfi g_sl ave. xml will be saved as sol rconfi g. xm
on the slave. All other files will be saved with their original names.

On the master server, the file name of the slave configuration file can be anything, as long as the
name is correctly identified in the conf Fi | es string; then it will be saved as whatever file nhame
appears after the colon ':'".

Configuring the Replication RequestHandler on a Slave Server

The code below shows how to configure a ReplicationHandler on a slave.

<request Handl er nanme="/replication" class="solr.ReplicationHandl er" >
<l st name="sl ave">

<I--fully qualified url for the replication handler of master. It is possible
to pass on this as
a request param for the fetchi ndex comand-->

<str name="masterUrl">http://renote_host:port/solr/corenane/replication</str>

<I--Interval in which the slave should poll master .Format is HHmmss . If
this is absent slave does not
pol | autonatically.

But a fetchindex can be triggered fromthe admn or the http APl -->
<str name="polllnterval ">00: 00: 20</str>
<!-- THE FOLLOW NG PARAMETERS ARE USUALLY NOT REQUI RED- - >

<I--to use conpression while transferring the index files. The possible val ues
are internal | external

if the value is "external' nmake sure that your master Solr has the settings to
honor the

accept - encodi ng header.

See here for details: http://w ki.apache. org/solr/SolrHttpConpression

If it is 'internal' everything will be taken care of autonatically.

USE THIS ONLY | F YOUR BANDWDTH | S LON. TH' S CAN ACTUALLY SLOADOMN
REPLI CATION I N A LAN-->

Page 367 of 397

Solr Reference Guide Jan 10, 2012

<str name="conpression">i nternal </str>

<I--The follow ng values are used when the slave connects to the master to

downl oad the index files.

Default values inplicitly set as 5000nms and 10000nms respectively. The user
DOES NOT need to specify

these unless the bandwidth is extrenely low or if there is an extrenely high
| at ency-->

<str name="htt pConnTi meout " >5000</str>
<str name="htt pReadTi neout ">10000</str >

<l-- |f HTTP Basic authentication is enabled on the master, then the slave can

be
configured with the following -->

<str name="htt pBasi cAut hUser " >user nane</ str>
<str name="htt pBasi cAut hPasswor d" >passwor d</ st r >
</lst>
</ request Handl er >

If you are not using cores, then you simply omit the cor enane parameter above in the
mast er Url . To ensure that the URL is correct, just hit the URL with a browser. You must
get a status OK response.

Setting Up a Repeater with the ReplicationHandler

A master may be able to serve only so many slaves without affecting performance. Some
organizations have deployed slave servers across multiple data centers. If each slave downloads
the index from a remote data center, the resulting download may consume too much network
bandwidth. To avoid performance degradation in cases like this, you can configure one or more
slaves as repeaters. A repeater is simply a node that acts as both a master and a slave.

® To configure a server as a repeater, the definition of the Replication r equest Handl er in the
sol rconfi g. xn file must include file lists of use for both masters and slaves.

® Be sure to set the repl i cat eAfter parameter to commit, even if replicateAfter is setto
optimize on the main master. This is because on a repeater (or any slave), a commit is called
only after the index is downloaded. The optimize command is never called on slaves.

® QOptionally, one can configure the repeater to fetch compressed files from the master through
the compression parameter to reduce the index download time.

Here is an example of a ReplicationHandler configuration for a repeater:

Page 368 of 397

Solr Reference Guide Jan 10, 2012

<request Handl er nanme="/replication" class="solr.ReplicationHandl er">
<l st name="nmster">
<str name="replicateAfter">commit</str>
<str name="confFi |l es">schema. xm , st opwor ds. t xt, synonymns. t xt </ str>

</lst>

<l st nanme="sl| ave">
<str name="masterUrl">http:// master.solr.conpany.com 8983/solr/replication</str>
<str name="pol || nterval ">00: 00: 60</str>

</lst>

</ request Handl er >

Commit and Optimize Operations

When a commit or optimize operation is performed on the master, the RequestHandler reads the
list of file names which are associated with each commit point. This relies on the repli cat eAfter
parameter in the configuration to decide which types of events should trigger replication.

replicateAfter Setting on the Description

Master

commit Triggers replication whenever a commit is performed on the
master index.

optimize Triggers replication whenever the master index is optimized.

startup Triggers replication whenever the master index starts up.

The replicateAfter parameter can accept multiple arguments. For example:

<str name="replicateAfter">startup</str>
<str name="replicateAfter">commt</str>
<str name="replicateAfter">optim ze</str>

Slave Replication

The master is totally unaware of the slaves. The slave continuously keeps polling the master
(depending on the pol I I nt erval parameter) to check the current index version the master. If the
slave finds out that the master has a newer version of the index it initiates a replication process.

The steps are as follows:
® The slaveissues afilelist command to get the list of the files. This command returns the
names of the files as well as some metadata (for example, size, a lastmodified timestamp, an

alias if any).

Page 369 of 397

Solr Reference Guide Jan 10, 2012

® The slave checks with its own index if it has any of those files in the local index. It then runs
the filecontent command to download the missing files. This uses a custom format (akin to
the HTTP chunked encoding) to download the full content or a part of each file. If the
connection breaks in between , the download resumes from the point it failed. At any point,
the slave tries 5 times before giving up a replication altogether.

® The files are downloaded into a temp directory, so that if either the slave or the master
crashes during the download process, no files will be corrupted. Instead, the current
replication will simply abort.

® After the download completes, all the new files are 'mov'ed to the live index directory and the
file's timestamp is same as its counterpart in on the master master.

® A commit command is issued on the slave by the Slave's ReplicationHandler and the new
index is loaded.

Replicating Configuration Files

To replication configuration files, list them using using the conf Fi | es parameter. Only files found
in the conf directory of the master's Solr instance will be replicated

Solr replicates configuration files only when the index itself is replicated. That means even if a
configuration file is changed on the master, that file will be replicated only after there is a new
commit/optimize on master's index.

Unlike the index files, where the timestamp is good enough to figure out if they are identical,
configuration files are compared against their checksum. The schema. xm files (on master and
slave) are judged to be identical if their checksums are identical.

As a precaution when replicating configuration files, Solr copies configuration files to a temporary
directory before moving them into their ultimate location in the conf directory. The old
configuration files are then renamed and kept in the same conf/ directory. The ReplicationHandler
does not automatically clean up these old files.

If a replication involved downloading of at least one configuration file, the ReplicationHandler issues
a core-reload command instead of a commit command.

Resolving Corruption Issues on Slave Servers

If documents are added to the slave, then the slave is no longer in sync with its master. However,
the slave will not undertake any action to put itself in sync, until the master has new index data.
When a commit operation takes place on the master, the index version of the master becomes
different from that of the slave. The slave then fetches the list of files and finds that some of the
files present on the master are also present in the local index but with different sizes and
timestamps. This means that the master and slave have incompatible indexes. To correct this
problem, the slave then copies all the index files from master to a new index directory and and
asks the core to load the fresh index from the new directory.

Page 370 of 397

Solr Reference Guide

Jan 10, 2012

HTTP API Commands for the ReplicationHandler

You can use the HTTP commands below to control the ReplicationHandler's operations.

Command

http://master_host:port
/solr/replication?command=enablereplication

http://master_host:port
/solr/replication?command=disablereplication

http://host:port/solr/replication?command=indexversion

http://slave_host:port/solr/replication?command=fetchindex

http://slave_host:port/solr/replication?command=abortfetch

http://slave_host:port/solr/replication?command=enablepoll

http://slave_host:port/solr/replication?command=disablepoll

http://slave_host:port/solr/replication?command=details

Description

Enables replication on the
master for all its slaves.

Disables replication on the
master for all its slaves.

Returns the version of the
latest replicatable index on
the specified master or slave

Forces the specified slave to
fetch a copy of the index
from its master.

If you like, you can pass an
extra attribute such as
masterUrl or compression
(or any other parameter
which is specified in the

<l st name="sl ave" > tag) to
do a one time replication
from a master. This obviates
the need for hard-coding the
master in the slave.

Aborts copying an index
from a master to the
specified slave.

Enables the specified slave
to poll for changes on the
master.

Disables the specified slave
from polling for changes on
the master.

Retrieves configuration
details and current status.

Page 371 of 397

Solr Reference Guide

Jan 10, 2012

http://host:port/solr/replication?command=filelist&indexversion=< Retrieves a list of Lucene
index-version-number>

http://master_host:port/solr/replication?command=backup

Using the Replication Dashboard

files present in the specified
host's index. You can
discover the version number
of the index by running the

i ndexver si on command.

Creates a backup on master
if there are committed index
data in the server;
otherwise, does nothing.
This command is useful for
making periodic backups.

The Solr Replication Dashboard, which is accessible through the Distribution link on the Admin Web
interfaces, shows the following information related to replication managed through the Replication
Handler:

The figure below shows the Replication Dashboard for a slave server.

status of current replication

percentage/size downloaded/to be downloaded
the name of the current file being downloaded
the time taken compared to the time remaining

Page 372 of 397

Solr Reference Guide Jan 10, 2012

anNnon Solr replication admin page
| o Solr replication admin page % | .z Solr replication admin page x | 4 | -
GD |sm localhost:8984 /solrfadmin/replication/ v C‘I (S~ SL\rnnqanJ E]
. .

Solr replication (example) Slave "2,
drews-macbook:8984 - -
cwd=/Users/drewwheeler/apache-solr-3.4.0/example8984 SolrHome=solr/./ SOI r

(WHAT 1S THIS PAGE?)

Master http://localhost:8983/solr/replication

Latest Index Version:null, Generation: null
Replicatable Index Version:1317325247607, Generation: 3

Poll Interval 00:00:60

Local Index Index Version: 1317325247607, Generation: 3
Location: /Users/drewwheeler/apache-solr-3.4.0/example8984/solr/data/index
Size: 19.29 KB

Times Replicated Since Startup: 33

Previous Replication Done At: Wed Oct 19 22:13:00 PDT 2011
Config Files Replicated At: null

Config Files Replicated: null

Times Config Files Replicated Since Startup: null

Next Replication Cycle At: Wed Oct 19 22:14:00 PDT 2011

Controls Disable Foll
Replicate Now

Current Time: Wed Oct 19 22:13:33 PDT 2011
Server Start At: Wed Oct 19 22:12:43 PDT 2011

RETURN TO ADMIN PAGE

4
The Replication Dashboard reports details of the master-slave configuration and offers controls for
managing the replication.

You can perform the following actions from the Replication Dashboard:

® Enable/Disable polling
® Force-start replication (sometimes useful for making a backup copy of an index)
® Abort an ongoing replication process

Index Replication using ssh and rsync

Solr supports ssh/r sync-based replication. This mechanism only works on systems that support
removing open hard links.

Solr distribution is similar in concept to database replication. All collection changes come to one
master Solr server. All production queries are done against query slaves. Query slaves receive all
their collection changes indirectly — as new versions of a collection which they pull from the
master. These collection downloads are polled for on a cron'd basis.

A collection is a directory of many files. Collections are distributed to the slaves as snapshots of
these files. Each snapshot is made up of hard links to the files so copying of the actual files is not
necessary when snapshots are created. Lucene only significantly rewrites files following an
optimization command. Generally, once a file is written, it will change very little, if at all. This
makes the underlying transport of rsync very useful. Files that have already been transferred and
have not changed do not need to be re-transferred with the new edition of a collection.

Page 373 of 397

Solr Reference Guide Jan 10, 2012

The Snapshot and Distribution Process

Here are the steps that Solr follows when replicating an index:

1. The snapshooter command takes snapshots of the collection on the master. It runs when
invoked by Solr after it has done a commit or an optimize.

2. The snappuller command runs on the query slaves to pull the newest snapshot from the
master. This is done via rsync in daemon mode running on the master for better performance
and lower CPU utilization over rsync using a remote shell program as the transport.

3. The snapinstaller runs on the slave after a snapshot has been pulled from the master. This
signals the local Solr server to open a new index reader, then auto-warming of the cache(s)
begins (in the new reader), while other requests continue to be served by the original index
reader. Once auto-warming is complete, Solr retires the old reader and directs all new
queries to the newly cache-warmed reader.

4. All distribution activity is logged and written back to the master to be viewable on the
distribution page of its GUI.

5. 0Old versions of the index are removed from the master and slave servers by a cron'd
snapcleaner.

If you are building an index from scratch, distribution is the final step of the process.

Manual copying of index files is not recommended; however, running distribution commands
manually (that is, not relying on crond to run them) is perfectly fine.

Snapshot Directories

Snapshots are stored in directories whose names follow this format: snapshot. yyyymddHHMVES

All the files in the index directory are hard links to the latest snapshot. This design offers these
advantages:

® The Solr implementation can keep multiple snapshots on each host without needing to keep
multiple copies of index files that have not changed.

® File copying from master to slave is very fast.

® Taking a snapshot is very fast as well.

Solr Distribution Scripts

For the Solr distribution scripts, the name of the index directory is defined either by the
environment variable dat a_di r in the configuration file sol r/ conf/ scri pts. conf or the command
line argument - d. It should match the value used by the Solr server which is defined in
solr/conf/solrconfig.xn .

Page 374 of 397

Solr Reference Guide Jan 10, 2012

All Solr collection distribution scripts are bundled in a Solr release and reside in the directory
sol r/src/scripts. Lucid Imagination recommends that you install the scripts in a sol r/ bi n/

directory.

Collection distribution scripts create and prepare for distribution a snapshot of a search collection
after each commit and optimize request if the postCommit and postOptimize event listener is
configured in solrconfig.xml to execute snapshooter.

The snapshooter script creates a directory snapshot . <t s>, where <t s> is a timestamp in the
format, yyyymddHHWES. It contains hard links to the data files.

Snapshots are distributed from the master server when the slaves pull them, "smartcopying" the
snapshot directory that contains the hard links to the most recent collection data files.

Name

snapshooter

snappuller

snappuller-enable

snapinstaller

snapcleaner

rsyncd-start

rsyncd daemon

Description

Creates a snapshot of a collection. Snapshooter is normally configured to run
on the master Solr server when a commit or optimize happens. Snapshooter
can also be run manually, but one must make sure that the index is in a
consistent state, which can only be done by pausing indexing and issuing a
commit.

A shell script that runs as a cron job on a slave Solr server. The script looks
for new snapshots on the master Solr server and pulls them.

Creates the file sol r/ 1 ogs/ snappul | er - enabl ed, whose presence enables
snappuller.

Installs the latest snapshot (determined by the timestamp) into the place,
using hard links (similar to the process of taking a snapshot). Then

sol r/ 1 ogs/ snapshot . current is written and scp'd (secure copied) back to
the master Solr server. snapinstaller then triggers the Solr server to open a
new Searcher.

Runs as a cron job to remove snapshots more than a configurable number of
days old or all snapshots except for the most recent n humber of snapshots.
Also can be run manually.

Starts the rsyncd daemon on the master Solr server which handles collection
distribution requests from the slaves.

Efficiently synchronizes a collection—between master and slaves—by copying
only the files that actually changed. In addition, rsync can optionally compress
data before transmitting it.

Page 375 of 397

Solr Reference

Guide Jan 10, 2012

rsyncd-stop

rsyncd-enable

Stops the rsyncd daemon on the master Solr server. The stop script then
makes sure that the daemon has in fact exited by trying to connect to it for up
to 300 seconds. The stop script exits with error code 2 if it fails to stop the
rsyncd daemon.

Creates the file sol r/ 1 ogs/ r syncd- enabl ed, whose presence allows the
rsyncd daemon to run, allowing replication to occur.

rsyncd-disable Removes the file sol r/ | ogs/ r syncd- enabl ed, whose absence prevents the

rsyncd daemon from running, preventing replication.

For more information about usage arguments and syntax see the SolrCollectionDistributionScripts
page on the Solr Wiki.

Solr Distribution-related Cron Jobs

The distribution process is automated through the use of cron jobs. The cron jobs should run under
the user ID that the Solr server is running under.

Cron Job

snapcleaner

snappuller
snapinstaller

Description

The snapcleaner job should be run out of cron at the regular basis to clean up old
snapshots. This should be done on both the master and slave Solr servers. For
example, the following cr on job runs everyday at midnight and cleans up
snapshots 8 days and older:

00 * * * <solr.solr.home>/sol r/bin/snapcl eaner -D 7

Additional cleanup can always be performed on-demand by running snapcleaner
manually.

On the slave Solr servers, snappuller should be run out of cron regularily to get the
latest index from the master Solr server. It is a good idea to also run snapinstaller
with snappuller back-to-back in the same crontab entry to install the latest index
once it has been copied over to the slave Solr server.

For example, the following cron job runs every 5 minutes to keep the slave Solr server in sync with
the master Solr server:

0, 5, 10, 15, 20,

25, 30, 35, 40, 45,50,55 * * * *

<sol r. sol r. honme>/ sol r/ bi n/ snappul | er; <sol r. sol r. hone>/ sol r/ bi n/ snapi nstal | er

* Modern cron allows this to be shortened to */5 * * * * |

Page 376 of 397

http://wiki.apache.org/solr/SolrCollectionDistributionScripts

Solr Reference Guide Jan 10, 2012

Commit and Optimization

On a very large index, adding even a few documents then running an optimize operation causes
the complete index to be rewritten. This consumes a lot of disk I/O and impacts query
performance. Optimizing a very large index may even involve copying the index twice and calling
optimize at the beginning and at the end. If some documents have been deleted, the first optimize
call will rewrite the index even before the second index is merged.

Optimization is an I/0O intensive process, as the entire index is read and re-written in optimized
form. Anecdotal data shows that optimizations on modest server hardware can take around 5
minutes per GB, although this obviously varies considerably with index fragmentation and
hardware bottlenecks. We do not know what happens to query performance on a collection that
has not been optimized for a long time. We do know that it will get worse as the collection
becomes more fragmented, but how much worse is very dependent on the manner of updates and
commits to the collection. The setting of the mer geFact or attribute affects performance as well.
Dividing a large index with millions of documents into even as few as five segments may degrade
search performance by as much as 15-20%.

We are presuming optimizations should be run once following large batch-like updates to the
collection and/or once a day.

Distribution and Optimization

The time required to optimize a master index can vary dramatically. A small index may be
optimized in minutes. A very large index may take hours. The variables include the size of the
index and the speed of the hardware.

Distributing a newly optimized collection may take only a few minutes or up to an hour or more,
again depending on the size of the index and the performance capabilities of network connections
and disks. During optimization the machine is under load and does not process queries very well.
Given a schedule of updates being driven a few times an hour to the slaves, we cannot run an
optimize with every committed snapshot. We do recommend that an optimize be run on the master
at least once a day.

Page 377 of 397

Solr Reference Guide Jan 10, 2012

Copying an optimized collection means that the entire collection will need to be transferred during
the next snappull. This is a large expense, but not nearly as huge as running the optimize
everywhere. Consider this example: on a three-slave one-master configuration, distributing a
newly-optimized collection takes approximately 80 seconds total. Rolling the change across a tier
would require approximately ten minutes per machine (or machine group). If this optimize were
rolled across the query tier, and if each collection being optimized were disabled and not receiving
queries, a rollout would take at least twenty minutes and potentially as long as an hour and a half.
Additionally, the files would need to be synchronized so that the following rsync, snappull would
not think that the independently optimized files were different in any way. This would also leave
the door open to independent corruption of collections instead of each being a perfect copy of the
master.

Optimizing on the master allows for a straight-forward optimization operation. No query slaves
need to be taken out of service. The optimized collection can be distributed in the background as
queries are being normally serviced. The optimization can occur at any time convenient to the
application providing collection updates.

Performance Tuning for Script-based Replication

Because fetching a master index uses the rsync utility, which transfers only the segments that
have changed, replication is normally very fast. However, if the master server has been optimized,
then rsync may take a long time, because many segments will have been changed in the process
of optimization.

® If replicating to multiple slaves consumes too much network bandwidth, consider the use of a
repeater.

® Make sure that slaves do not pull from the master so frequently that a previous replication is
still running when a new one is started. In general, it's best to allow at least a minute for the
replication process to complete. But in configurations with low network bandwidth or a very
large index, even more time may be required.

Page 378 of 397

Solr Reference Guide Jan 10, 2012

Combining Distribution and Replication

When your index is too large for a single machine and you have a query volume that single shards
cannot keep up with, it's time to replicate each shard in your distributed search setup.

The idea is to combine distributed search with replication. As shown in the figure below, a

combined distributed-replication configuration features a master server for each shard and then 1-
n slaves that are replicated from the master. As in a standard replicated configuration, the master
server handles updates and optimizations without adversely affecting query handling performance.

Query requests should be load balanced across each of the shard slaves. This gives you both
increased query handling capacity and fail-over backup if a server goes down.

Distributed + Replication

Shard 1 Master Shard 2 Master Shard 3 Master

H

slavel slavel slavel

—» — —-
slave?2 slave2 slave?2

A Solr configuration combining both replication and master-slave distribution.

None of the master shards in this configuration know about each other. You index to each master,
the index is replicated to each slave, and then searches are distributed across the slaves, using one
slave from each master/slave shard.

For high availability you can use a load balancer to set up a virtual IP for each shard's set of slaves.
If you are new to load balancing, HAProxy (http://haproxy.1lwt.eu/) is a good open source software
load-balancer. If a slave server goes down, a good load-balancer will detect the failure using some
technique (generally a heartbeat system), and forward all requests to the remaining live slaves
that served with the failed slave. A single virtual IP should then be set up so that requests can hit a
single IP, and get load balanced to each of the virtual IPs for the search slaves.

Page 379 of 397

http://haproxy.1wt.eu/

Solr Reference Guide Jan 10, 2012

With this configuration you will have a fully load balanced, search-side fault-tolerant system (Solr
does not yet support fault-tolerant indexing). Incoming searches will be handed off to one of the
functioning slaves, then the slave will distribute the search request across a slave for each of the
shards in your configuration. The slave will issue a request to each of the virtual IPs for each shard,
and the load balancer will choose one of the available slaves. Finally, the results will be combined
into a single results set and returned. If any of the slaves go down, they will be taken out of
rotation and the remaining slaves will be used. If a shard master goes down, searches can still be
served from the slaves until you have corrected the problem and put the master back into
production.

Page 380 of 397

Solr Reference Guide Jan 10, 2012

Merging Indexes

If you need to combine indexes from two different projects or from multiple servers previously
used in a distributed configuration, you can use either the IndexMergeTool included in
| ucene- m sc or the Cor eAdni nHandl er .

To merge indexes, they must meet these requirements:

® The two indexes must be compatible: their schemas should include the same fields and they

should analyze fields the same way.

® The indexes must not include duplicate data.

Optimally, the two indexes should be built using the same schema.

Using IndexMergeTool

To merge the indexes, do the following:

1.

Find the lucene JAR file that your version of Solr is using. You can do this by copying your
sol r. war file somewhere and unpacking it (j ar xvf sol r.war). Your lucene JAR file should
be in VEB- I NF/ | i b. It is probably called something like

| ucene- core-2007- 05-20 _00-04-53.jar.

Copy it somewhere easy to find.

Download a copy of Lucene from http://www.lucidimagination.com/downloads and unpack it.
The file you're interested in is contri b/ m sc/ | ucene-m sc- VERSI ON. j ar .

Make sure that both indexes you want to merge are closed.

Issue this command:

java -cp /path/to/lucene-core-VERSION.jar:/path/to/lucene-m sc-VERSION. jar
or g/ apache/ | ucene/ m sc/ | ndexMer geTool
/ pat h/ t o/ newi ndex
/ path/to/indexl
/ path/to/index2

This will create a new index at / pat h/ t o/ newi ndex that contains both index1 and index2.

Page 381 of 397

http://www.lucidimagination.com/downloads

Solr Reference Guide Jan 10, 2012

6. Copy this new directory to the location of your application's solr index (move the old one
aside first, of course) and start Solr.

For example:

java -cp /tnp/lucene-core-2007-05-20_00-04-53.jar:
./lucene-2.2.0/contrib/m sc/lucene-m sc-2.2.0.jarorg/apache/l ucene/ m sc/ | ndexMer geTq

~

. I newi ndex
.l appl/ sol r/ dat a/ i ndex
.l app2/ sol r/ dat a/ i ndex

Using CoreAdmin

This method uses the CoreAdminHandler with either the i ndexDi r or srcCor e parameters.

The i ndexDi r parameter is used to define the path to the indexes for the cores that should be
merged, and merge them into a 3rd core that must already exist prior to initiation of the merge
process. The indexes must exist on the disk of the Solr host, which may make using this in a
distributed environment cumbersome. With the i ndexDi r parameter, a commit should be called on
the cores to be merged (so the IndexWriter will close), and no writes should be allowed on either
core until the merge is complete. If writes are allowed, corruption may occur on the merged index.
Once complete, a commit should be called on the merged core to make sure the changes are
visible to searchers.

The following example shows how to construct the merge command with i ndexDi r :
http://1 ocal host: 8983/ sol r/ adm n/ cor es?act i on=ner gei ndexes&cor e=cor e0& ndexDi r =/ hone
In this example, core is the new core that is created prior to calling the merge process.

The srcCor e parameter is used to call the cores to be merged by name instead of defining the
path. The cores do not need to exist on the same disk as the Solr host, and the merged core does
not need to exist prior to issuing the command. sr cCor e also protects against corruption during
creation of the merged core index, so writes are still possible while the merge occurs. However,
srcCor e can only merge Solr Cores - indexes built directly with Lucene should be merged with
either the IndexMergeTool or the i ndexDi r parameter.

The following example shows how to construct the merge command with srcCor e:

http://1 ocal host: 8983/ sol r/ adm n/ cor es?act i on=ner gei ndexes&cor e=cor e0&sr cCor e=cor el&

Page 382 of 397

Solr Reference Guide Jan 10, 2012

Client APIs

This section discusses the available client APIs for Solr. It covers the following topics:
Introduction to Client APIs: A conceptual overview of Solr client APIs.

Choosing an Output Format: Information about choosing a response format in Solr.
Using JavaScript: Explains why you a client API is not needed for JavaScript responses.
Using Python: Information about Python and JSON reponses.

Client API Lineup: A list of all Solr Client APIs, with links.

Using Solrl: Detailed information about Solr], an API for working with Java applications.
Using Solr From Ruby: Detailed information about using Solr with Ruby applications.

MBean Request Handler: Describes the MBean request handler for programmatic access to Solr
server statistics and information.

Page 383 of 397

Solr Reference Guide Jan 10, 2012

Introduction to Client APIs

At its heart, Solr is a Web application, but because it is built on open protocols, any type of client
application can use Solr.

HTTP is the fundamental protocol used between client applications and Solr. The client makes a
request and Solr does some work and provides a response. Clients use requests to ask Solr to do
things like perform queries or index documents.

Client applications can reach Solr by creating HTTP requests and parsing the HTTP responses.
Client APIs encapsulate much of the work of sending requests and parsing responses, which makes
it much easier to write client applications.

Clients use Solr's five fundamental operations to work with Solr. The operations are query, index,
delete, commit, and optimize.

Queries are executed by creating a URL that contains all the query parameters. Solr examines the
request URL, performs the query, and returns the results. The other operations are similar,
although in certain cases the HTTP request is a POST operation and contains information beyond
whatever is included in the request URL. An index operation, for example, may contain a document
in the body of the request.

Solr also features an EmbeddedSolrServer that offers a Java API without requiring an HTTP
connection. For details, see Using SolrJ.

Page 384 of 397

Solr Reference Guide Jan 10, 2012

Choosing an Output Format

Many programming environments are able to send HTTP requests and retrieve responses. Parsing
the responses is a slightly more thorny problem. Fortunately, Solr makes it easy to choose an
output format that will be easy to handle on the client side.

Specify a response format using the wt parameter in a query. The available response formats are
documented in Response Writers.

Most client APIs hide this detail for you, so for many types of client applications, you won't ever
have to specify a w parameter. In JavaScript, however, the interface to Solr is a little closer to the
metal, so you will need to add this parameter yourself.

Page 385 of 397

Solr Reference Guide Jan 10, 2012

Using JavaScript

Using Solr from JavaScript clients is so straightforward that it deserves a special mention. In fact,
it is so straightforward that there is no client API. You don't need to install any packages or
configure anything.

HTTP requests can be sent to Solr using the standard XM_Ht t pRequest mechanism.

Out of the box, Solr can send JavaScript Object Notation (JSON) responses, which are easily
interpreted in JavaScript. Just add wt =j son to the request URL to have responses sent as JSON.

For more information and an excellent example, read the SolJSON page on the Solr Wiki:

http://wiki.apache.org/solr/SolJSON

Page 386 of 397

http://wiki.apache.org/solr/SolJSON

Solr Reference Guide Jan 10, 2012

Using Python

Solr includes an output format specifically for Python, but JSON output is a little more robust.

Simple Python

Making a query is a simple matter. First, tell Python you will need to make HTTP connections.

fromurllib2 inmport *

Now open a connection to the server and get a response. The wt query parameter tells Solr to
return results in a format that Python can understand.

connection = url open(
"http://1ocal host: 8983/ sol r/ sel ect 2q=cheese&at =pyt hon')
response = eval (connection.read())

Now interpreting the response is just a matter of pulling out the information that you need.

print response\[' response'\]\[' nunFound'\], "docunents found."
Print the name of each docunent.

for document in response\['response'\]\['docs'\]:
print " Name =", document\['nane'\]

Python with JSON

JSON is a more robust response format, but you will need to add a Python package in order to use
it. At a command line, install the simplejson package like this:

$ sudo easy_install sinplejson

Once that is done, making a query is nearly the same as before. However, notice that the wt query
parameter is now json, and the response is now digested by si npl ej son. | oad() .

Page 387 of 397

Solr Reference Guide

Jan 10, 2012

fromurllib2 inmport *

i mport sinplejson

connection = urlopen('http://1ocal host:8983/sol r/sel ect 72q=cheese&wm =j son')
response = sinpl ej son. | oad(connecti on)

print response\['response'\]\[' nunFound'\], "docunents found."

Print the nanme of each docunent.

for docunent in response\['response' \]\['docs'\]:
print * Nane =", docunment\['nane'\]

Page 388 of 397

Solr Reference Guide Jan 10, 2012

Client API Lineup

The Solr Wiki contains a list of client APIs at http://wiki.apache.org/solr/IntegratingSolr.

Here is the list of client APIs, current at this writing (November 2011):

Name Environment URL

SolRuby Ruby http://wiki.apache.org/solr/SolRuby
DelSolr Ruby http://delsolr.rubyforge.org/
acts_as_solr Rails http://acts-as-solr.rubyforge.org/,

http://rubyforge.org/projects/background-solr/

Flare Rails http://wiki.apache.org/solr/Flare

SolPHP PHP http://wiki.apache.org/solr/SolPHP

Solr] Java http://wiki.apache.org/solr/Sollava

Python API Python http://wiki.apache.org/solr/SolPython

PySolr Python http://code.google.com/p/pysolr/

SolPerl Perl http://wiki.apache.org/solr/SolPerl

Solr.pm Perl http://search.cpan.org/~garafola/Solr-0.03/lib/Solr.pm

SolrForrest Forrest/Cocoon http://wiki.apache.org/solr/SolrForrest

SolrSharp C# http://www.codeplex.com/solrsharp
SolColdfusion ColdFusion http://solcoldfusion.riaforge.org/

SolrNet .NET http://code.google.com/p/solrnet/

AJAX Solr AJAX http://github.com/evolvingweb/ajax-solr/wiki

Page 389 of 397

http://wiki.apache.org/solr/IntegratingSolr
http://wiki.apache.org/solr/SolRuby
http://delsolr.rubyforge.org/
http://acts-as-solr.rubyforge.org/
http://rubyforge.org/projects/background-solr/
http://wiki.apache.org/solr/Flare
http://wiki.apache.org/solr/SolPHP
http://wiki.apache.org/solr/SolJava
http://wiki.apache.org/solr/SolPython
http://code.google.com/p/pysolr/
http://wiki.apache.org/solr/SolPerl
http://search.cpan.org/~garafola/Solr-0.03/lib/Solr.pm
http://wiki.apache.org/solr/SolrForrest
http://www.codeplex.com/solrsharp
http://solcoldfusion.riaforge.org/
http://code.google.com/p/solrnet/
http://github.com/evolvingweb/ajax-solr/wiki

Solr Reference Guide Jan 10, 2012

Using Solr)

Solr] (also sometimes known as SolJava) is an API that makes it easy for Java applications to talk
to Solr. Solr] hides a lot of the details of connecting to Solr and allows your application to interact
with Solr with simple high-level methods.

The center of Solr] is the org. apache. sol r. client. sol rj package, which contains just five main
classes. Begin by creating a SolrServer, which represents the Solr instance you want to use. Send
SolrRequests or SolrQuerys and get back SolrResponses.

SolrServer is abstract, so to connect to a remote Solr instance, you'll actually create an instance of
org. apache. solr.client.solrj.inpl.ComopnsHttpSol r Server, which knows how to use HTTP to
talk to Solr.

String urlString = "http://local host: 8983/solr";
Sol r Server solr = new ConmonsHt t pSol r Server (url String);

Creating a SolrServer does not make a network connection - that happens later when you perform
a query or some other operation — but it will throw Mal f or nedURLExcept i on if you give it a bad
URL string.

Once you have a SolrServer, you can use it by calling methods like query(), add(), and commit ().

For more information on Solr], see https://wiki.apache.org/solr/Solrj.

Building and Running Solr] Applications

The Solr] API is included with Solr, so you do not have to download or install anything else.
However, in order to build and run applications that use Solr], you have to add some libraries to
the classpath.

At build time, the examples presented with this section require the following libraries in the
classpath (all paths are relative to the root of the Solr installation).

apache-sol r- comon- 3. x. 0. j arapache-solr-solrj-3.x.0.jar

At run time, the examples in this section require the following libraries:

apache-solr-common-3.x.0.jar
apache-solr-solrj-3.x.0.jar
solrj-lib/commons-httpclient-3.x.jar
solrj-lib/commons-logging-1.0.4.jar
solrj-lib/commons-codec-3.x.jar

Page 390 of 397

https://wiki.apache.org/solr/Solrj

Solr Reference Guide Jan 10, 2012

The Ant script bundled with this sections' examples includes the libraries as appropriate when
building and running.

You can sidestep a lot of the messing around with the JAR files by using Maven instead of Ant. All
you will need to do to include Solr] in your application is to put the following dependency in the
project's pom xmi :

<dependency>
<groupl d>or g. apache. sol r </ gr oupl d>
<artifactld>solr-solrj</artifactld>
<ver si on>3. x. 0</ ver si on>

</ dependency>

If you are worried about the Solr] libraries expanding the size of your client application, you can
use a code obfuscator like ProGuard to remove APIs that you are not using. ProGuard is available
here:

http://proguard.sourceforge.net/

Setting XMLResponseParser

Solr] uses a binary format, rather than XML, as its default format. Users of earlier Solr releases
who wish to continue working with XML must explicitly set the parser to the XMLResponseParser,
like so:

server. set Par ser (new XM_.ResponseParser());

Performing Queries

Use query() to have Solr search for results. You have to pass a SolrQuery object that describes
the query, and you will get back a QueryResponse (from the
org. apache. solr.client.solrj.response package).

SolrQuery has methods that make it easy to add parameters to choose a request handler and send
parameters to it. Here is a very simple example that uses the default request handler and sets the
g parameter:

Sol rQuery paraneters = new Sol rQuery();
paraneters.set("q", mueryString);

To choose a different request handler, for example, just set the qt parameter like this:

Page 391 of 397

http://proguard.sourceforge.net/

Solr Reference Guide Jan 10, 2012

paraneters.set("qt", "/spell CheckCompRH");

Once you have your SolrQuery set up, submit it with query() :

Quer yResponse response = solr. query(paraneters);

The client make a network connection, the query is sent, Solr processes the query, and the
response is sent and parsed into a QueryResponse.

The QueryResponse is a collection of documents that satisfy the query parameters. You can
retrieve the documents directly with get Resul t s() and you can call other methods to find out
information about highlighting or facets.

Sol r Docurent Li st |ist = response. get Resul ts();

Indexing Documents

Other operations are just as simple. To index (add) a document, all you need to do is create a
SolrInputDocument and pass it along to the SolrServer's add() method.

String urlString = "http://local host: 8983/solr";

Sol r Server solr = new ConmonsHt t pSol r Server (url String);
Sol r I nput Docunent docunent = new Sol r | nput Docunent () ;
docunent . addFi el d("id", "552199");

docurnent . addFi el d(" name", "Gouda cheese wheel ");
docurnent . addFi el d("pri ce", "49.99");

Updat eResponse response = solr. add(docunent);

Remenber to conmit your changes!

solr.comit();

Uploading Content in XML or Binary Formats

Solr] lets you upload content in XML and binary formats instead of the default XML format. Use the
following to upload using Binary format. this is the same format which Solr] uses to fetch results.

server. set Request Wi ter(new Bi naryRequest Witer());

EmbeddedSolrServer

Page 392 of 397

Solr Reference Guide Jan 10, 2012

The EmbeddedSolrServer provides the Java interface described above without requiring an HTTP
connection. This is the recommended approach if you need to use Solr in an embedded application.
This approach enables you to work with the same Java interface whether or not you have access to
HTTP.

» EmbeddedSolrServer works only with handlers registered in sol rconfi g. xn .
RequestHandler must be mapped to / updat e for a request to function. For information
about configuring handlers in sol rconfi g. xm , see Configuring solrconfig.xml.

Note that the following property could be set through JVM level arguments:

System set Property("solr.solr. honme",

"/ hone/ shal i nsmangar / wor k/ oss/ branch- 1. 3/ exanpl e/ sol r");
CoreContainer.lnitializer initializer = new CoreContainer.Initializer();
CoreCont ai ner coreContainer = initializer.initialize();
EnbeddedSol r Server server = new EnbeddedSol r Ser ver (cor eCont ai ner, "");

If you want to use MultiCore features (which are described in Configuring solr.xml), then you
should use this:

File hone = new File("/path/to/solr/home");

File f = new File(hone, "solr.xm");

Cor eCont ai ner contai ner = new Cor eCont ai ner ();

contai ner.load("/path/to/solr/honme", f);

EnbeddedSol r Server server = new EnbeddedSol r Server(container, "core nane as defined in
solr.xm");

Using the StreamingUpdateSolrServer

If you are working with Java, you can take advantage of the StreamingUpdateSolrServer to
perform bulk updates at high speed. StreamingHttpSolrServer buffers all added documents and
writes them into open HTTP connections. This class is thread safe. Although any SolrServer request
can be made with this implementation, it is only recommended to use the
StreamingUpdateSolrServer for / updat e requests.

You can learn more about the StreamingUpdateSolrServer here:

http://lucene.apache.org/solr/api/org/apache/solr/client/solrj/impl/StreamingUpdateSolrServer.htm

More Information

Page 393 of 397

http://lucene.apache.org/solr/api/org/apache/solr/client/solrj/embedded/EmbeddedSolrServer.html
http://wiki.apache.org/solr/MultiCore
http://lucene.apache.org/solr/api/org/apache/solr/client/solrj/impl/StreamingUpdateSolrServer.html

Solr Reference Guide Jan 10, 2012

As you begin developing with Solr], you will find the API documentation indispensable. It is
available online at the Apache Lucene site:

http://lucene.apache.org/solr/api/solrj/index.html

For more information about using Solr], read the page at the Solr Wiki:
http://wiki.apache.org/solr/Solrj

The Solr Wiki also contains another example which demonstrates setting qt :

http://wiki.apache.org/solr/SolJava

Page 394 of 397

http://lucene.apache.org/solr/api/solrj/index.html
http://wiki.apache.org/solr/Solrj
http://wiki.apache.org/solr/SolJava

Solr Reference Guide Jan 10, 2012

Using Solr From Ruby

For Ruby applications, the solr-ruby gem encapsulates the fundamental Solr operations.

At a command line, install solr-ruby as follows:

$ geminstall solr-ruby

Bul k updating Gem source index for: http://gens.rubyforge.org
Successfully installed solr-ruby-0.0.8

1 geminstalled

Installing ri docunentation for solr-ruby-0.0.8..

Instal |l ing RDoc documentation for solr-ruby-0.0.8..

This gives you a Sol r: : Connect i on class that makes it easy to add documents, perform queries,
and do other Solr stuff.

Solr-ruby takes advantage of Solr's Ruby response writer, which is a subclass of the JSON response
writer. This response writer sends information from Solr to Ruby in a form that Ruby can
understand and use directly.

Performing Queries

To perform queries, you just need to get a Sol r: : Connecti on and call its query method. Here is a
script that looks for cheese. The return value from query() is an array of documents, which are
dictionaries, so the script iterates through each document and prints out a few fields.

require 'rubygens'
require 'solr'
solr = Solr::Connection.new(' http://1ocal host:8983/solr")
response = solr.query(' cheese')
response. each do | hit
puts hit\["id'\] +" ' + hit\['name'\] + "' ' + hit\['price'\].to_s
end

An example run looks like this:

$ ruby query.rb
551299 Gouda cheese wheel 49.99
123 Fresh npbzzarell a cheese

Indexing Documents

Page 395 of 397

Solr Reference Guide Jan 10, 2012

Indexing is just as simple. You have to get the Sol r: : Connecti on just as before. Then call the
add() and commi t () methods.

require 'rubygens'

require 'solr’

solr = Solr::Connection.new(' http://1ocal host:8983/solr")
solr.add(:id => 123, :nane => 'Fresh nozzarella cheese')
solr.comit()

More Information

For more information on solr-ruby, read the page at the Solr Wiki:

http://wiki.apache.org/solr/solr-ruby

Page 396 of 397

http://wiki.apache.org/solr/solr-ruby

Solr Reference Guide Jan 10, 2012

MBean Request Handler

The MBean Request Handler offers programmatic access to the information provided on the
Statistics and Info pages of the Admin UI. You can access the MBean Request Handler here:
http://localhost:8983/solr/admin/mbeans.

The MBean Request Handler accepts the following parameters:

Parameter Type Default Description

key multivalued all Restricts results by object key.

cat multivalued all Restricts results by category name.

stats boolean false Specifies whether statistics are returned with results. You can

override the st at s parameter on a per-field basis.

Examples

To return information about the CACHE category only:

http://1 ocal host: 8983/ sol r/ adm n/ nbeans?cat =CACHE

To return information and statistics about the CACHE category only:

http://1 ocal host: 8983/ sol r/ adni n/ nbeans?st at s=t r ue&cat =CACHE

To return information for everything, and statistics for everything except the fi el dCache:
http://1 ocal host: 8983/ sol r/ adm n/ nbeans?st at s=trueé&f . fi el dCache. st at s=f al se
To return information and statistics for the fi el dCache only:

http://1 ocal host: 8983/ sol r/ adm n/ nheans?key=fi el dCache&st at s=true

Page 397 of 397

http://localhost:8983/solr/admin/mbeans

	Solr and Lucene
	Lucid Imagination
	About This Guide
	Further Assistance
	Getting Started
	Installing Solr
	Got Java?
	Installing Solr
	To install Solr

	Running Solr
	Start the Server
	Add Documents
	Ask Questions

	A Quick Overview
	A Step Closer

	Using the Solr Administration User Interface
	Overview of the Solr Admin UI
	Configuring the Admin UI in solrconfig.xml

	The Solr Section
	Displaying the Solr Schema
	Displaying the Solr Configuration File
	Running Field Analysis to Test Analyzers, Tokenizers, and TokenFilters
	Using the Schema Browser
	Displaying the Configuration of a Field
	Displaying Additional Details about a Parameter
	Exploring the Most Popular Terms for a Field

	Displaying Statistics of the Solr Server
	Displaying Start-up Time Statistics about the Solr Server
	Displaying Information about a Distributed Solr Configuration
	Pinging the Solr Server to Test Its Responsiveness
	Viewing and Configuring Logfile Settings

	The App Server Section
	Displaying Java Properties
	Displaying the Active Threads in the Java Environment
	Enabling or Disabling the Server in a Load-balanced Configuration

	The Make a Query Section
	Using the Full Interface to Submit Queries

	The Assistance Section

	Documents, Fields, and Schema Design
	Overview of Documents, Fields, and Schema Design
	How Solr Sees the World
	Field Analysis

	Solr Field Types
	Field Type Definitions in schema.xml
	Field Types Included with Solr
	Working with Dates
	Working with External Files
	Field Type Properties
	Field Properties by Use Case

	Defining Fields
	Copying Fields
	Dynamic Fields
	Other Schema Elements
	Unique Key
	Default Search Field
	Query Parser Operator

	Putting the Pieces Together
	Choosing Appropriate Numeric Types
	Working With Text

	Understanding Analyzers, Tokenizers, and Filters
	Overview of Analyzers, Tokenizers, and Filters
	What Is An Analyzer?
	Analysis Phases

	What Is A Tokenizer?
	What Is a Filter?
	Tokenizers
	Standard Tokenizer
	Classic Tokenizer
	Keyword Tokenizer
	Letter Tokenizer
	Lower Case Tokenizer
	N-Gram Tokenizer
	Edge N-Gram Tokenizer
	ICU Tokenizer
	Path Hierarchy Tokenizer
	Regular Expression Pattern Tokenizer
	UAX29 URL Email Tokenizer
	White Space Tokenizer

	Filter Descriptions
	ASCII Folding Filter
	Classic Filter
	Common Grams Filter
	Collation Key Filter
	Edge N-Gram Filter
	English Minimal Stem Filter
	Hunspell Stem Filter
	Hyphenated Words Filter
	ICU Folding Filter
	ICU Normalizer 2 Filter
	ICU Transform Filter
	Keep Words Filter
	KStem Filter
	Length Filter
	Lower Case Filter
	N-Gram Filter
	Numeric Payload Token Filter
	Pattern Replace Filter
	Phonetic Filter
	Porter Stem Filter
	Position Filter Factory
	Remove Duplicates Token Filter
	Reversed Wildcard Filter
	Shingle Filter
	Snowball Porter Stemmer Filter
	Standard Filter
	Stop Filter
	Synonym Filter
	Token Offset Payload Filter
	Trim Filter
	Type As Payload Filter
	Word Delimiter Filter

	CharFilterFactories
	solr.MappingCharFilterFactory
	solr.HTMLStripCharFilterFactory
	solrPatternReplaceCharFilterFactory

	Language Analysis
	KeyWordMarkerFilterFactory
	StemmerOverrideFilterFactory
	Dictionary Compound Word Token Filter
	Unicode Collation
	Sorting Text for a Specific Language
	Sorting Text for Multiple Languages
	Sorting Text with Custom Rules
	Searching
	ICU Collation

	ISO Latin Accent Filter
	Arabic
	Brazilian Portuguese
	Bulgarian
	Chinese
	Chinese Tokenizer
	Chinese Filter Factory

	Simplified Chinese
	CJK
	Czech
	Dutch
	Finnish
	French
	Elision Filter
	French Light Stem Filter

	Galician
	German
	Greek
	Hindi
	Indonesian
	Italian
	Lao, Myanmar, Khmer
	Latvian
	Persian
	Persian Filter Factories

	Polish
	Portuguese
	Russian
	Russian Letter Tokenizer
	Russian Lower Case Filter
	Russian Stem Filter

	Spanish
	Swedish
	Swedish Stem Filter

	Thai
	Turkish

	Running Your Analyzer

	Indexing and Basic Data Operations
	What Is Indexing?
	The Solr Example Directory
	The curl Utility for Transferring Files

	Uploading Data with Solr Cell using Apache Tika
	Key Concepts
	Trying out Tika with the Solr Example Directory
	Input Parameters
	Order of Operations
	Configuring the Solr ExtractingRequestHandler
	Multi-Core Configuration

	Metadata
	Examples of Uploads Using the Extraction Request Handler
	Capture and Mapping
	Capture, Mapping, and Boosting
	Using Literals to Define Your Own Metadata
	XPath
	Extracting Data without Indexing It

	Sending Documents to Solr with a POST
	Sending Documents to Solr with Solr Cell and SolrJ

	Uploading Data with Index Handlers
	XMLUpdateRequestHandler for XML-formatted Data
	Configuration
	Adding Documents
	Commit and Optimize Operations
	Delete Operations
	Rollback Operations
	Using curl to Perform Updates with the Update Request Handler.
	A Simple Cross-Platform Posting Tool

	XSLTRequestHandler to Transform XML Content
	CSVRequestHandler for CSV Content
	Parameters

	Using the JSONRequestHandler for JSON Content
	Examples
	Update Commands

	Indexing Using SolrJ

	Uploading Structured Data Store Data with the Data Import Handler
	Concepts and Terminology
	Configuration
	Data Import Handler Commands
	Parameters for the full-import Command

	Data Sources
	ContentStreamDataSource
	FieldReaderDataSource
	FileDataSource
	JdbcDataSource
	URLDataSource

	Entity Processors
	The SQL Entity Processor
	The XPathEntityProcessor
	The FileListEntityProcessor
	LineEntityProcessor
	PlainTextEntityProcessor

	Transformers
	ClobTransformer
	The DateFormatTransformer
	The HTMLStripTransformer
	The LogTransformer
	The NumberFormatTransformer
	The RegexTransformer
	The ScriptTransformer
	The TemplateTransformer

	Special Commands for the Data Import Handler
	The Data Import Handler Development Console

	Detecting Languages During Indexing
	Configuring Language Detection
	Configuring Tika Language Detection
	Configuring LangDetect Language Detection

	langid Parameters

	UIMA Integration
	Configuring UIMA

	Content Streams
	Stream Sources
	RemoteStreaming
	Debugging Requests

	Searching
	Overview of Searching in Solr
	The Velocity Search UI

	Relevance
	Query Syntax and Parsing
	Common Query Parameters
	The defType Parameter
	The sort Parameter
	The start Parameter
	The rows Parameter
	The fq (Filter Query) Parameter
	The fl (Field List) Parameter
	The debugQuery Parameter
	The explainOther Parameter
	The timeAllowed Parameter
	The omitHeader Parameter
	The wt Parameter
	The cache=false Parameter

	The Standard Query Parser
	Standard Query Parser Parameters
	The Standard Query Parser's Response
	Sample Responses

	Specifying Terms for the Standard Query Parser
	Term Modifiers
	Wildcard Searches
	Fuzzy Searches
	Proximity Searches
	Range Searches
	Boosting a Term with ^

	Specifying Fields in a Query to the Standard Query Parser
	Boolean Operators Supported by the Standard Query Parser
	The Boolean Operator +
	The Boolean Operator AND (&&)
	The Boolean Operator NOT (!)
	Escaping Special Characters

	Grouping Terms to Form Subqueries
	Grouping Clauses within a Field

	Differences between Lucene Query Parser and the Solr Standard Query Parser
	Specifying Dates and Times

	The DisMax Query Parser
	DisMax Parameters
	The q Parameter
	The q.alt Parameter
	The qf (Query Fields) Parameter
	The mm (Minimum Should Match) Parameter
	The pf (Phrase Fields) Parameter
	The ps (Phrase Slop) Parameter
	The qs (Query Phrase Slop) Parameter
	The tie (Tie Breaker) Parameter
	The bq (Boost Query) Parameter
	The bf (Boost Functions) Parameter

	Examples of Queries Submitted to the DisMax Query Parser

	The Extended DisMax Query Parser
	Extended DisMax Parameters
	The boost Parameter
	The lowercaseOperators Parameter
	The pf2 Parameter
	The pf3 Parameter
	The stopwords Parameter

	Examples of Queries Submitted to the Extended DisMax Query Parser

	Local Parameters in Queries
	Basic Syntax of Local Parameters
	Query Type Short Form
	Specifying the Parameter Value with the ' v ' Key
	Parameter Dereferencing

	Function Queries
	Using FunctionQuery
	Example of Function Queries Using the top Function
	Sort By Function

	Highlighting
	Using Boundary Scanners with the Fast Vector Highlighter
	The breakIterator Boundary Scanner
	The simple Boundary Scanner

	MoreLikeThis
	Common Parameters for MoreLikeThis
	Parameters for the StandardRequestHandler
	Parameters for the MoreLikeThis Request Handler

	Faceting
	General Parameters
	The facet Parameter
	The facet.query Parameter

	Field-Value Faceting Parameters
	The facet.field Parameter
	The facet.prefix Parameter
	The facet.sort Parameter
	The facet.limit Parameter
	The facet.offset Parameter
	The facet.mincount Parameter
	The facet.missing Parameter
	The facet.method Parameter
	The facet.enum.cache.minDf Parameter

	Range Faceting
	The facet.range Parameter
	The facet.range.start Parameter
	The facet.range.end Parameter
	The facet.range.gap Parameter
	The facet.range.hardend Parameter
	The facet.range.include Parameter
	The facet.range.other Parameter

	Date Faceting Parameters
	LocalParams for Faceting
	Tagging and Excluding Filters
	Changing the Output Key

	Result Grouping
	Request Parameters
	Examples
	Grouping Results by Field
	Grouping by Query

	Distributed Result Grouping

	Spell Checking
	Configuring the SpellCheckComponent
	Define Spell Check in solrconfig.xml
	Add It to a Request Handler

	Spell Check Parameters
	The spellcheck Parameter
	The spellcheck.q or q Parameter
	The spellcheck.build Parameter
	The spellcheck.reload Parameter
	The spellcheck.count Parameter
	The spellcheck.onlyMorePopular Parameter
	The spellcheck.extendedResults Parameter
	The spellcheck.collate Parameter
	The spellcheck.maxCollations Parameter
	The spellcheck.maxCollationTries Parameter
	The spellcheck.maxCollationEvaluations Parameter
	The spellcheck.collateExtendedResult Parameter
	The spellcheck.dictionary Parameter
	The spellcheck.accuracy Parameter
	The spellcheck.<DICT_NAME>.key Parameter
	Example

	Distributed SpellCheck

	Suggester
	Configuring Suggester
	Suggester Parameters
	Suggester Search Component Parameters
	Suggester Request Handler Parameters

	Spatial Search
	Spatial Search Features
	Spatial Search Parameters
	geofilt
	bbox
	geodist

	More Examples
	Use as a Sub-Query to Expand Search Results
	Facet by Distance
	Boost Nearest Results

	The Terms Component
	Examples
	Using the Terms Component for an Auto-Suggest Feature
	Distributed Search Support

	The Term Vector Component
	Enabling the the TermVectorComponent
	Changes for solrconfig.xml
	Invoking the Term Vector Component

	Optional Parameters
	SolrJ and the Term Vector Component

	The Stats Component
	Stats Component Parameters
	Statistics Returned
	Example
	The Stats Component and Faceting

	The Query Elevation Component
	Configuring the Query Elevation Component
	elevate.xml

	Using the Query Elevation Component
	The enableElevation Parameter
	The forceElevation Parameter
	The exclusive Parameter
	The fq Parameter

	Response Writers
	The Standard XML Response Writer
	The version Parameter
	The stylesheet Parameter
	The indent Parameter

	The XSLT Response Writer
	tr Parameter
	Configuration

	JSON Response Writer
	Python Response Writer
	PHP Response Writer and PHP Serialized Response Writer
	Ruby Response Writer
	CSV Response Writer
	CSV Parameters
	Multi-Valued Field CSV Parameters
	Example

	Binary Response Writer

	The Well-Configured Solr Instance
	Configuring solrconfig.xml
	Specifying a Location for Index Data with the dataDir Parameter
	Specifying the DirectoryFactory For Your Index
	Configuring the Lucene IndexWriters
	UseCompoundFile
	mergeFactor
	Other Indexing Settings

	Controlling the Behavior of the Update Handler
	autoCommit
	maxPendingDeletes

	Query Settings in solrconfig.xml
	Caching
	filterCache
	queryResultCache
	documentCache
	User Defined Caches

	maxBooleanClauses
	enableLazyFieldLoading
	useColdSearcher
	maxWarmingSearchers

	HTTP RequestDispatcher Settings
	handleSelect Attribute
	requestParsers Element
	httpCaching Element
	The cacheControl Element

	Configuring solr.xml
	Using Multiple SolrCores
	The <solr> Element
	The <cores> Element
	The <core> Element

	Properties in solr.xml
	CoreAdminHandler
	STATUS
	CREATE
	RELOAD
	RENAME
	ALIAS
	SWAP
	UNLOAD

	Solr Plugins
	JVM Settings
	Choosing Memory Heap Settings
	Use the Server HotSpot VM
	Checking JVM Settings

	Managing Solr
	Running Solr on Tomcat
	How Solr Works with Tomcat
	Running Multiple Solr Instances
	Deploying Solr with the Tomcat Manager

	Running Solr on Jetty
	Changing the Solr Listening Port

	Configuring Logging
	Temporary Logging Settings
	Permanent Logging Settings
	Tomcat Logging Settings
	Jetty Logging Settings

	Backing Up
	Making Backups with the Solr Replication Handler
	Backup Scripts from Earlier Solr Releases

	Using JMX with Solr

	Scaling and Distribution
	Introduction to Scaling and Distribution
	What Problem Does Distribution Solve?
	What Problem Does Replication Solve?

	Distributed Search with Index Sharding
	Distributing Documents across Shards
	Executing Distributed Searches with the shards Parameter
	Limitations to Distributed Search
	Avoiding Distributed Deadlock
	Testing Index Sharding on Two Local Servers

	Index Replication
	Index Replication in Solr
	Replication Terminology
	Configuring the Replication RequestHandler on a Master Server
	Replicating solrconfig.xml
	Configuring the Replication RequestHandler on a Slave Server
	Setting Up a Repeater with the ReplicationHandler
	Commit and Optimize Operations
	Slave Replication
	Replicating Configuration Files
	Resolving Corruption Issues on Slave Servers
	HTTP API Commands for the ReplicationHandler
	Using the Replication Dashboard

	Index Replication using ssh and rsync
	The Snapshot and Distribution Process
	Snapshot Directories
	Solr Distribution Scripts
	Solr Distribution-related Cron Jobs
	Commit and Optimization
	Distribution and Optimization
	Performance Tuning for Script-based Replication

	Combining Distribution and Replication
	Merging Indexes
	Using IndexMergeTool
	Using CoreAdmin

	Client APIs
	Introduction to Client APIs
	Choosing an Output Format
	Using JavaScript
	Using Python
	Simple Python
	Python with JSON

	Client API Lineup
	Using SolrJ
	Building and Running SolrJ Applications
	Setting XMLResponseParser
	Performing Queries
	Indexing Documents
	Uploading Content in XML or Binary Formats
	EmbeddedSolrServer
	Using the StreamingUpdateSolrServer
	More Information

	Using Solr From Ruby
	Performing Queries
	Indexing Documents
	More Information

	MBean Request Handler

